use of jcuda.Pointer in project incubator-systemml by apache.
the class LibMatrixCUDA method unaryAggregate.
//********************************************************************/
//***************** END OF MATRIX MULTIPLY Functions *****************/
//********************************************************************/
//********************************************************************/
//**************** UNARY AGGREGATE Functions ************************/
//********************************************************************/
/**
* Entry point to perform Unary aggregate operations on the GPU.
* The execution context object is used to allocate memory for the GPU.
* @param ec Instance of {@link ExecutionContext}, from which the output variable will be allocated
* @param gCtx a valid {@link GPUContext}
* @param instName name of the invoking instruction to record{@link Statistics}.
* @param in1 input matrix
* @param output output matrix/scalar name
* @param op Instance of {@link AggregateUnaryOperator} which encapsulates the direction of reduction/aggregation and the reduction operation.
* @throws DMLRuntimeException if {@link DMLRuntimeException} occurs
*/
public static void unaryAggregate(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, String output, AggregateUnaryOperator op) throws DMLRuntimeException {
if (ec.getGPUContext() != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
LOG.trace("GPU : unaryAggregate" + ", GPUContext=" + gCtx);
final int REDUCTION_ALL = 1;
final int REDUCTION_ROW = 2;
final int REDUCTION_COL = 3;
final int REDUCTION_DIAG = 4;
// A kahan sum implemention is not provided. is a "uak+" or other kahan operator is encountered,
// it just does regular summation reduction.
final int OP_PLUS = 1;
final int OP_PLUS_SQ = 2;
final int OP_MEAN = 3;
final int OP_VARIANCE = 4;
final int OP_MULTIPLY = 5;
final int OP_MAX = 6;
final int OP_MIN = 7;
final int OP_MAXINDEX = 8;
final int OP_MININDEX = 9;
// Sanity Checks
if (!in1.getGPUObject(gCtx).isAllocated())
throw new DMLRuntimeException("Internal Error - The input is not allocated for a GPU Aggregate Unary:" + in1.getGPUObject(gCtx).isAllocated());
boolean isSparse = in1.getGPUObject(gCtx).isSparse();
IndexFunction indexFn = op.indexFn;
AggregateOperator aggOp = op.aggOp;
// Convert Reduction direction to a number to pass to CUDA kernel
int reductionDirection = -1;
if (indexFn instanceof ReduceAll) {
reductionDirection = REDUCTION_ALL;
} else if (indexFn instanceof ReduceRow) {
reductionDirection = REDUCTION_ROW;
} else if (indexFn instanceof ReduceCol) {
reductionDirection = REDUCTION_COL;
} else if (indexFn instanceof ReduceDiag) {
reductionDirection = REDUCTION_DIAG;
} else {
throw new DMLRuntimeException("Internal Error - Invalid index function type, only reducing along rows, columns, diagonals or all elements is supported in Aggregate Unary operations");
}
assert reductionDirection != -1 : "Internal Error - Incorrect type of reduction direction set for aggregate unary GPU instruction";
// Convert function type to a number to pass to the CUDA Kernel
int opIndex = -1;
if (aggOp.increOp.fn instanceof KahanPlus) {
opIndex = OP_PLUS;
} else if (aggOp.increOp.fn instanceof KahanPlusSq) {
opIndex = OP_PLUS_SQ;
} else if (aggOp.increOp.fn instanceof Mean) {
opIndex = OP_MEAN;
} else if (aggOp.increOp.fn instanceof CM) {
assert ((CM) aggOp.increOp.fn).getAggOpType() == CMOperator.AggregateOperationTypes.VARIANCE : "Internal Error - Invalid Type of CM operator for Aggregate Unary operation on GPU";
opIndex = OP_VARIANCE;
} else if (aggOp.increOp.fn instanceof Plus) {
opIndex = OP_PLUS;
} else if (aggOp.increOp.fn instanceof Multiply) {
opIndex = OP_MULTIPLY;
} else if (aggOp.increOp.fn instanceof Builtin) {
Builtin b = (Builtin) aggOp.increOp.fn;
switch(b.bFunc) {
case MAX:
opIndex = OP_MAX;
break;
case MIN:
opIndex = OP_MIN;
break;
case MAXINDEX:
opIndex = OP_MAXINDEX;
break;
case MININDEX:
opIndex = OP_MININDEX;
break;
default:
new DMLRuntimeException("Internal Error - Unsupported Builtin Function for Aggregate unary being done on GPU");
}
} else {
throw new DMLRuntimeException("Internal Error - Aggregate operator has invalid Value function");
}
assert opIndex != -1 : "Internal Error - Incorrect type of operation set for aggregate unary GPU instruction";
int rlen = (int) in1.getNumRows();
int clen = (int) in1.getNumColumns();
if (isSparse) {
// The strategy for the time being is to convert sparse to dense
// until a sparse specific kernel is written.
