use of ij.process.ByteProcessor in project GDSC-SMLM by aherbert.
the class FilterResults method filterResults.
/**
* Apply the filters to the data
*/
private void filterResults() {
checkLimits();
MemoryPeakResults newResults = new MemoryPeakResults();
newResults.copySettings(results);
newResults.setName(results.getName() + " Filtered");
// Initialise the mask
ByteProcessor mask = getMask(filterSettings.maskTitle);
MaskDistribution maskFilter = null;
final float centreX = results.getBounds().width / 2.0f;
final float centreY = results.getBounds().height / 2.0f;
if (mask != null) {
double scaleX = (double) results.getBounds().width / mask.getWidth();
double scaleY = (double) results.getBounds().height / mask.getHeight();
maskFilter = new MaskDistribution((byte[]) mask.getPixels(), mask.getWidth(), mask.getHeight(), 0, scaleX, scaleY);
}
int i = 0;
final int size = results.size();
final double maxVariance = filterSettings.maxPrecision * filterSettings.maxPrecision;
for (PeakResult result : results.getResults()) {
if (i % 64 == 0)
IJ.showProgress(i, size);
if (getDrift(result) > filterSettings.maxDrift)
continue;
if (result.getSignal() < filterSettings.minSignal)
continue;
if (getSNR(result) < filterSettings.minSNR)
continue;
if (getVariance(result) > maxVariance)
continue;
final float width = getWidth(result);
if (width < filterSettings.minWidth || width > filterSettings.maxWidth)
continue;
if (maskFilter != null) {
// Check the coordinates are inside the mask
double[] xy = new double[] { result.getXPosition() - centreX, result.getYPosition() - centreY };
if (!maskFilter.isWithinXY(xy))
continue;
}
// Passed all filters. Add to the results
newResults.add(result);
}
IJ.showProgress(1);
IJ.showStatus(newResults.size() + " Filtered localisations");
MemoryPeakResults.addResults(newResults);
}
use of ij.process.ByteProcessor in project GDSC-SMLM by aherbert.
the class DrawClusters method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (MemoryPeakResults.isMemoryEmpty()) {
IJ.error(TITLE, "No localisations in memory");
return;
}
if (!showDialog())
return;
// Load the results
MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
return;
}
// Get the traces
Trace[] traces = TraceManager.convert(results);
if (traces == null || traces.length == 0) {
IJ.error(TITLE, "No traces could be loaded");
return;
}
// Filter traces to a min size
int maxFrame = 0;
int count = 0;
final int myMaxSize = (maxSize < minSize) ? Integer.MAX_VALUE : maxSize;
final boolean myDrawLines = (myMaxSize < 2) ? false : drawLines;
for (int i = 0; i < traces.length; i++) {
if (expandToSingles)
traces[i].expandToSingles();
if (traces[i].size() >= minSize && traces[i].size() <= myMaxSize) {
traces[count++] = traces[i];
traces[i].sort();
if (maxFrame < traces[i].getTail().getFrame())
maxFrame = traces[i].getTail().getFrame();
}
}
if (count == 0) {
IJ.error(TITLE, "No traces achieved the size limits");
return;
}
String msg = String.format(TITLE + ": %d / %s (%s)", count, Utils.pleural(traces.length, "trace"), Utils.pleural(results.size(), "localisation"));
IJ.showStatus(msg);
//Utils.log(msg);
Rectangle bounds = results.getBounds(true);
ImagePlus imp = WindowManager.getImage(title);
boolean isUseStackPosition = useStackPosition;
if (imp == null) {
// Create a default image using 100 pixels as the longest edge
double maxD = (bounds.width > bounds.height) ? bounds.width : bounds.height;
int w, h;
if (maxD == 0) {
// Note that imageSize can be zero (for auto sizing)
w = h = (imageSize == 0) ? 20 : imageSize;
} else {
// Note that imageSize can be zero (for auto sizing)
if (imageSize == 0) {
w = bounds.width;
h = bounds.height;
} else {
w = (int) (imageSize * bounds.width / maxD);
h = (int) (imageSize * bounds.height / maxD);
}
}
ByteProcessor bp = new ByteProcessor(w, h);
if (isUseStackPosition) {
ImageStack stack = new ImageStack(w, h, maxFrame);
for (int i = 1; i <= maxFrame; i++) // Do not clone as the image is empty
stack.setPixels(bp.getPixels(), i);
imp = Utils.display(TITLE, stack);
} else
imp = Utils.display(TITLE, bp);
// Enlarge
ImageWindow iw = imp.getWindow();
for (int i = 9; i-- > 0 && iw.getWidth() < 500 && iw.getHeight() < 500; ) {
iw.getCanvas().zoomIn(imp.getWidth() / 2, imp.getHeight() / 2);
}
} else {
// Check if the image has enough frames for all the traces
if (maxFrame > imp.getNFrames())
isUseStackPosition = false;
}
final float xScale = (float) (imp.getWidth() / bounds.getWidth());
final float yScale = (float) (imp.getHeight() / bounds.getHeight());
// Create ROIs and store data to sort them
Roi[] rois = new Roi[count];
int[][] frames = (isUseStackPosition) ? new int[count][] : null;
