use of gdsc.smlm.model.UniformDistribution in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog())
return;
startLog();
log("Simulation parameters");
if (blinkingDistribution == 3) {
log(" - Clusters = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Molecules/cluster = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
log(" - p-Value = %s", Utils.rounded(p, 4));
} else {
log(" - Molecules = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Blinking rate = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
}
log(" - Average precision = %s nm", Utils.rounded(sigmaS, 4));
log(" - Clusters simulation = " + CLUSTER_SIMULATION[clusterSimulation]);
if (clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", Utils.rounded(clusterNumber, 4), Utils.rounded(clusterNumberSD, 4));
log(" - Cluster radius = %s nm", Utils.rounded(clusterRadius, 4));
}
final double nmPerPixel = 100;
double width = simulationSize * 1000.0;
// Allow a border of 3 x sigma for +/- precision
//if (blinkingRate > 1)
width -= 3 * sigmaS;
RandomGenerator randomGenerator = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
RandomDataGenerator dataGenerator = new RandomDataGenerator(randomGenerator);
UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, randomGenerator.nextInt());
molecules = new ArrayList<Molecule>(nMolecules);
// Create some dummy results since the calibration is required for later analysis
results = new MemoryPeakResults();
results.setCalibration(new gdsc.smlm.results.Calibration(nmPerPixel, 1, 100));
results.setSource(new NullSource("Molecule Simulation"));
results.begin();
int count = 0;
// Generate a sequence of coordinates
ArrayList<double[]> xyz = new ArrayList<double[]>((int) (nMolecules * 1.1));
Statistics statsRadius = new Statistics();
Statistics statsSize = new Statistics();
String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using circles
// with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A fluctuations model is
// created at T = 1.075 Tc. It is not clear exactly how the particles are distributed.
// It may be that a mask is created first using the model. The particles are placed on the mask using
// a specified density. This simulation produces a figure to show either a damped cosine function
// (circles) or an exponential (fluctuations). The number of particles in each circle may be randomly
// determined just by density. The figure does not discuss the derivation of the cluster size
// statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then the damped
// cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent to the average
// distance to the centre-of-mass of each drawn cluster, not the input cluster radius parameter (which
// is a hard upper limit on the distance to centre).
final int maskSize = lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
ArrayList<double[]> clusterCentres = new ArrayList<double[]>();
int totalSteps = 1 + (int) Math.ceil(nMolecules / clusterNumber);
if (clusterSimulation == 2 || clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
double[] centre;
IJ.showStatus("Computing clusters mask");
int roiRadius = (int) Math.round((clusterRadius * 2) / maskScale);
if (clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * Math.pow(clusterRadius / maskScale, 2)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
double cx = centre[0] / maskScale;
double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
//Utils.display("Mask", new ColorProcessor(maskSize, maskSize, mask));
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
} catch (IllegalArgumentException e) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
IJ.showProgress(1);
IJ.showStatus("");
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) clusterCentres.add(dist.next());
}
if (showClusterMask || clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null)
mask = new int[maskSize * maskSize];
else
Arrays.fill(mask, 0);
int roiRadius = (int) Math.round((clusterRadius) / maskScale);
for (double[] c : clusterCentres) {
double cx = c[0] / maskScale;
double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
// Allocate each molecule position to a parent circle so defining clusters.
