use of maspack.matrix.Vector2d in project artisynth_core by artisynth.
the class MeshThicken method applyThickening.
public void applyThickening(Region region, MeshBase mesh, double thickening) {
double margin = region.myMargin;
Point3d pnt = new Point3d();
Vector3d nrm = new Vector3d();
Vector2d p2d = new Vector2d();
ArrayList<Vertex3d> verts = myMesh.getVertices();
ArrayList<Vector3d> nrmls = mesh.getNormals();
if (nrmls == null) {
System.out.println("Mesh does not have normals; thickening ignored");
}
int cnt = 0;
Vector3d regionNrm = new Vector3d();
// region normal in mesh coordinates
region.myFrame.R.getColumn(2, regionNrm);
for (int i = 0; i < verts.size(); i++) {
Vertex3d v = verts.get(i);
pnt.inverseTransform(region.myFrame, v.pnt);
nrm.inverseTransform(region.myFrame, nrmls.get(i));
if (pnt.z <= region.myHeight && pnt.z >= -region.myBackHeight) {
// if (Math.abs(pnt.z) <= region.myHeight) {
p2d.set(pnt.x, pnt.y);
double d = region.myDist.computeInteriorDistance(/*near=*/
null, p2d);
if (d <= 0) {
double dz = computeDeltaZ(-d, margin, thickening);
if (region.myUseNormalZScalingP) {
if (adjacentFacesCrossNormal(v, regionNrm)) {
dz = 0;
} else {
dz *= nrm.z;
}
} else {
dz = (nrm.z >= 0 ? dz : -dz);
}
if (nrm.z >= 0) {
pnt.z += dz;
} else {
if (region.getThickenBackSide()) {
pnt.z += dz;
}
}
v.pnt.transform(region.myFrame, pnt);
cnt++;
}
}
}
System.out.println("count=" + cnt);
myMesh.notifyVertexPositionsModified();
viewer.rerender();
}
use of maspack.matrix.Vector2d in project artisynth_core by artisynth.
the class MeshCollider method getContactPlaneInfo.
/**
* Get information about a specific region of intersections.
*/
static void getContactPlaneInfo(ContactPlane region, PolygonalMesh mesh0, PolygonalMesh mesh1, double pointTol) {
Vector3d sectnormal = new Vector3d(), tmpnormal = new Vector3d();
BVFeatureQuery query = new BVFeatureQuery();
RigidTransform3d trans0 = mesh0.getMeshToWorld();
RigidTransform3d trans1 = mesh1.getMeshToWorld();
// calculate a weighted average of the face normals
for (TriTriIntersection isect : region.intersections) {
region.points = new ArrayList<Point3d>();
region.points.add(isect.points[0]);
region.points.add(isect.points[1]);
double length = isect.points[0].distance(isect.points[1]);
tmpnormal.transform(trans0, isect.face0.getNormal());
tmpnormal.negate();
sectnormal.scaledAdd(length, tmpnormal, sectnormal);
tmpnormal.transform(trans1, isect.face1.getNormal());
sectnormal.scaledAdd(length, tmpnormal, sectnormal);
}
// calculate the weighted intersection center
Point3d center = new Point3d();
double weight = 0;
for (TriTriIntersection isect : region.intersections) {
double length = isect.points[0].distance(isect.points[1]);
center.scaledAdd(length, isect.points[0], center);
center.scaledAdd(length, isect.points[1], center);
weight += 2 * length;
}
center.scale(1.0 / weight);
region.centroid = center;
// calculate the weighted normal
Vector3d cp0 = new Vector3d(), cp1 = new Vector3d();
region.normal.setZero();
for (TriTriIntersection isect : region.intersections) {
cp0.sub(isect.points[0], center);
cp1.sub(isect.points[1], center);
tmpnormal.cross(cp0, cp1);