int[] indices = Utils.newArray(count, 0, 1);
double[] values = new double[count];
for (int i = 0; i < count; i++) {
Trace trace = traces[i];
int nPoints = trace.size();
float[] xPoints = new float[nPoints];
float[] yPoints = new float[nPoints];
int j = 0;
if (isUseStackPosition)
frames[i] = new int[nPoints];
for (PeakResult result : trace.getPoints()) {
xPoints[j] = (result.getXPosition() - bounds.x) * xScale;
yPoints[j] = (result.getYPosition() - bounds.y) * yScale;
if (isUseStackPosition)
frames[i][j] = result.getFrame();
j++;
}
Roi roi;
if (myDrawLines) {
roi = new PolygonRoi(xPoints, yPoints, nPoints, Roi.POLYLINE);
if (splineFit)
((PolygonRoi) roi).fitSpline();
} else {
roi = new PointRoi(xPoints, yPoints, nPoints);
((PointRoi) roi).setShowLabels(false);
}
rois[i] = roi;
switch(sort) {
case 0:
default:
break;
case // Sort by ID
1:
values[i] = traces[i].getId();
break;
case // Sort by time
2:
values[i] = traces[i].getHead().getFrame();
break;
case // Sort by size descending
3:
values[i] = -traces[i].size();
break;
case // Sort by length descending
4:
values[i] = -roi.getLength();
break;
case // Mean Square Displacement
5:
values[i] = -traces[i].getMSD();
break;
case // Mean / Frame
6:
values[i] = -traces[i].getMeanPerFrame();
break;
}
}
if (sort > 0)
Sort.sort(indices, values);
// Draw the traces as ROIs on an overlay
Overlay o = new Overlay();
LUT lut = LUTHelper.createLUT(DrawClusters.lut);
final double scale = 256.0 / count;
if (isUseStackPosition) {
// Add the tracks on the frames containing the results
final boolean isHyperStack = imp.isDisplayedHyperStack();
for (int i = 0; i < count; i++) {
final int index = indices[i];
final Color c = LUTHelper.getColour(lut, (int) (i * scale));
final PolygonRoi roi = (PolygonRoi) rois[index];
roi.setFillColor(c);
roi.setStrokeColor(c);
final FloatPolygon fp = roi.getNonSplineFloatPolygon();
// For each frame in the track, add the ROI track and a point ROI for the current position
for (int j = 0; j < frames[index].length; j++) {
addToOverlay(o, (Roi) roi.clone(), isHyperStack, frames[index][j]);
//PointRoi pointRoi = new PointRoi(pos.x + fp.xpoints[j], pos.y + fp.ypoints[j]);
PointRoi pointRoi = new PointRoi(fp.xpoints[j], fp.ypoints[j]);
pointRoi.setPointType(3);
pointRoi.setFillColor(c);
pointRoi.setStrokeColor(Color.black);
addToOverlay(o, pointRoi, isHyperStack, frames[index][j]);
}
}
} else {
// Add the tracks as a single overlay
for (int i = 0; i < count; i++) {
final Roi roi = rois[indices[i]];
roi.setStrokeColor(new Color(lut.getRGB((int) (i * scale))));
o.add(roi);
}
}
imp.setOverlay(o);
IJ.showStatus(msg);
}
use of ij.process.ByteProcessor in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog())
return;
startLog();
log("Simulation parameters");
if (blinkingDistribution == 3) {
log(" - Clusters = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Molecules/cluster = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
log(" - p-Value = %s", Utils.rounded(p, 4));
} else {
log(" - Molecules = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Blinking rate = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
}
log(" - Average precision = %s nm", Utils.rounded(sigmaS, 4));
log(" - Clusters simulation = " + CLUSTER_SIMULATION[clusterSimulation]);
if (clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", Utils.rounded(clusterNumber, 4), Utils.rounded(clusterNumberSD, 4));
log(" - Cluster radius = %s nm", Utils.rounded(clusterRadius, 4));
}
final double nmPerPixel = 100;
double width = simulationSize * 1000.0;
// Allow a border of 3 x sigma for +/- precision
//if (blinkingRate > 1)
width -= 3 * sigmaS;
RandomGenerator randomGenerator = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
RandomDataGenerator dataGenerator = new RandomDataGenerator(randomGenerator);
UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, randomGenerator.nextInt());
molecules = new ArrayList<Molecule>(nMolecules);
// Create some dummy results since the calibration is required for later analysis
results = new MemoryPeakResults();
results.setCalibration(new gdsc.smlm.results.Calibration(nmPerPixel, 1, 100));
results.setSource(new NullSource("Molecule Simulation"));
results.begin();
int count = 0;
// Generate a sequence of coordinates
ArrayList<double[]> xyz = new ArrayList<double[]>((int) (nMolecules * 1.1));
Statistics statsRadius = new Statistics();
Statistics statsSize = new Statistics();
String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using circles
// with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A fluctuations model is
// created at T = 1.075 Tc. It is not clear exactly how the particles are distributed.
