use of gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class CreateData method copyMemoryPeakResults.
/**
* Copy all the settings from the results into a new results set labelled with the name suffix
*
* @param nameSuffix
* @return The new results set
*/
private MemoryPeakResults copyMemoryPeakResults(String nameSuffix) {
MemoryPeakResults newResults = new MemoryPeakResults();
newResults.copySettings(this.results);
newResults.setName(newResults.getSource().getName() + " (" + TITLE + " " + nameSuffix + ")");
newResults.setSortAfterEnd(true);
newResults.begin();
MemoryPeakResults.addResults(newResults);
return newResults;
}
use of gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class CalibrateResults method run.
/*
* (non-)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (!showInputDialog())
return;
MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
return;
}
if (!showDialog(results))
return;
IJ.showStatus("Calibrated " + results.getName());
}
use of gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class PSFCreator method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.filter.PlugInFilter#run(ij.process.ImageProcessor)
*/
public void run(ImageProcessor ip) {
loadConfiguration();
BasePoint[] spots = getSpots();
if (spots.length == 0) {
IJ.error(TITLE, "No spots without neighbours within " + (boxRadius * 2) + "px");
return;
}
ImageStack stack = getImageStack();
final int width = imp.getWidth();
final int height = imp.getHeight();
final int currentSlice = imp.getSlice();
// Adjust settings for a single maxima
config.setIncludeNeighbours(false);
fitConfig.setDuplicateDistance(0);
ArrayList<double[]> centres = new ArrayList<double[]>(spots.length);
int iterations = 1;
LoessInterpolator loess = new LoessInterpolator(smoothing, iterations);
// TODO - The fitting routine may not produce many points. In this instance the LOESS interpolator
// fails to smooth the data very well. A higher bandwidth helps this but perhaps
// try a different smoothing method.
// For each spot
Utils.log(TITLE + ": " + imp.getTitle());
Utils.log("Finding spot locations...");
Utils.log(" %d spot%s without neighbours within %dpx", spots.length, ((spots.length == 1) ? "" : "s"), (boxRadius * 2));
StoredDataStatistics averageSd = new StoredDataStatistics();
StoredDataStatistics averageA = new StoredDataStatistics();
Statistics averageRange = new Statistics();
MemoryPeakResults allResults = new MemoryPeakResults();
allResults.setName(TITLE);
allResults.setBounds(new Rectangle(0, 0, width, height));
MemoryPeakResults.addResults(allResults);
for (int n = 1; n <= spots.length; n++) {
BasePoint spot = spots[n - 1];
final int x = (int) spot.getX();
final int y = (int) spot.getY();
MemoryPeakResults results = fitSpot(stack, width, height, x, y);
allResults.addAllf(results.getResults());
if (results.size() < 5) {
Utils.log(" Spot %d: Not enough fit results %d", n, results.size());
continue;
}
// Get the results for the spot centre and width
double[] z = new double[results.size()];
double[] xCoord = new double[z.length];
double[] yCoord = new double[z.length];
double[] sd = new double[z.length];
double[] a = new double[z.length];
int i = 0;
for (PeakResult peak : results.getResults()) {
z[i] = peak.getFrame();
xCoord[i] = peak.getXPosition() - x;
yCoord[i] = peak.getYPosition() - y;
sd[i] = FastMath.max(peak.getXSD(), peak.getYSD());
a[i] = peak.getAmplitude();
i++;
}
// Smooth the amplitude plot
double[] smoothA = loess.smooth(z, a);
// Find the maximum amplitude
int maximumIndex = findMaximumIndex(smoothA);
// Find the range at a fraction of the max. This is smoothed to find the X/Y centre
int start = 0, stop = smoothA.length - 1;
double limit = smoothA[maximumIndex] * amplitudeFraction;
for (int j = 0; j < smoothA.length; j++) {
if (smoothA[j] > limit) {
start = j;
break;
}
}
for (int j = smoothA.length; j-- > 0; ) {
if (smoothA[j] > limit) {
stop = j;
break;
}
}
averageRange.add(stop - start + 1);
// Extract xy centre coords and smooth
double[] smoothX = new double[stop - start + 1];
double[] smoothY = new double[smoothX.length];
double[] smoothSd = new double[smoothX.length];
double[] newZ = new double[smoothX.length];
for (int j = start, k = 0; j <= stop; j++, k++) {
smoothX[k] = xCoord[j];
smoothY[k] = yCoord[j];
smoothSd[k] = sd[j];
newZ[k] = z[j];
}
smoothX = loess.smooth(newZ, smoothX);
smoothY = loess.smooth(newZ, smoothY);
smoothSd = loess.smooth(newZ, smoothSd);
// Since the amplitude is not very consistent move from this peak to the
// lowest width which is the in-focus spot.
