use of org.apache.commons.math3.analysis.function.Gaussian in project GDSC-SMLM by aherbert.
the class PcPalmMolecules method addToPlot.
/**
* Add the skewed gaussian to the histogram plot.
*
* @param plot the plot
* @param x the x
* @param parameters Gaussian parameters
* @param shape the shape
*/
private static void addToPlot(Plot plot, float[] x, double[] parameters, int shape) {
final SkewNormalFunction sn = new SkewNormalFunction(parameters);
final float[] y = new float[x.length];
for (int i = 0; i < x.length; i++) {
y[i] = (float) sn.evaluate(x[i]);
}
plot.addPoints(x, y, shape);
}
use of org.apache.commons.math3.analysis.function.Gaussian in project GDSC-SMLM by aherbert.
the class PcPalmMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog()) {
return;
}
startLog();
log("Simulation parameters");
if (settings.blinkingDistribution == 3) {
log(" - Clusters = %d", settings.numberOfMolecules);
log(" - Simulation size = %s um", MathUtils.rounded(settings.simulationSize, 4));
log(" - Molecules/cluster = %s", MathUtils.rounded(settings.blinkingRate, 4));
log(" - Blinking distribution = %s", Settings.BLINKING_DISTRIBUTION[settings.blinkingDistribution]);
log(" - p-Value = %s", MathUtils.rounded(settings.pvalue, 4));
} else {
log(" - Molecules = %d", settings.numberOfMolecules);
log(" - Simulation size = %s um", MathUtils.rounded(settings.simulationSize, 4));
log(" - Blinking rate = %s", MathUtils.rounded(settings.blinkingRate, 4));
log(" - Blinking distribution = %s", Settings.BLINKING_DISTRIBUTION[settings.blinkingDistribution]);
}
log(" - Average precision = %s nm", MathUtils.rounded(settings.sigmaS, 4));
log(" - Clusters simulation = " + Settings.CLUSTER_SIMULATION[settings.clusterSimulation]);
if (settings.clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", MathUtils.rounded(settings.clusterNumber, 4), MathUtils.rounded(settings.clusterNumberStdDev, 4));
log(" - Cluster radius = %s nm", MathUtils.rounded(settings.clusterRadius, 4));
}
final double nmPerPixel = 100;
final double width = settings.simulationSize * 1000.0;
final UniformRandomProvider rng = UniformRandomProviders.create();
final UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, rng.nextInt());
final NormalizedGaussianSampler gauss = SamplerUtils.createNormalizedGaussianSampler(rng);
settings.molecules = new ArrayList<>(settings.numberOfMolecules);
// Create some dummy results since the calibration is required for later analysis
settings.results = new MemoryPeakResults(PsfHelper.create(PSFType.CUSTOM));
settings.results.setCalibration(CalibrationHelper.create(nmPerPixel, 1, 100));
settings.results.setSource(new NullSource("Molecule Simulation"));
settings.results.begin();
int count = 0;
// Generate a sequence of coordinates
final ArrayList<double[]> xyz = new ArrayList<>((int) (settings.numberOfMolecules * 1.1));
final Statistics statsRadius = new Statistics();
final Statistics statsSize = new Statistics();
final String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (settings.clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using
// circles with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A
// fluctuations model is created at T = 1.075 Tc. It is not clear exactly how the particles
// are distributed.
// It may be that a mask is created first using the model. The particles are placed on the
// mask using a specified density. This simulation produces a figure to show either a damped
// cosine function (circles) or an exponential (fluctuations). The number of particles in
// each circle may be randomly determined just by density. The figure does not discuss the
// derivation of the cluster size statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then
// the damped cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent
// to the average distance to the centre-of-mass of each drawn cluster, not the input cluster
// radius parameter (which is a hard upper limit on the distance to centre).
final int maskSize = settings.lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
final ArrayList<double[]> clusterCentres = new ArrayList<>();
int totalSteps = 1 + (int) Math.ceil(settings.numberOfMolecules / settings.clusterNumber);
if (settings.clusterSimulation == 2 || settings.clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, rng);
double[] centre;
IJ.showStatus("Computing clusters mask");
final int roiRadius = (int) Math.round((settings.clusterRadius * 2) / maskScale);
if (settings.clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * MathUtils.pow2(settings.clusterRadius / maskScale)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
final double cx = centre[0] / maskScale;
final double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, rng);
} catch (final IllegalArgumentException ex) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
ImageJUtils.finished();
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) {
clusterCentres.add(dist.next());
}
}
final double scaledRadius = settings.clusterRadius / maskScale;
if (settings.showClusterMask || settings.clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null) {
mask = new int[maskSize * maskSize];
} else {
Arrays.fill(mask, 0);
}
final int roiRadius = (int) Math.round(scaledRadius);
for (final double[] c : clusterCentres) {
final double cx = c[0] / maskScale;
final double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (settings.clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
final MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, rng);
// Allocate each molecule position to a parent circle so defining clusters.