int[][] clusters = new int[clusterCentres.size()][];
int[] clusterSize = new int[clusters.length];
for (int i = 0; i < nMolecules; i++) {
double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0)
continue;
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
double[] com = new double[2];
for (int n = 0; n < size; n++) {
double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) com[k] += xy[k];
}
for (int k = 0; k < 2; k++) com[k] /= size;
for (int n = 0; n < size; n++) {
double dx = xyz.get(clusters[j][n])[0] - com[0];
double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) if (mask[i] != 0)
bp.set(i, 128);
Utils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (clusterSimulation == 1 || clusterSimulation == 2) {
for (double[] clusterCentre : clusterCentres) {
int clusterN = (int) Math.round((clusterNumberSD > 0) ? dataGenerator.nextGaussian(clusterNumber, clusterNumberSD) : clusterNumber);
if (clusterN < 1)
continue;
//double[] clusterCentre = dist.next();
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
double[] com = new double[3];
int j = 0;
while (j < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
double t = 2.0 * Math.PI * randomGenerator.nextDouble();
double u = randomGenerator.nextDouble() + randomGenerator.nextDouble();
double r = clusterRadius * ((u > 1) ? 2 - u : u);
double x = r * Math.cos(t);
double y = r * Math.sin(t);
double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) com[k] += xy[k];
j++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(j);
if (j == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) com[k] /= j;
while (j > 0) {
double dx = xyz.get(xyz.size() - j)[0] - com[0];
double dy = xyz.get(xyz.size() - j)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
j--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < nMolecules; i++) xyz.add(dist.next());
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (showHistograms) {
int capacity = (int) (xyz.size() * blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int nOccurrences = getBlinks(dataGenerator, blinkingRate);
if (showHistograms)
blinks.add(nOccurrences);
final int size = molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && nOccurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (nOccurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = dataGenerator.nextGaussian(0, sigma1D);
final double dy = dataGenerator.nextGaussian(0, sigma1D);
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXY(localisationXy))
continue;
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) (x / nmPerPixel);
params[Gaussian2DFunction.Y_POSITION] = (float) (y / nmPerPixel);
results.addf(i + 1, (int) x, (int) y, 0, 0, 0, params, null);
}
if (molecules.size() > size) {
count++;
if (showHistograms) {
int newCount = molecules.size() - size;
if (newCount == 1) {
//intraDistances.add(0);
continue;
}
// Get the distance matrix between these molecules
double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < molecules.size(); jj++, y++) {
final double d2 = molecules.get(ii).distance2(molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y)
continue;
if (matrix[x][y] < linkDistance)
linkDistance = matrix[x][y];
}
// Check if this is larger
if (max < linkDistance)
max = linkDistance;
}
intraDistances.add(Math.sqrt(max));
}
}
}
results.end();
if (bp != null)
Utils.display(maskTitle, bp);
// Used for debugging
//System.out.printf(" * Molecules = %d (%d activated)\n", xyz.size(), count);
//if (clusterSimulation > 0)
// System.out.printf(" * Cluster number = %s +/- %s. Radius = %s +/- %s\n",
// Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4),
// Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", Utils.rounded((double) molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? Utils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (showHistograms) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
int p99 = intraHist[0].length - 1;
double limit1 = 0.99 * intraHist[1][p99];
double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) p99--;
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) p95--;
log(" * Mean Intra-Molecule particle linkage distance = %s nm (95%% = %s, 99%% = %s, 100%% = %s)", Utils.rounded(intraDistances.getMean(), 4), Utils.rounded(intraHist[0][p95], 4), Utils.rounded(intraHist[0][p99], 4), Utils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
use of gdsc.smlm.model.UniformDistribution in project GDSC-SMLM by aherbert.
the class CreateData method createUniformDistribution.
/**
* Create distribution within an XY border
*
* @param border
* @return
*/
private UniformDistribution createUniformDistribution(double border) {
double depth = (settings.fixedDepth) ? settings.depth / settings.pixelPitch : settings.depth / (2 * settings.pixelPitch);
// Ensure the focal plane is in the middle of the zDepth
double[] max = new double[] { settings.size / 2 - border, settings.size / 2 - border, depth };
double[] min = new double[3];
for (int i = 0; i < 3; i++) min[i] = -max[i];
if (settings.fixedDepth)
min[2] = max[2];
// Try using different distributions:
final RandomGenerator rand1 = createRandomGenerator();
if (settings.distribution.equals(DISTRIBUTION[UNIFORM_HALTON])) {
return new UniformDistribution(min, max, rand1.nextInt());
}
if (settings.distribution.equals(DISTRIBUTION[UNIFORM_SOBOL])) {
SobolSequenceGenerator rvg = new SobolSequenceGenerator(3);
rvg.skipTo(rand1.nextInt());
return new UniformDistribution(min, max, rvg);
}
// Create a distribution using random generators for each dimension
UniformDistribution distribution = new UniformDistribution(min, max, this);
return distribution;
}
use of gdsc.smlm.model.UniformDistribution in project GDSC-SMLM by aherbert.