in1.getGPUObject(gCtx).sparseToDense(instName);
// long nnz = in1.getNnz();
// assert nnz > 0 : "Internal Error - number of non zeroes set to " + nnz + " in Aggregate Binary for GPU";
// MatrixObject out = ec.getSparseMatrixOutputForGPUInstruction(output, nnz);
// throw new DMLRuntimeException("Internal Error - Not implemented");
}
Pointer out = null;
if (reductionDirection == REDUCTION_COL || reductionDirection == REDUCTION_ROW) {
// Matrix output
MatrixObject out1 = getDenseMatrixOutputForGPUInstruction(ec, instName, output);
out = getDensePointer(gCtx, out1, instName);
}
Pointer in = getDensePointer(gCtx, in1, instName);
int size = rlen * clen;
// For scalars, set the scalar output in the Execution Context object
switch(opIndex) {
case OP_PLUS:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
// The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
reduceRow(gCtx, instName, "reduce_row_sum", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_sum", in, out, rlen, clen);
break;
}
case REDUCTION_DIAG:
throw new DMLRuntimeException("Internal Error - Row, Column and Diag summation not implemented yet");
}
break;
}
case OP_PLUS_SQ:
{
// Calculate the squares in a temporary object tmp
Pointer tmp = gCtx.allocate(instName, size * Sizeof.DOUBLE);
squareMatrix(gCtx, instName, in, tmp, rlen, clen);
// Then do the sum on the temporary object and free it
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", tmp, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
// The names are a bit misleading, REDUCTION_COL refers to the direction (reduce all elements in a column)
reduceRow(gCtx, instName, "reduce_row_sum", tmp, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_sum", tmp, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for summation squared");
}
gCtx.cudaFreeHelper(instName, tmp);
break;
}
case OP_MEAN:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
double mean = result / size;
ec.setScalarOutput(output, new DoubleObject(mean));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for mean");
}
break;
}
case OP_MULTIPLY:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_prod", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for multiplication");
}
break;
}
case OP_MAX:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_max", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_max", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_max", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for max");
}
break;
}
case OP_MIN:
{
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_min", in, size);
ec.setScalarOutput(output, new DoubleObject(result));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_min", in, out, rlen, clen);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_min", in, out, rlen, clen);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for min");
}
break;
}
case OP_VARIANCE:
{
// Temporary GPU array for
Pointer tmp = gCtx.allocate(instName, size * Sizeof.DOUBLE);
Pointer tmp2 = gCtx.allocate(instName, size * Sizeof.DOUBLE);
switch(reductionDirection) {
case REDUCTION_ALL:
{
double result = reduceAll(gCtx, instName, "reduce_sum", in, size);
double mean = result / size;
// Subtract mean from every element in the matrix
ScalarOperator minusOp = new RightScalarOperator(Minus.getMinusFnObject(), mean);
matrixScalarOp(gCtx, instName, in, mean, rlen, clen, tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
double result2 = reduceAll(gCtx, instName, "reduce_sum", tmp2, size);
double variance = result2 / (size - 1);
ec.setScalarOutput(output, new DoubleObject(variance));