// It may be that a mask is created first using the model. The particles are placed on the mask using
// a specified density. This simulation produces a figure to show either a damped cosine function
// (circles) or an exponential (fluctuations). The number of particles in each circle may be randomly
// determined just by density. The figure does not discuss the derivation of the cluster size
// statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then the damped
// cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent to the average
// distance to the centre-of-mass of each drawn cluster, not the input cluster radius parameter (which
// is a hard upper limit on the distance to centre).
final int maskSize = lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
ArrayList<double[]> clusterCentres = new ArrayList<double[]>();
int totalSteps = 1 + (int) Math.ceil(nMolecules / clusterNumber);
if (clusterSimulation == 2 || clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
double[] centre;
IJ.showStatus("Computing clusters mask");
int roiRadius = (int) Math.round((clusterRadius * 2) / maskScale);
if (clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * Math.pow(clusterRadius / maskScale, 2)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
double cx = centre[0] / maskScale;
double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
//Utils.display("Mask", new ColorProcessor(maskSize, maskSize, mask));
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
} catch (IllegalArgumentException e) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
IJ.showProgress(1);
IJ.showStatus("");
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) clusterCentres.add(dist.next());
}
if (showClusterMask || clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null)
mask = new int[maskSize * maskSize];
else
Arrays.fill(mask, 0);
int roiRadius = (int) Math.round((clusterRadius) / maskScale);
for (double[] c : clusterCentres) {
double cx = c[0] / maskScale;
double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
// Allocate each molecule position to a parent circle so defining clusters.
int[][] clusters = new int[clusterCentres.size()][];
int[] clusterSize = new int[clusters.length];
for (int i = 0; i < nMolecules; i++) {
double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0)
continue;
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
double[] com = new double[2];
for (int n = 0; n < size; n++) {
double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) com[k] += xy[k];
}
for (int k = 0; k < 2; k++) com[k] /= size;
for (int n = 0; n < size; n++) {
double dx = xyz.get(clusters[j][n])[0] - com[0];
double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) if (mask[i] != 0)
bp.set(i, 128);
Utils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (clusterSimulation == 1 || clusterSimulation == 2) {
for (double[] clusterCentre : clusterCentres) {
int clusterN = (int) Math.round((clusterNumberSD > 0) ? dataGenerator.nextGaussian(clusterNumber, clusterNumberSD) : clusterNumber);
if (clusterN < 1)
continue;
//double[] clusterCentre = dist.next();
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
double[] com = new double[3];
int j = 0;
while (j < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
double t = 2.0 * Math.PI * randomGenerator.nextDouble();
double u = randomGenerator.nextDouble() + randomGenerator.nextDouble();
double r = clusterRadius * ((u > 1) ? 2 - u : u);
double x = r * Math.cos(t);
double y = r * Math.sin(t);
double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) com[k] += xy[k];
j++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(j);
if (j == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) com[k] /= j;
while (j > 0) {
double dx = xyz.get(xyz.size() - j)[0] - com[0];
double dy = xyz.get(xyz.size() - j)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
j--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < nMolecules; i++) xyz.add(dist.next());
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (showHistograms) {
int capacity = (int) (xyz.size() * blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int nOccurrences = getBlinks(dataGenerator, blinkingRate);
if (showHistograms)
blinks.add(nOccurrences);
final int size = molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && nOccurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (nOccurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = dataGenerator.nextGaussian(0, sigma1D);