the class BlinkEstimatorTest method estimateBlinking.
private TIntHashSet estimateBlinking(double nBlinks, double tOn, double tOff, int particles, double fixedFraction, boolean timeAtLowerBound, boolean doAssert) {
SpatialIllumination activationIllumination = new UniformIllumination(100);
int totalSteps = 100;
double eAct = totalSteps * 0.3 * activationIllumination.getAveragePhotons();
ImageModel imageModel = new ActivationEnergyImageModel(eAct, activationIllumination, tOn, 0, tOff, 0, nBlinks);
imageModel.setRandomGenerator(rand);
double[] max = new double[] { 256, 256, 32 };
double[] min = new double[3];
SpatialDistribution distribution = new UniformDistribution(min, max, rand.nextInt());
List<CompoundMoleculeModel> compounds = new ArrayList<CompoundMoleculeModel>(1);
CompoundMoleculeModel c = new CompoundMoleculeModel(1, 0, 0, 0, Arrays.asList(new MoleculeModel(0, 0, 0, 0)));
c.setDiffusionRate(diffusionRate);
c.setDiffusionType(DiffusionType.RANDOM_WALK);
compounds.add(c);
List<CompoundMoleculeModel> molecules = imageModel.createMolecules(compounds, particles, distribution, false);
// Activate fluorophores
List<? extends FluorophoreSequenceModel> fluorophores = imageModel.createFluorophores(molecules, totalSteps);
totalSteps = checkTotalSteps(totalSteps, fluorophores);
List<LocalisationModel> localisations = imageModel.createImage(molecules, fixedFraction, totalSteps, photons, 0.5, false);
// // Remove localisations to simulate missed counts.
// List<LocalisationModel> newLocalisations = new ArrayList<LocalisationModel>(localisations.size());
// boolean[] id = new boolean[fluorophores.size() + 1];
// Statistics photonStats = new Statistics();
// for (LocalisationModel l : localisations)
// {
// photonStats.add(l.getIntensity());
// // Remove by intensity threshold and optionally at random.
// if (l.getIntensity() < minPhotons || rand.nextDouble() < pDelete)
// continue;
// newLocalisations.add(l);
// id[l.getId()] = true;
// }
// localisations = newLocalisations;
// System.out.printf("Photons = %f\n", photonStats.getMean());
//
// List<FluorophoreSequenceModel> newFluorophores = new ArrayList<FluorophoreSequenceModel>(fluorophores.size());
// for (FluorophoreSequenceModel f : fluorophores)
// {
// if (id[f.getId()])
// newFluorophores.add(f);
// }
// fluorophores = newFluorophores;
MemoryPeakResults results = new MemoryPeakResults();
results.setCalibration(new Calibration(pixelPitch, 1, msPerFrame));
for (LocalisationModel l : localisations) {
// Remove by intensity threshold and optionally at random.
if (l.getIntensity() < minPhotons || rand.nextDouble() < pDelete)
continue;
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) l.getX();
params[Gaussian2DFunction.Y_POSITION] = (float) l.getY();
params[Gaussian2DFunction.X_SD] = params[Gaussian2DFunction.Y_SD] = psfWidth;
params[Gaussian2DFunction.SIGNAL] = (float) (l.getIntensity());
results.addf(l.getTime(), 0, 0, 0, 0, 0, params, null);
}
// Add random localisations
for (int i = (int) (localisations.size() * pAdd); i-- > 0; ) {
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) (rand.nextDouble() * max[0]);
params[Gaussian2DFunction.Y_POSITION] = (float) (rand.nextDouble() * max[1]);
params[Gaussian2DFunction.X_SD] = params[Gaussian2DFunction.Y_SD] = psfWidth;
// Intensity doesn't matter at the moment for tracing
params[Gaussian2DFunction.SIGNAL] = (float) (photons);
results.addf(1 + rand.nextInt(totalSteps), 0, 0, 0, 0, 0, params, null);
}
// Get actual simulated stats ...