if (tmpnormal.dot(sectnormal) < 0)
tmpnormal.negate();
region.normal.add(tmpnormal);
}
if (region.normal.dot(sectnormal) < 0)
region.normal.negate();
// handle degenerate cases
if (region.normal.containsNaN() || region.normal.norm() < EPS) {
region.normal.setZero();
Point3d p0 = new Point3d();
Point3d p1 = new Point3d();
Vector3d c0 = new Vector3d();
Vector3d c1 = new Vector3d();
for (TriTriIntersection isect : region.intersections) {
for (Point3d p : isect.points) {
p0.inverseTransform(trans0, p);
p1.inverseTransform(trans1, p);
Vertex3d u0 = isect.face0.getVertex(0);
Vertex3d u1 = isect.face0.getVertex(1);
Vertex3d u2 = isect.face0.getVertex(2);
Vertex3d v0 = isect.face1.getVertex(0);
Vertex3d v1 = isect.face1.getVertex(1);
Vertex3d v2 = isect.face1.getVertex(2);
getCoordinates(c0, u0.pnt, u1.pnt, u2.pnt, p0);
getCoordinates(c1, v0.pnt, v1.pnt, v2.pnt, p1);
int[] type0 = classifyPoint(c0);
int[] type1 = classifyPoint(c1);
if (type0[0] == 2) {
if (type1[0] == 2) {
// vertex,vertex
region.normal.add(vertexVertexNormal(trans0, trans1, isect.face0, isect.face1, type0[1], type1[1]));
} else if (type1[0] == 1) {
// vertex,edge
region.normal.add(vertexEdgeNormal(trans0, trans1, isect.face0, isect.face1, type0[1], type1[1]));
} else {
// vertex,face
region.normal.add(vertexFaceNormal(trans0, trans1, isect.face0, isect.face1, type0[1]));
}
} else if (type0[0] == 1) {
if (type1[0] == 2) {
// edge,vertex
region.normal.sub(vertexEdgeNormal(trans1, trans0, isect.face1, isect.face0, type1[1], type0[1]));
} else if (type1[0] == 1) {
// edge,edge
region.normal.add(edgeEdgeNormal(trans0, trans1, isect.face0, isect.face1, type0[1], type1[1]));
} else {
// edge,face
region.normal.add(edgeFaceNormal(trans0, trans1, isect.face0, isect.face1, type0[1]));
}
} else {
if (type1[0] == 2) {
// face,vertex
region.normal.sub(vertexFaceNormal(trans1, trans0, isect.face1, isect.face0, type1[1]));
} else if (type1[0] == 1) {
// face,edge
region.normal.sub(edgeFaceNormal(trans1, trans0, isect.face1, isect.face0, type1[1]));
} else {
// face,face
region.normal.add(faceFaceNormal(trans0, trans1, isect.face0, isect.face1));
}
}
}
}
}
region.normal.normalize();
// calculate the contact depth for the region
boolean foundPenetratingVertice = false;
Point3d p = new Point3d();
Point3d nearest = new Point3d();
Vector3d diff = new Vector3d();
Vector2d coords = new Vector2d();
Vertex3d v;
Face nf;
Point3d plocal = new Point3d();
LinkedHashSet<Vertex3d> regionvertices0 = new LinkedHashSet<Vertex3d>();
LinkedHashSet<Vertex3d> regionvertices1 = new LinkedHashSet<Vertex3d>();
region.depth = 0;
for (TriTriIntersection isect : region.intersections) {
for (int i = 0; i < 3; i++) {
// face0 vertex depths
v = isect.face0.getVertex(i);
p.transform(trans0, v.pnt);
plocal.inverseTransform(trans1, p);
plocal.sub(isect.face1.getVertex(0).pnt);
if (plocal.dot(isect.face1.getNormal()) <= 0) {
regionvertices0.add(v);
}
// face1 vertex depths
v = isect.face1.getVertex(i);
p.transform(trans1, v.pnt);
plocal.inverseTransform(trans0, p);
plocal.sub(isect.face0.getVertex(0).pnt);
if (plocal.dot(isect.face0.getNormal()) <= 0) {