break;
}
case REDUCTION_COL:
{
reduceRow(gCtx, instName, "reduce_row_mean", in, out, rlen, clen);
// Subtract the row-wise mean from every element in the matrix
BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.COLUMN.code(), tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
Pointer tmpRow = gCtx.allocate(instName, rlen * Sizeof.DOUBLE);
reduceRow(gCtx, instName, "reduce_row_sum", tmp2, tmpRow, rlen, clen);
ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), clen - 1);
matrixScalarOp(gCtx, instName, tmpRow, clen - 1, rlen, 1, out, divideOp);
gCtx.cudaFreeHelper(instName, tmpRow);
break;
}
case REDUCTION_ROW:
{
reduceCol(gCtx, instName, "reduce_col_mean", in, out, rlen, clen);
// Subtract the columns-wise mean from every element in the matrix
BinaryOperator minusOp = new BinaryOperator(Minus.getMinusFnObject());
matrixMatrixOp(gCtx, instName, in, out, rlen, clen, VectorShape.NONE.code(), VectorShape.ROW.code(), tmp, minusOp);
squareMatrix(gCtx, instName, tmp, tmp2, rlen, clen);
Pointer tmpCol = gCtx.allocate(instName, clen * Sizeof.DOUBLE);
reduceCol(gCtx, instName, "reduce_col_sum", tmp2, tmpCol, rlen, clen);
ScalarOperator divideOp = new RightScalarOperator(Divide.getDivideFnObject(), rlen - 1);
matrixScalarOp(gCtx, instName, tmpCol, rlen - 1, 1, clen, out, divideOp);
gCtx.cudaFreeHelper(instName, tmpCol);
break;
}
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for variance");
}
gCtx.cudaFreeHelper(instName, tmp);
gCtx.cudaFreeHelper(instName, tmp2);
break;
}
case OP_MAXINDEX:
{
switch(reductionDirection) {
case REDUCTION_COL:
throw new DMLRuntimeException("Internal Error - Column maxindex of matrix not implemented yet for GPU ");
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for maxindex");
}
// break;
}
case OP_MININDEX:
{
switch(reductionDirection) {
case REDUCTION_COL:
throw new DMLRuntimeException("Internal Error - Column minindex of matrix not implemented yet for GPU ");
default:
throw new DMLRuntimeException("Internal Error - Unsupported reduction direction for minindex");
}
// break;
}
default:
throw new DMLRuntimeException("Internal Error - Invalid GPU Unary aggregate function!");
}
}
use of jcuda.Pointer in project incubator-systemml by apache.
the class LibMatrixCUDA method dgeam.
/**
* Performs sparse and dense dgeam given two input matrices
* C = alpha* op( A ) + beta* op ( B )
* where op = transpose or not (specified by isLeftTransposed and isRightTransposed).
* To indicate a transpose operation, make sure in1 == in2 and isLeftTransposed == isRightTransposed == true
* @param ec execution context
* @param gCtx a valid {@link GPUContext}
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param in1 left input matrix
* @param in2 right input matrix
* @param outputName output variable name
* @param isLeftTransposed true if left matrix is transposed
* @param isRightTransposed true if right matrix is transposed
* @param alpha alpha
* @param beta beta
* @throws DMLRuntimeException if DMLRuntimeException occurs
*/
private static void dgeam(ExecutionContext ec, GPUContext gCtx, String instName, MatrixObject in1, MatrixObject in2, String outputName, boolean isLeftTransposed, boolean isRightTransposed, double alpha, double beta) throws DMLRuntimeException {
if (ec.getGPUContext() != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
LOG.trace("GPU : dgeam" + ", GPUContext=" + gCtx);
Pointer alphaPtr = pointerTo(alpha);
Pointer betaPtr = pointerTo(beta);
int transa = isLeftTransposed ? CUBLAS_OP_T : CUBLAS_OP_N;
int transb = isRightTransposed ? CUBLAS_OP_T : CUBLAS_OP_N;