Statistics statsNBlinks = new Statistics();
Statistics statsTOn = new Statistics();
Statistics statsTOff = new Statistics();
Statistics statsSampledNBlinks = new Statistics();
Statistics statsSampledTOn = new Statistics();
StoredDataStatistics statsSampledTOff = new StoredDataStatistics();
for (FluorophoreSequenceModel f : fluorophores) {
statsNBlinks.add(f.getNumberOfBlinks());
statsTOn.add(f.getOnTimes());
statsTOff.add(f.getOffTimes());
int[] on = f.getSampledOnTimes();
statsSampledNBlinks.add(on.length);
statsSampledTOn.add(on);
statsSampledTOff.add(f.getSampledOffTimes());
}
System.out.printf("N = %d (%d), N-blinks = %f, tOn = %f, tOff = %f, Fixed = %f\n", fluorophores.size(), localisations.size(), nBlinks, tOn, tOff, fixedFraction);
System.out.printf("Actual N-blinks = %f (%f), tOn = %f (%f), tOff = %f (%f), 95%% = %f, max = %f\n", statsNBlinks.getMean(), statsSampledNBlinks.getMean(), statsTOn.getMean(), statsSampledTOn.getMean(), statsTOff.getMean(), statsSampledTOff.getMean(), statsSampledTOff.getStatistics().getPercentile(95), statsSampledTOff.getStatistics().getMax());
System.out.printf("-=-=--=-\n");
BlinkEstimator be = new BlinkEstimator();
be.maxDarkTime = (int) (tOff * 10);
be.msPerFrame = msPerFrame;
be.relativeDistance = false;
double d = ImageModel.getRandomMoveDistance(diffusionRate);
be.searchDistance = (fixedFraction < 1) ? Math.sqrt(2 * d * d) * 3 : 0;
be.timeAtLowerBound = timeAtLowerBound;
be.showPlots = false;
//Assert.assertTrue("Max dark time must exceed the dark time of the data (otherwise no plateau)",
// be.maxDarkTime > statsSampledTOff.getStatistics().getMax());
int nMolecules = fluorophores.size();
if (usePopulationStatistics) {
nBlinks = statsNBlinks.getMean();
tOff = statsTOff.getMean();
} else {
nBlinks = statsSampledNBlinks.getMean();
tOff = statsSampledTOff.getMean();
}
// See if any fitting regime gets a correct answer
TIntHashSet ok = new TIntHashSet();
for (int nFittedPoints = MIN_FITTED_POINTS; nFittedPoints <= MAX_FITTED_POINTS; nFittedPoints++) {
be.nFittedPoints = nFittedPoints;
be.computeBlinkingRate(results, true);
double moleculesError = DoubleEquality.relativeError(nMolecules, be.getNMolecules());
double blinksError = DoubleEquality.relativeError(nBlinks, be.getNBlinks());
double offError = DoubleEquality.relativeError(tOff * msPerFrame, be.getTOff());
System.out.printf("Error %d: N = %f, blinks = %f, tOff = %f : %f\n", nFittedPoints, moleculesError, blinksError, offError, (moleculesError + blinksError + offError) / 3);
if (moleculesError < relativeError && blinksError < relativeError && offError < relativeError) {
ok.add(nFittedPoints);
System.out.printf("-=-=--=-\n");
System.out.printf("*** Correct at %d fitted points ***\n", nFittedPoints);
if (doAssert)
break;
}
//if (!be.isIncreaseNFittedPoints())
// break;
}
System.out.printf("-=-=--=-\n");
if (doAssert)
Assert.assertFalse(ok.isEmpty());
//Assert.assertEquals("Invalid t-off", tOff * msPerFrame, be.getTOff(), tOff * msPerFrame * relativeError);
return ok;
}
Aggregations