final int[][] clusters = new int[clusterCentres.size()][];
final int[] clusterSize = new int[clusters.length];
for (int i = 0; i < settings.numberOfMolecules; i++) {
final double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
final double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0) {
continue;
}
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
final double[] com = new double[2];
for (int n = 0; n < size; n++) {
final double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) {
com[k] += xy[k];
}
}
for (int k = 0; k < 2; k++) {
com[k] /= size;
}
for (int n = 0; n < size; n++) {
final double dx = xyz.get(clusters[j][n])[0] - com[0];
final double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (settings.showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) {
if (mask[i] != 0) {
bp.set(i, 128);
}
}
ImageJUtils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (settings.clusterSimulation == 1 || settings.clusterSimulation == 2) {
for (final double[] clusterCentre : clusterCentres) {
final int clusterN = (int) Math.round((settings.clusterNumberStdDev > 0) ? settings.clusterNumber + gauss.sample() * settings.clusterNumberStdDev : settings.clusterNumber);
if (clusterN < 1) {
continue;
}
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
final double[] com = new double[3];
int size = 0;
while (size < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
final double t = 2.0 * Math.PI * rng.nextDouble();
final double u = rng.nextDouble() + rng.nextDouble();
final double r = settings.clusterRadius * ((u > 1) ? 2 - u : u);
final double x = r * Math.cos(t);
final double y = r * Math.sin(t);
final double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) {
com[k] += xy[k];
}
size++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) {
com[k] /= size;
}
while (size > 0) {
final double dx = xyz.get(xyz.size() - size)[0] - com[0];
final double dy = xyz.get(xyz.size() - size)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
size--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < settings.numberOfMolecules; i++) {
xyz.add(dist.next());
}
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = settings.sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (settings.showHistograms) {
final int capacity = (int) (xyz.size() * settings.blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
final Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int occurrences = getBlinks(rng, settings.blinkingRate);
if (blinks != null) {
blinks.add(occurrences);
}
final int size = settings.molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && occurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (occurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = gauss.sample() * sigma1D;
final double dy = gauss.sample() * sigma1D;
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXy(localisationXy)) {
continue;
}
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
settings.molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
final float xx = (float) (x / nmPerPixel);
final float yy = (float) (y / nmPerPixel);
final float[] params = PeakResult.createParams(0, 0, xx, yy, 0);
settings.results.add(i + 1, (int) xx, (int) yy, 0, 0, 0, 0, params, null);
}
if (settings.molecules.size() > size) {
count++;
if (intraDistances != null) {
final int newCount = settings.molecules.size() - size;
if (newCount == 1) {
// No intra-molecule distances
continue;
}
// Get the distance matrix between these molecules
final double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < settings.molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < settings.molecules.size(); jj++, y++) {
final double d2 = settings.molecules.get(ii).distance2(settings.molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y) {
continue;
}
if (matrix[x][y] < linkDistance) {
linkDistance = matrix[x][y];
}
}
// Check if this is larger
if (max < linkDistance) {
max = linkDistance;
}
}
intraDistances.add(Math.sqrt(max));
}
}
}
settings.results.end();
if (bp != null) {
final ImagePlus imp = ImageJUtils.display(maskTitle, bp);
final Calibration cal = imp.getCalibration();
cal.setUnit("nm");
cal.pixelWidth = cal.pixelHeight = maskScale;
}
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", MathUtils.rounded((double) settings.molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? MathUtils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (intraDistances != null) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
final double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
// Will not be null as we requested a non-integer histogram.
int p99 = intraHist[0].length - 1;
final double limit1 = 0.99 * intraHist[1][p99];
final double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) {
p99--;
}
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) {
p95--;
}
log(" * Mean Intra-Molecule particle linkage distance = %s nm" + " (95%% = %s, 99%% = %s, 100%% = %s)", MathUtils.rounded(intraDistances.getMean(), 4), MathUtils.rounded(intraHist[0][p95], 4), MathUtils.rounded(intraHist[0][p99], 4), MathUtils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (settings.distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (settings.clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", MathUtils.rounded(statsSize.getMean(), 4), MathUtils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", MathUtils.rounded(statsRadius.getMean(), 4), MathUtils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
use of org.apache.commons.math3.analysis.function.Gaussian in project GDSC-SMLM by aherbert.
the class PcPalmMolecules method calculateAveragePrecision.