regionvertices1.add(v);
}
}
}
for (Vertex3d v0 : regionvertices0) {
p.transform(trans0, v0.pnt);
// XXX Sanchez, Jun 22, 2014
// Changed to isInside. Sometimes a vertex is outside
// the mesh but determined to be "penetrating" due to
// normal (e.g. when nearest to an edge)
// nf = myQuery.nearestFaceToPoint (nearest, coords, mesh1, p);
boolean inside = query.isInsideOrientedMesh(mesh1, p, 0);
if (inside) {
query.getFaceForInsideOrientedTest(nearest, coords);
nearest.transform(trans1);
diff.sub(p, nearest);
diff.inverseTransform(trans1);
foundPenetratingVertice = true;
// -diff.dot (nf.getNormal());
double dist = diff.norm();
if (dist > region.depth)
region.depth = dist;
}
}
for (Vertex3d v1 : regionvertices1) {
p.transform(trans1, v1.pnt);
// nf = myQuery.nearestFaceToPoint (nearest, coords, mesh0, p);
boolean inside = query.isInsideOrientedMesh(mesh0, p, 0);
if (inside) {
query.getFaceForInsideOrientedTest(nearest, coords);
nearest.transform(trans0);
diff.sub(p, nearest);
diff.inverseTransform(trans0);
foundPenetratingVertice = true;
// -diff.dot (nf.getNormal());
double dist = diff.norm();
if (dist > region.depth)
region.depth = dist;
}
}
if (!foundPenetratingVertice) {
double min = Double.POSITIVE_INFINITY, max = Double.NEGATIVE_INFINITY;
for (int i = 0; i < region.points.size(); i++) {
double d = region.points.get(i).dot(region.normal);
if (d < min)
min = d;
if (d > max)
max = d;
}
region.depth = max - min;
}
// eliminate redundant points
// use point tolerance
region.points.clear();
for (TriTriIntersection isect : region.intersections) {
for (Point3d pcandidate : isect.points) {
boolean add = true;
for (Point3d other : region.points) if (pcandidate.epsilonEquals(other, pointTol)) {
add = false;
break;
}
if (add) {
region.points.add(pcandidate);
}
}
}
// take extrema along n axes
if (numextremaaxes > 0) {
// final ArrayList<Vector3d> axes = new ArrayList<Vector3d>();
Vector3d crosszup = new Vector3d(0, 0, 1);
crosszup.cross(region.normal, crosszup);
double crosszupnorm = crosszup.norm();
RigidTransform3d normtoworld;
if (crosszup.norm() > EPS) {
normtoworld = new RigidTransform3d(new Vector3d(), new AxisAngle(crosszup, Math.asin(crosszupnorm)));
} else {
normtoworld = new RigidTransform3d();
}
boolean[] keep = new boolean[region.points.size()];
for (int j = 0; j < region.points.size(); j++) keep[j] = false;
Vector3d offset = new Vector3d();
Vector3d axis = new Vector3d();
for (int i = 0; i < numextremaaxes; i++) {
double min = Double.POSITIVE_INFINITY, max = Double.NEGATIVE_INFINITY;
int mini = 0, maxi = 0;
double angle = Math.PI * i / numextremaaxes;
axis.set(Math.cos(angle), Math.sin(angle), 0);
axis.transform(normtoworld);
for (int j = 0; j < region.points.size(); j++) {
offset.sub(region.points.get(j), center);
double dot = offset.dot(axis);
if (dot < min) {
min = dot;
mini = j;
}
if (dot > max) {
max = dot;
maxi = j;
}
}
keep[mini] = true;
keep[maxi] = true;
}
for (int j = (region.points.size() - 1); j >= 0; j--) {
if (!keep[j])
region.points.remove(j);
}
}
}
use of maspack.matrix.Vector2d in project artisynth_core by artisynth.
the class BVFeatureQueryTest method nearestFaceTiming.