maximumIndex = findMinimumIndex(smoothSd, maximumIndex - start);
// Find the centre at the amplitude peak
double cx = smoothX[maximumIndex] + x;
double cy = smoothY[maximumIndex] + y;
int cz = (int) newZ[maximumIndex];
double csd = smoothSd[maximumIndex];
double ca = smoothA[maximumIndex + start];
// The average should weight the SD using the signal for each spot
averageSd.add(smoothSd[maximumIndex]);
averageA.add(ca);
if (ignoreSpot(n, z, a, smoothA, xCoord, yCoord, sd, newZ, smoothX, smoothY, smoothSd, cx, cy, cz, csd)) {
Utils.log(" Spot %d was ignored", n);
continue;
}
// Store result - it may have been moved interactively
maximumIndex += this.slice - cz;
cz = (int) newZ[maximumIndex];
csd = smoothSd[maximumIndex];
ca = smoothA[maximumIndex + start];
Utils.log(" Spot %d => x=%.2f, y=%.2f, z=%d, sd=%.2f, A=%.2f\n", n, cx, cy, cz, csd, ca);
centres.add(new double[] { cx, cy, cz, csd, n });
}
if (interactiveMode) {
imp.setSlice(currentSlice);
imp.setOverlay(null);
// Hide the amplitude and spot plots
Utils.hide(TITLE_AMPLITUDE);
Utils.hide(TITLE_PSF_PARAMETERS);
}
if (centres.isEmpty()) {
String msg = "No suitable spots could be identified centres";
Utils.log(msg);
IJ.error(TITLE, msg);
return;
}
// Find the limits of the z-centre
int minz = (int) centres.get(0)[2];
int maxz = minz;
for (double[] centre : centres) {
if (minz > centre[2])
minz = (int) centre[2];
else if (maxz < centre[2])
maxz = (int) centre[2];
}
IJ.showStatus("Creating PSF image");
// Create a stack that can hold all the data.
ImageStack psf = createStack(stack, minz, maxz, magnification);
// For each spot
Statistics stats = new Statistics();
boolean ok = true;
for (int i = 0; ok && i < centres.size(); i++) {
double progress = (double) i / centres.size();
final double increment = 1.0 / (stack.getSize() * centres.size());
IJ.showProgress(progress);
double[] centre = centres.get(i);
// Extract the spot
float[][] spot = new float[stack.getSize()][];
Rectangle regionBounds = null;
for (int slice = 1; slice <= stack.getSize(); slice++) {
ImageExtractor ie = new ImageExtractor((float[]) stack.getPixels(slice), width, height);
if (regionBounds == null)
regionBounds = ie.getBoxRegionBounds((int) centre[0], (int) centre[1], boxRadius);
spot[slice - 1] = ie.crop(regionBounds);
}
int n = (int) centre[4];
final float b = getBackground(n, spot);
if (!subtractBackgroundAndWindow(spot, b, regionBounds.width, regionBounds.height, centre, loess)) {
Utils.log(" Spot %d was ignored", n);
continue;
}
stats.add(b);
// Adjust the centre using the crop
centre[0] -= regionBounds.x;
centre[1] -= regionBounds.y;
// This takes a long time so this should track progress
ok = addToPSF(maxz, magnification, psf, centre, spot, regionBounds, progress, increment, centreEachSlice);
}
if (interactiveMode) {
Utils.hide(TITLE_INTENSITY);
}
IJ.showProgress(1);
if (threadPool != null) {
threadPool.shutdownNow();
threadPool = null;
}
if (!ok || stats.getN() == 0)
return;
final double avSd = getAverage(averageSd, averageA, 2);
Utils.log(" Average background = %.2f, Av. SD = %s px", stats.getMean(), Utils.rounded(avSd, 4));
normalise(psf, maxz, avSd * magnification, false);
IJ.showProgress(1);
psfImp = Utils.display("PSF", psf);
psfImp.setSlice(maxz);
psfImp.resetDisplayRange();
psfImp.updateAndDraw();
double[][] fitCom = new double[2][psf.getSize()];
Arrays.fill(fitCom[0], Double.NaN);
Arrays.fill(fitCom[1], Double.NaN);
double fittedSd = fitPSF(psf, loess, maxz, averageRange.getMean(), fitCom);
// Compute the drift in the PSF:
// - Use fitted centre if available; otherwise find CoM for each frame
// - express relative to the average centre
double[][] com = calculateCentreOfMass(psf, fitCom, nmPerPixel / magnification);
double[] slice = Utils.newArray(psf.getSize(), 1, 1.0);
String title = TITLE + " CoM Drift";
Plot2 plot = new Plot2(title, "Slice", "Drift (nm)");
plot.addLabel(0, 0, "Red = X; Blue = Y");
//double[] limitsX = Maths.limits(com[0]);
//double[] limitsY = Maths.limits(com[1]);
double[] limitsX = getLimits(com[0]);
double[] limitsY = getLimits(com[1]);
plot.setLimits(1, psf.getSize(), Math.min(limitsX[0], limitsY[0]), Math.max(limitsX[1], limitsY[1]));
plot.setColor(Color.red);
plot.addPoints(slice, com[0], Plot.DOT);
plot.addPoints(slice, loess.smooth(slice, com[0]), Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(slice, com[1], Plot.DOT);
plot.addPoints(slice, loess.smooth(slice, com[1]), Plot.LINE);
Utils.display(title, plot);
// TODO - Redraw the PSF with drift correction applied.