/**
* Calculate the average precision by fitting a skewed Gaussian to the histogram of the precision
* distribution.
*
* <p>A simple mean and SD of the histogram is computed. If the mean of the Skewed Gaussian does
* not fit within 3 SDs of the simple mean then the simple mean is returned.
*
* @param molecules the molecules
* @param title the plot title (null if no plot should be displayed)
* @param histogramBins the histogram bins
* @param logFitParameters Record the fit parameters to the ImageJ log
* @param removeOutliers The distribution is created using all values within 1.5x the
* inter-quartile range (IQR) of the data
* @return The average precision
*/
public double calculateAveragePrecision(List<Molecule> molecules, String title, int histogramBins, boolean logFitParameters, boolean removeOutliers) {
// Plot histogram of the precision
final float[] data = new float[molecules.size()];
final DescriptiveStatistics stats = new DescriptiveStatistics();
double yMin = Double.NEGATIVE_INFINITY;
double yMax = 0;
for (int i = 0; i < data.length; i++) {
data[i] = (float) molecules.get(i).precision;
stats.addValue(data[i]);
}
// Set the min and max y-values using 1.5 x IQR
if (removeOutliers) {
final double lower = stats.getPercentile(25);
final double upper = stats.getPercentile(75);
if (Double.isNaN(lower) || Double.isNaN(upper)) {
if (logFitParameters) {
ImageJUtils.log("Error computing IQR: %f - %f", lower, upper);
}
} else {
final double iqr = upper - lower;
yMin = Math.max(lower - iqr, stats.getMin());
yMax = Math.min(upper + iqr, stats.getMax());
if (logFitParameters) {
ImageJUtils.log(" Data range: %f - %f. Plotting 1.5x IQR: %f - %f", stats.getMin(), stats.getMax(), yMin, yMax);
}
}
}
if (yMin == Double.NEGATIVE_INFINITY) {
yMin = stats.getMin();
yMax = stats.getMax();
if (logFitParameters) {
ImageJUtils.log(" Data range: %f - %f", yMin, yMax);
}
}
int bins;
if (histogramBins <= 0) {
bins = (int) Math.ceil((stats.getMax() - stats.getMin()) / HistogramPlot.getBinWidthScottsRule(stats.getStandardDeviation(), (int) stats.getN()));
} else {
bins = histogramBins;
}
final float[][] hist = HistogramPlot.calcHistogram(data, yMin, yMax, bins);
Plot plot = null;
if (title != null) {
plot = new Plot(title, "Precision", "Frequency");
final float[] xValues = hist[0];
final float[] yValues = hist[1];
plot.addPoints(xValues, yValues, Plot.BAR);
ImageJUtils.display(title, plot);
}
// Extract non-zero data
float[] x = Arrays.copyOf(hist[0], hist[0].length);
float[] y = Arrays.copyOf(hist[1], hist[1].length);
int count = 0;
for (int i = 0; i < y.length; i++) {
if (y[i] > 0) {
x[count] = x[i];
y[count] = y[i];
count++;
}
}
x = Arrays.copyOf(x, count);
y = Arrays.copyOf(y, count);
// Sense check to fitted data. Get mean and SD of histogram
final double[] stats2 = HistogramPlot.getHistogramStatistics(x, y);
double mean = stats2[0];
if (logFitParameters) {
log(" Initial Statistics: %f +/- %f", stats2[0], stats2[1]);
}
// Standard Gaussian fit
final double[] parameters = fitGaussian(x, y);
if (parameters == null) {
log(" Failed to fit initial Gaussian");
return mean;
}
double newMean = parameters[1];
double error = Math.abs(stats2[0] - newMean) / stats2[1];
if (error > 3) {
log(" Failed to fit Gaussian: %f standard deviations from histogram mean", error);
return mean;
}
if (newMean < yMin || newMean > yMax) {
log(" Failed to fit Gaussian: %f outside data range %f - %f", newMean, yMin, yMax);
return mean;
}
mean = newMean;
if (logFitParameters) {
log(" Initial Gaussian: %f @ %f +/- %f", parameters[0], parameters[1], parameters[2]);
}
final double[] initialSolution = new double[] { parameters[0], parameters[1], parameters[2], -1 };
// Fit to a skewed Gaussian (or appropriate function)
final double[] skewParameters = fitSkewGaussian(x, y, initialSolution);
if (skewParameters == null) {
log(" Failed to fit Skewed Gaussian");
return mean;
}
final SkewNormalFunction sn = new SkewNormalFunction(skewParameters);
if (logFitParameters) {
log(" Skewed Gaussian: %f @ %f +/- %f (a = %f) => %f +/- %f", skewParameters[0], skewParameters[1], skewParameters[2], skewParameters[3], sn.getMean(), Math.sqrt(sn.getVariance()));
}
newMean = sn.getMean();
error = Math.abs(stats2[0] - newMean) / stats2[1];
if (error > 3) {
log(" Failed to fit Skewed Gaussian: %f standard deviations from histogram mean", error);
return mean;
}
if (newMean < yMin || newMean > yMax) {
log(" Failed to fit Skewed Gaussian: %f outside data range %f - %f", newMean, yMin, yMax);
return mean;
}
// Use original histogram x-axis to maintain all the bins
if (plot != null) {
plot.setColor(Color.red);
addToPlot(plot, hist[0], skewParameters, Plot.LINE);
plot.setColor(Color.black);
ImageJUtils.display(title, plot);
}
// Return the average precision from the fitted curve
return newMean;
}
use of org.apache.commons.math3.analysis.function.Gaussian in project GDSC-SMLM by aherbert.