MatrixObject out = ec.getMatrixObject(outputName);
boolean isSparse1 = isInSparseFormat(gCtx, in1);
boolean isSparse2 = isInSparseFormat(gCtx, in2);
long t0 = 0, t1 = 0;
// TODO: Implement sparse-dense matrix cublasDgeam kernel
if (isSparse1 || isSparse2) {
int m = (int) in1.getNumRows();
int n = (int) in1.getNumColumns();
// Perform sparse-sparse dgeam
if (!isInSparseFormat(gCtx, in1)) {
if (GPUStatistics.DISPLAY_STATISTICS)
t0 = System.nanoTime();
in1.getGPUObject(gCtx).denseToSparse();
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_DENSE_TO_SPARSE, System.nanoTime() - t0);
}
CSRPointer A = in1.getGPUObject(gCtx).getJcudaSparseMatrixPtr();
if (!isInSparseFormat(gCtx, in2)) {
if (GPUStatistics.DISPLAY_STATISTICS)
t0 = System.nanoTime();
in2.getGPUObject(gCtx).denseToSparse();
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_DENSE_TO_SPARSE, System.nanoTime() - t0);
}
CSRPointer B = in2.getGPUObject(gCtx).getJcudaSparseMatrixPtr();
ec.allocateGPUMatrixObject(outputName);
if (in1 == in2 && isLeftTransposed == true && isLeftTransposed == isRightTransposed) {
// Special case for transpose
int nnz = (int) A.nnz;
CSRPointer C = CSRPointer.allocateEmpty(gCtx, nnz, n);
out.getGPUObject(gCtx).setSparseMatrixCudaPointer(C);
cusparseDcsr2csc(getCusparseHandle(gCtx), m, n, nnz, A.val, A.rowPtr, A.colInd, C.val, C.colInd, C.rowPtr, cusparseAction.CUSPARSE_ACTION_NUMERIC, cusparseIndexBase.CUSPARSE_INDEX_BASE_ZERO);
} else {
// TODO: to implement the transposed + dgeam for sparse matrices, they need to be converted to csc, which is effectively a tranpose
if (isLeftTransposed || isRightTransposed) {
throw new DMLRuntimeException("Transpose in cusparseDcsrgeam not supported for sparse matrices on GPU");
}
if (GPUStatistics.DISPLAY_STATISTICS)
t1 = System.nanoTime();
CSRPointer C = CSRPointer.allocateForDgeam(gCtx, getCusparseHandle(gCtx), A, B, m, n);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_SPARSE_ALLOCATE_LIB, System.nanoTime() - t1);
out.getGPUObject(gCtx).setSparseMatrixCudaPointer(C);
//long sizeOfC = CSRPointer.estimateSize(C.nnz, out.getNumRows());
if (GPUStatistics.DISPLAY_STATISTICS)
t0 = System.nanoTime();
JCusparse.cusparseDcsrgeam(getCusparseHandle(gCtx), m, n, alphaPtr, A.descr, (int) A.nnz, A.val, A.rowPtr, A.colInd, betaPtr, B.descr, (int) B.nnz, B.val, B.rowPtr, B.colInd, C.descr, C.val, C.rowPtr, C.colInd);
//cudaDeviceSynchronize;
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_SPARSE_DGEAM_LIB, System.nanoTime() - t0);
}
} else {
// Dense-Dense dgeam
int lda = (int) in1.getNumColumns();
int ldb = (int) in2.getNumColumns();
int m = (int) in1.getNumColumns();
int n = (int) in2.getNumRows();
if (isLeftTransposed && isRightTransposed) {
m = (int) in1.getNumRows();
n = (int) in2.getNumColumns();
} else if (isLeftTransposed) {
m = (int) in1.getNumRows();
} else if (isRightTransposed) {
n = (int) in2.getNumColumns();
}
int ldc = m;
Pointer A = getDensePointer(gCtx, in1, instName);
Pointer B = getDensePointer(gCtx, in2, instName);
// Allocated the dense output matrix
getDenseMatrixOutputForGPUInstruction(ec, instName, outputName);
Pointer C = getDensePointer(gCtx, out, instName);
if (GPUStatistics.DISPLAY_STATISTICS)
t0 = System.nanoTime();
JCublas2.cublasDgeam(getCublasHandle(gCtx), transa, transb, m, n, alphaPtr, A, lda, betaPtr, B, ldb, C, ldc);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_DENSE_DGEAM_LIB, System.nanoTime() - t0);
}
}
use of jcuda.Pointer in project incubator-systemml by apache.
the class LibMatrixCUDA method reluBackward.