private void nearestFaceTiming(PolygonalMesh mesh) {
RigidTransform3d X = new RigidTransform3d();
OBBTree obbTree = new OBBTree(mesh, 2);
AABBTree aabbTree = new AABBTree(mesh);
Point3d center = new Point3d();
double diameter = 2 * aabbTree.getRadius();
aabbTree.getCenter(center);
X.setRandom();
BVFeatureQuery query = new BVFeatureQuery();
mesh.setMeshToWorld(X);
obbTree.setBvhToWorld(X);
aabbTree.setBvhToWorld(X);
int numcases = 100;
int timingcnt = 1000;
Point3d pnt = new Point3d();
Vector3d dir = new Vector3d();
Point3d near = new Point3d();
Vector2d coords = new Vector2d();
Vector3d duv = new Vector3d();
FunctionTimer obbFaceTimer = new FunctionTimer();
FunctionTimer aabbFaceTimer = new FunctionTimer();
// FunctionTimer oldFaceTimer = new FunctionTimer();
FunctionTimer obbRayTimer = new FunctionTimer();
FunctionTimer aabbRayTimer = new FunctionTimer();
// FunctionTimer oldRayTimer = new FunctionTimer();
TriangleIntersector ti = new TriangleIntersector();
for (int i = 0; i < numcases; i++) {
pnt.setRandom();
pnt.scale(2 * diameter);
pnt.add(center);
pnt.transform(X, pnt);
dir.setRandom();
dir.normalize();
obbFaceTimer.restart();
for (int j = 0; j < timingcnt; j++) {
query.nearestFaceToPoint(near, coords, obbTree, pnt);
}
obbFaceTimer.stop();
aabbFaceTimer.restart();
for (int j = 0; j < timingcnt; j++) {
query.nearestFaceToPoint(near, coords, aabbTree, pnt);
}
aabbFaceTimer.stop();
// oldFaceTimer.restart();
// for (int j=0; j<timingcnt; j++) {
// obbTree.nearestFace (pnt, null, near, coords, ti);
// }
// oldFaceTimer.stop();
obbRayTimer.restart();
for (int j = 0; j < timingcnt; j++) {
query.nearestFaceAlongRay(near, duv, obbTree, center, dir);
}
obbRayTimer.stop();
aabbRayTimer.restart();
for (int j = 0; j < timingcnt; j++) {
query.nearestFaceAlongRay(near, duv, aabbTree, center, dir);
}
aabbRayTimer.stop();
// oldRayTimer.restart();
// for (int j=0; j<timingcnt; j++) {
// obbTree.intersect (center, dir, duv, ti);
// }
// oldRayTimer.stop();
}
int cnt = numcases * timingcnt;
System.out.println("nearestFace with OBB: " + obbFaceTimer.result(cnt));
System.out.println("nearestFace with AABB: " + aabbFaceTimer.result(cnt));
// System.out.println (
// "nearestFace with old OBB: " + oldFaceTimer.result(cnt));
System.out.println("nearestRay with OBB: " + obbRayTimer.result(cnt));
System.out.println("nearestRay with AABB: " + aabbRayTimer.result(cnt));
// System.out.println (
// "nearestRay with old OBB: " + oldRayTimer.result(cnt));
}
use of maspack.matrix.Vector2d in project artisynth_core by artisynth.
the class Intersector2d method intersectLineLine.
public int intersectLineLine(Point2d c1, Vector2d v1, Point2d c2, Vector2d v2, ArrayList<Point2d> points) {
int nAdded = 0;
Vector2d n1 = new Vector2d(-v1.y, v1.x);
Vector2d n2 = new Vector2d(-v2.y, v2.x);
n1.normalize();
n2.normalize();
double b1 = c1.dot(n1);
double b2 = c2.dot(n2);
// denominator, if zero lines are parallel
double d = n1.x * n2.y - n1.y * n2.x;
if (Math.abs(d) < epsilon) {
d = n1.dot(c2) - b1;
// distance of c2 to line 1
d = d / n1.norm();
if (Math.abs(d) < epsilon) {
// lines are colinear, so add both
// add both points
points.add(c1);
points.add(c2);
nAdded = 2;
} else {
nAdded = 0;
}
} else {
double x = (n2.y * b1 - n1.y * b2) / d;
double y = (-n2.x * b1 + n1.x * b2) / d;
points.add(new Point2d(x, y));
nAdded++;
}
return nAdded;
}
use of maspack.matrix.Vector2d in project artisynth_core by artisynth.
the class GLSupport method transformToGLMatrix.
/**
* Converts a 2D affine transform to a 4D matrix expected by opengl
*/
public static void transformToGLMatrix(double[] mat, AffineTransform2dBase T) {
Matrix2dBase M = T.getMatrix();
Vector2d p = T.getOffset();
mat[0] = M.m00;
mat[1] = M.m10;
mat[2] = 0;
mat[3] = 0;
mat[4] = M.m01;
mat[5] = M.m11;
mat[6] = 01;
mat[7] = 0;
mat[8] = 0;
mat[9] = 0;
mat[10] = 0;
mat[11] = 0;
mat[12] = p.x;
mat[13] = p.y;
mat[14] = 0;
mat[15] = 1;
}
Aggregations