the class PsfDrift method showHwhm.
private void showHwhm() {
// Build a list of suitable images
final List<String> titles = createImageList(false);
if (titles.isEmpty()) {
IJ.error(TITLE, "No suitable PSF images");
return;
}
final GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("Approximate the volume of the PSF as a Gaussian and\n" + "compute the equivalent Gaussian width.");
settings = Settings.load();
gd.addChoice("PSF", titles.toArray(new String[0]), settings.title);
gd.addCheckbox("Use_offset", settings.useOffset);
gd.addSlider("Smoothing", 0, 0.5, settings.smoothing);
gd.addHelp(HelpUrls.getUrl("psf-hwhm"));
gd.showDialog();
if (gd.wasCanceled()) {
return;
}
settings.title = gd.getNextChoice();
settings.useOffset = gd.getNextBoolean();
settings.smoothing = gd.getNextNumber();
settings.save();
imp = WindowManager.getImage(settings.title);
if (imp == null) {
IJ.error(TITLE, "No PSF image for image: " + settings.title);
return;
}
psfSettings = getPsfSettings(imp);
if (psfSettings == null) {
IJ.error(TITLE, "No PSF settings for image: " + settings.title);
return;
}
final int size = imp.getStackSize();
final ImagePsfModel psf = createImagePsf(1, size, 1);
final double[] w0 = psf.getAllHwhm0();
final double[] w1 = psf.getAllHwhm1();
// Get current centre
final int centre = psfSettings.getCentreImage();
// Extract valid values (some can be NaN)
double[] sw0 = new double[w0.length];
double[] sw1 = new double[w1.length];
final TDoubleArrayList s0 = new TDoubleArrayList(w0.length);
final TDoubleArrayList s1 = new TDoubleArrayList(w0.length);
int c0 = 0;
int c1 = 0;
for (int i = 0; i < w0.length; i++) {
if (Double.isFinite(w0[i])) {
s0.add(i + 1);
sw0[c0++] = w0[i];
}
if (Double.isFinite(w1[i])) {
s1.add(i + 1);
sw1[c1++] = w1[i];
}
}
if (c0 == 0 && c1 == 0) {
IJ.error(TITLE, "No computed HWHM for image: " + settings.title);
return;
}
double[] slice0 = s0.toArray();
sw0 = Arrays.copyOf(sw0, c0);
double[] slice1 = s1.toArray();
sw1 = Arrays.copyOf(sw1, c1);
// Smooth
if (settings.smoothing > 0) {
final LoessInterpolator loess = new LoessInterpolator(settings.smoothing, 1);
sw0 = loess.smooth(slice0, sw0);
sw1 = loess.smooth(slice1, sw1);
}
final TDoubleArrayList minWx = new TDoubleArrayList();
final TDoubleArrayList minWy = new TDoubleArrayList();
for (int i = 0; i < w0.length; i++) {
double weight = 0;
if (Double.isFinite(w0[i])) {
if (Double.isFinite(w1[i])) {
weight = w0[i] * w1[i];
} else {
weight = w0[i] * w0[i];
}
} else if (Double.isFinite(w1[i])) {
weight = w1[i] * w1[i];
}
if (weight != 0) {
minWx.add(i + 1);
minWy.add(Math.sqrt(weight));
}
}
// Smooth the combined line
final double[] cx = minWx.toArray();
double[] cy = minWy.toArray();
if (settings.smoothing > 0) {
final LoessInterpolator loess = new LoessInterpolator(settings.smoothing, 1);
cy = loess.smooth(cx, cy);
}
final int newCentre = SimpleArrayUtils.findMinIndex(cy);
// Convert to FWHM
final double fwhm = psfSettings.getFwhm();
// Widths are in pixels
final String title = TITLE + " HWHM";
final Plot plot = new Plot(title, "Slice", "HWHM (px)");
double[] limits = MathUtils.limits(sw0);
limits = MathUtils.limits(limits, sw1);
final double maxY = limits[1] * 1.05;
plot.setLimits(1, size, 0, maxY);
plot.setColor(Color.red);
plot.addPoints(slice0, sw0, Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(slice1, sw1, Plot.LINE);
plot.setColor(Color.magenta);
plot.addPoints(cx, cy, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, "X=red; Y=blue, Combined=Magenta");
final PlotWindow pw = ImageJUtils.display(title, plot);
// Show a non-blocking dialog to allow the centre to be updated ...