final double dy = dataGenerator.nextGaussian(0, sigma1D);
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXY(localisationXy))
continue;
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) (x / nmPerPixel);
params[Gaussian2DFunction.Y_POSITION] = (float) (y / nmPerPixel);
results.addf(i + 1, (int) x, (int) y, 0, 0, 0, params, null);
}
if (molecules.size() > size) {
count++;
if (showHistograms) {
int newCount = molecules.size() - size;
if (newCount == 1) {
//intraDistances.add(0);
continue;
}
// Get the distance matrix between these molecules
double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < molecules.size(); jj++, y++) {
final double d2 = molecules.get(ii).distance2(molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y)
continue;
if (matrix[x][y] < linkDistance)
linkDistance = matrix[x][y];
}
// Check if this is larger
if (max < linkDistance)
max = linkDistance;
}
intraDistances.add(Math.sqrt(max));
}
}
}
results.end();
if (bp != null)
Utils.display(maskTitle, bp);
// Used for debugging
//System.out.printf(" * Molecules = %d (%d activated)\n", xyz.size(), count);
//if (clusterSimulation > 0)
// System.out.printf(" * Cluster number = %s +/- %s. Radius = %s +/- %s\n",
// Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4),
// Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", Utils.rounded((double) molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? Utils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (showHistograms) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
int p99 = intraHist[0].length - 1;
double limit1 = 0.99 * intraHist[1][p99];
double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) p99--;
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) p95--;
log(" * Mean Intra-Molecule particle linkage distance = %s nm (95%% = %s, 99%% = %s, 100%% = %s)", Utils.rounded(intraDistances.getMean(), 4), Utils.rounded(intraHist[0][p95], 4), Utils.rounded(intraHist[0][p99], 4), Utils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
use of ij.process.ByteProcessor in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method drawImage.
static ImageProcessor drawImage(ArrayList<Molecule> molecules, double minx, double miny, double maxx, double maxy, double nmPerPixel, boolean checkBounds, boolean binary) {
double scalex = maxx - minx;
double scaley = maxy - miny;
int width = (int) Math.round(scalex / nmPerPixel) + 1;
int height = (int) Math.round(scaley / nmPerPixel) + 1;
// ***
if (binary) {
byte[] data = new byte[width * height];
for (Molecule m : molecules) {
if (checkBounds) {
if (m.x < minx || m.x >= maxx || m.y < miny || m.y >= maxy)
continue;
}
// Shift to the origin. This makes the image more memory efficient.
int x = (int) Math.round((m.x - minx) / nmPerPixel);
int y = (int) Math.round((m.y - miny) / nmPerPixel);
int index = y * width + x;
// Construct a binary image
data[index] = (byte) 1;
}
ByteProcessor ip = new ByteProcessor(width, height, data, null);
ip.setMinAndMax(0, 1);
return ip;
} else {
short[] data = new short[width * height];
for (Molecule m : molecules) {
if (checkBounds) {
if (m.x < minx || m.x >= maxx || m.y < miny || m.y >= maxy)
continue;
}
// Shift to the origin. This makes the image more memory efficient.
int x = (int) Math.round((m.x - minx) / nmPerPixel);
int y = (int) Math.round((m.y - miny) / nmPerPixel);
int index = y * width + x;
// Construct a count image
data[index]++;
}
ShortProcessor ip = new ShortProcessor(width, height, data, null);
ip.setMinAndMax(0, Maths.max(data));
return ip;
}
}
use of ij.process.ByteProcessor in project imagingbook-common by imagingbook.
the class BernsenThresholder method getThreshold.
@Override
public ByteProcessor getThreshold(ByteProcessor I) {
final int M = I.getWidth();
final int N = I.getHeight();
ByteProcessor Imin = (ByteProcessor) I.duplicate();
ByteProcessor Imax = (ByteProcessor) I.duplicate();
RankFilters rf = new RankFilters();
rf.rank(Imin, params.radius, RankFilters.MIN);
rf.rank(Imax, params.radius, RankFilters.MAX);
int q = (params.bgMode == BackgroundMode.DARK) ? 256 : 0;
ByteProcessor Q = new ByteProcessor(M, N);
for (int v = 0; v < N; v++) {
for (int u = 0; u < M; u++) {
int gMin = Imin.get(u, v);
int gMax = Imax.get(u, v);
int c = gMax - gMin;
if (c >= params.cmin)
Q.set(u, v, (gMin + gMax) / 2);
else
Q.set(u, v, q);
}
}
return Q;
}
Aggregations