/**
* This method computes the backpropagation errors for previous layer of relu operation
* @param gCtx a valid {@link GPUContext}
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param input input image
* @param dout next layer error propogation
* @param outputBlock output
* @throws DMLRuntimeException if DMLRuntimeException occurs
*/
public static void reluBackward(GPUContext gCtx, String instName, MatrixObject input, MatrixObject dout, MatrixObject outputBlock) throws DMLRuntimeException {
LOG.trace("GPU : reluBackward" + ", GPUContext=" + gCtx);
long rows = input.getNumRows();
long cols = input.getNumColumns();
Pointer imagePointer = getDensePointer(gCtx, input, instName);
Pointer doutPointer = getDensePointer(gCtx, dout, instName);
Pointer outputPointer = getDensePointer(gCtx, outputBlock, instName);
long t1 = 0;
if (GPUStatistics.DISPLAY_STATISTICS)
t1 = System.nanoTime();
getCudaKernels(gCtx).launchKernel("relu_backward", ExecutionConfig.getConfigForSimpleMatrixOperations((int) rows, (int) cols), imagePointer, doutPointer, outputPointer, (int) rows, (int) cols);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_BIAS_ADD_LIB, System.nanoTime() - t1);
}
use of jcuda.Pointer in project incubator-systemml by apache.
the class LibMatrixCUDA method denseSparseMatmult.
/**
* C = op(A) * op(B) where A is dense and B is sparse
* If B is ultrasparse, A is converted to a sparse matrix and {@code sparseSparseMatmult(MatrixObject, int, int, int, int, int, CSRPointer, CSRPointer)} is invoked
* otherwise B is converted to a dense matrix and {@code denseDenseMatmult(Pointer, int, int, int, int, boolean, boolean, Pointer, Pointer)} is invoked.
* @param gCtx a valid {@link GPUContext}
* @param instName the invoking instruction's name for record {@link Statistics}.
* @param left {@link MatrixObject} of A
* @param right {@link MatrixObject} of B
* @param output {@link MatrixObject} of the output matrix C
* @param isLeftTransposed whether matrix A needs to be transposed
* @param isRightTransposed whether matrix B needs to be transposed
* @param m ?
* @param n ?
* @param k ?
* @throws DMLRuntimeException if DMLRuntimeException occurs
*/
private static void denseSparseMatmult(GPUContext gCtx, String instName, MatrixObject left, MatrixObject right, MatrixObject output, boolean isLeftTransposed, boolean isRightTransposed, int m, int n, int k) throws DMLRuntimeException {
// right sparse, left dense
CSRPointer B = right.getGPUObject(gCtx).getJcudaSparseMatrixPtr();
Pointer ADense = getDensePointer(gCtx, left, instName);
if (B.isUltraSparse(k, n)) {
LOG.trace(" GPU : Convert d M %*% sp M --> sp M %*% sp M)" + ", GPUContext=" + gCtx);
// Convert left to CSR and do cuSparse matmul
int rowsA = (int) left.getNumRows();
int colsA = (int) left.getNumColumns();
long t0 = 0, t1 = 0, t2 = 0;
if (DMLScript.STATISTICS)
t0 = System.nanoTime();
Pointer AT = GPUObject.transpose(gCtx, ADense, rowsA, colsA, colsA, rowsA);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_TRANSPOSE_LIB, System.nanoTime() - t0);
if (GPUStatistics.DISPLAY_STATISTICS)
t1 = System.nanoTime();
CSRPointer A = GPUObject.columnMajorDenseToRowMajorSparse(gCtx, getCusparseHandle(gCtx), AT, rowsA, colsA);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_DENSE_TO_SPARSE, System.nanoTime() - t1);
if (DMLScript.STATISTICS)
GPUStatistics.cudaDenseToSparseTime.getAndAdd(System.nanoTime() - t0);
if (DMLScript.STATISTICS)
GPUStatistics.cudaDenseToSparseCount.getAndAdd(1);
sparseSparseMatmult(gCtx, instName, A, B, output, isLeftTransposed, isRightTransposed, m, n, k);
if (GPUStatistics.DISPLAY_STATISTICS)
t2 = System.nanoTime();
A.deallocate();
gCtx.cudaFreeHelper(AT);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_CUDA_FREE, System.nanoTime() - t2, 2);
} else {
LOG.trace(" GPU : Convert d M %*% sp M --> d M %*% d M" + ", GPUContext=" + gCtx);
// Convert right to dense and do a cuBlas matmul
// BDenseTransposed is a column major matrix
// Note the arguments to denseDenseMatmult to accommodate for this.