// Add a label and dynamically update when the centre is moved.
final NonBlockingExtendedGenericDialog gd2 = new NonBlockingExtendedGenericDialog(TITLE);
final double scale = psfSettings.getPixelSize();
// @formatter:off
ImageJUtils.addMessage(gd2, "Update the PSF information?\n \n" + "Current z-centre = %d, FHWM = %s px (%s nm)\n", centre, MathUtils.rounded(fwhm), MathUtils.rounded(fwhm * scale));
// @formatter:on
gd2.addSlider("z-centre", cx[0], cx[cx.length - 1], newCentre);
final TextField tf = gd2.getLastTextField();
gd2.addMessage("");
gd2.addAndGetButton("Reset", event -> tf.setText(Integer.toString(newCentre)));
final Label label = gd2.getLastLabel();
gd2.addCheckbox("Update_centre", settings.updateCentre);
gd2.addCheckbox("Update_HWHM", settings.updateHwhm);
gd2.enableYesNoCancel();
gd2.hideCancelButton();
final UpdateDialogListener dl = new UpdateDialogListener(cx, cy, maxY, newCentre, scale, pw, label);
gd2.addDialogListener(dl);
gd.addHelp(HelpUrls.getUrl("psf-hwhm"));
gd2.showDialog();
if (gd2.wasOKed() && (settings.updateCentre || settings.updateHwhm)) {
final ImagePSF.Builder b = psfSettings.toBuilder();
if (settings.updateCentre) {
b.setCentreImage(dl.centre);
}
if (settings.updateHwhm) {
b.setFwhm(dl.getFwhm());
}
imp.setProperty("Info", ImagePsfHelper.toString(b));
}
}
use of org.apache.commons.math3.analysis.function.Gaussian in project GDSC-SMLM by aherbert.
the class PoissonGammaGaussianFisherInformation method findUpperLimit.
/**
* Find the upper limit of the integrated function A^2/P. P is the Poisson-Gamma convolution, A is
* the partial gradient.
*
* <p>When both A and P are convolved with a Gaussian kernel, the integral of this function - 1 is
* the Fisher information.
*
* <p>This method is used to determine the upper limit of the function using a binary search.
*
* @param theta the Poisson mean
* @param max the max of the function (returned from {@link #findMaximum(double, double)})
* @param rel Relative threshold
* @return [upper,upper value,evaluations]
*/
public double[] findUpperLimit(final double theta, double[] max, double rel) {
if (rel < MIN_RELATIVE_TOLERANCE) {
throw new IllegalArgumentException("Relative tolerance too small: " + rel);
}
final UnivariateFunction f = new UnivariateFunction() {
double[] dgDp = new double[1];
@Override
public double value(double x) {
final double G = PoissonGammaFunction.unscaledPoissonGammaPartial(x, theta, gain, dgDp);
return getF(G, dgDp[0]);
}
};
int eval = 0;
// Increase from the max until the tolerance is achieved.
// Use the mean to get a rough initial step size
final double mean = theta * gain;
double step = Math.max(mean, 1);
double upper = max[0];
double upperValue = max[1];
final double threshold = upperValue * rel;
double lower = upper;
while (upperValue > threshold) {
lower = upper;
upper += step;
step *= 2;
eval++;
upperValue = f.value(upper);
}
// Binary search the bracket between lower and upper
while (lower + 1 < upper) {
final double mid = (lower + upper) * 0.5;
eval++;
final double midg = f.value(mid);
if (midg > threshold) {
lower = mid;
} else {
upper = mid;
upperValue = midg;
}
}
return new double[] { upper, upperValue, eval };
}
Aggregations