// This means that the final image should have no drift.
// This is relevant when combining PSF images. It doesn't matter too much for simulations
// unless the drift is large.
// Add Image properties containing the PSF details
final double fwhm = getFWHM(psf, maxz);
psfImp.setProperty("Info", XmlUtils.toXML(new PSFSettings(maxz, nmPerPixel / magnification, nmPerSlice, stats.getN(), fwhm, createNote())));
Utils.log("%s : z-centre = %d, nm/Pixel = %s, nm/Slice = %s, %d images, PSF SD = %s nm, FWHM = %s px\n", psfImp.getTitle(), maxz, Utils.rounded(nmPerPixel / magnification, 3), Utils.rounded(nmPerSlice, 3), stats.getN(), Utils.rounded(fittedSd * nmPerPixel, 4), Utils.rounded(fwhm));
createInteractivePlots(psf, maxz, nmPerPixel / magnification, fittedSd * nmPerPixel);
IJ.showStatus("");
}
use of gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class FIRE method showFrcTimeEvolution.
private void showFrcTimeEvolution(String name, double fireNumber, ThresholdMethod thresholdMethod, double fourierImageScale, int imageSize) {
IJ.showStatus("Calculating FRC time evolution curve...");
List<PeakResult> list = results.getResults();
int nSteps = 10;
int maxT = list.get(list.size() - 1).getFrame();
if (maxT == 0)
maxT = list.size();
int step = maxT / nSteps;
TDoubleArrayList x = new TDoubleArrayList();
TDoubleArrayList y = new TDoubleArrayList();
double yMin = fireNumber;
double yMax = fireNumber;
MemoryPeakResults newResults = new MemoryPeakResults();
newResults.copySettings(results);
int i = 0;
for (int t = step; t <= maxT - step; t += step) {
while (i < list.size()) {
if (list.get(i).getFrame() <= t) {
newResults.add(list.get(i));
i++;
} else
break;
}
x.add((double) t);
FIRE f = this.copy();
FireResult result = f.calculateFireNumber(fourierMethod, samplingMethod, thresholdMethod, fourierImageScale, imageSize);
double fire = (result == null) ? 0 : result.fireNumber;
y.add(fire);
yMin = FastMath.min(yMin, fire);
yMax = FastMath.max(yMax, fire);
}
// Add the final fire number
x.add((double) maxT);
y.add(fireNumber);
double[] xValues = x.toArray();
double[] yValues = y.toArray();
String units = "px";
if (results.getCalibration() != null) {
nmPerPixel = results.getNmPerPixel();
units = "nm";
}
String title = name + " FRC Time Evolution";
Plot2 plot = new Plot2(title, "Frames", "Resolution (" + units + ")", (float[]) null, (float[]) null);
double range = Math.max(1, yMax - yMin) * 0.05;
plot.setLimits(xValues[0], xValues[xValues.length - 1], yMin - range, yMax + range);
plot.setColor(Color.red);
plot.addPoints(xValues, yValues, Plot.CONNECTED_CIRCLES);
Utils.display(title, plot);
}
use of gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class FilterResults method filterResults.
/**
* Apply the filters to the data
*/
private void filterResults() {
checkLimits();
MemoryPeakResults newResults = new MemoryPeakResults();
newResults.copySettings(results);
newResults.setName(results.getName() + " Filtered");
// Initialise the mask
ByteProcessor mask = getMask(filterSettings.maskTitle);
MaskDistribution maskFilter = null;
final float centreX = results.getBounds().width / 2.0f;
final float centreY = results.getBounds().height / 2.0f;
if (mask != null) {
double scaleX = (double) results.getBounds().width / mask.getWidth();
double scaleY = (double) results.getBounds().height / mask.getHeight();
maskFilter = new MaskDistribution((byte[]) mask.getPixels(), mask.getWidth(), mask.getHeight(), 0, scaleX, scaleY);
}
int i = 0;
final int size = results.size();
final double maxVariance = filterSettings.maxPrecision * filterSettings.maxPrecision;
for (PeakResult result : results.getResults()) {
if (i % 64 == 0)
IJ.showProgress(i, size);
if (getDrift(result) > filterSettings.maxDrift)
continue;
if (result.getSignal() < filterSettings.minSignal)
continue;
if (getSNR(result) < filterSettings.minSNR)
continue;
if (getVariance(result) > maxVariance)
continue;
final float width = getWidth(result);
if (width < filterSettings.minWidth || width > filterSettings.maxWidth)
continue;
if (maskFilter != null) {
// Check the coordinates are inside the mask
double[] xy = new double[] { result.getXPosition() - centreX, result.getYPosition() - centreY };
if (!maskFilter.isWithinXY(xy))
continue;
}
// Passed all filters. Add to the results
newResults.add(result);
}
IJ.showProgress(1);
IJ.showStatus(newResults.size() + " Filtered localisations");
MemoryPeakResults.addResults(newResults);
}
Aggregations