long t0 = 0, t1 = 0;
if (DMLScript.STATISTICS)
t0 = System.nanoTime();
Pointer BDenseTransposed = B.toColumnMajorDenseMatrix(getCusparseHandle(gCtx), getCublasHandle(gCtx), (int) right.getNumRows(), (int) right.getNumColumns());
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_SPARSE_TO_DENSE, System.nanoTime() - t0);
if (DMLScript.STATISTICS)
GPUStatistics.cudaSparseToDenseTime.getAndAdd(System.nanoTime() - t0);
if (DMLScript.STATISTICS)
GPUStatistics.cudaSparseToDenseCount.getAndAdd(System.nanoTime() - t0);
if (GPUStatistics.DISPLAY_STATISTICS)
t1 = System.nanoTime();
// To allocate the dense matrix
boolean allocated = output.getGPUObject(gCtx).acquireDeviceModifyDense();
if (GPUStatistics.DISPLAY_STATISTICS && allocated)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_ALLOCATE_DENSE_OUTPUT, System.nanoTime() - t1);
Pointer C = getDensePointer(gCtx, output, instName);
denseDenseMatmult(gCtx, instName, C, (int) left.getNumRows(), (int) left.getNumColumns(), (int) right.getNumColumns(), (int) right.getNumRows(), isLeftTransposed, !isRightTransposed, ADense, BDenseTransposed);
gCtx.cudaFreeHelper(instName, BDenseTransposed);
}
}
use of jcuda.Pointer in project incubator-systemml by apache.
the class LibMatrixCUDA method setOutputToConstant.
/**
* Fills an an array on the GPU with a given scalar value
* @param ec currently active instance of the {@link ExecutionContext}
* @param gCtx a valid {@link GPUContext}
* @param instName name of the invoking instruction to record{@link Statistics}.
* @param constant scalar value with which to fill the matrix
* @param outputName (internal) name of the matrix that is to be filled
* @throws DMLRuntimeException if error
*/
private static void setOutputToConstant(ExecutionContext ec, GPUContext gCtx, String instName, double constant, String outputName) throws DMLRuntimeException {
if (ec.getGPUContext() != gCtx)
throw new DMLRuntimeException("GPU : Invalid internal state, the GPUContext set with the ExecutionContext is not the same used to run this LibMatrixCUDA function");
if (constant == 0) {
// TODO: Create sparse empty block instead
}
MatrixObject out = ec.getMatrixObject(outputName);
// Allocated the dense output matrix
getDenseMatrixOutputForGPUInstruction(ec, instName, outputName);
Pointer A = getDensePointer(gCtx, out, instName);
int rlen = (int) out.getNumRows();
int clen = (int) out.getNumColumns();
long t0 = 0;
if (GPUStatistics.DISPLAY_STATISTICS)
t0 = System.nanoTime();
int size = rlen * clen;
getCudaKernels(gCtx).launchKernel("fill", ExecutionConfig.getConfigForSimpleVectorOperations(size), A, constant, size);
if (GPUStatistics.DISPLAY_STATISTICS)
GPUStatistics.maintainCPMiscTimes(instName, GPUInstruction.MISC_TIMER_FILL_KERNEL, System.nanoTime() - t0);
}
Aggregations