use of org.apache.commons.math3.analysis.interpolation.LoessInterpolator in project GDSC-SMLM by aherbert.
the class FIRE method runQEstimation.
private void runQEstimation() {
IJ.showStatus(TITLE + " ...");
if (!showQEstimationInputDialog())
return;
MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
return;
}
if (results.getCalibration() == null) {
IJ.error(TITLE, "The results are not calibrated");
return;
}
results = cropToRoi(results);
if (results.size() < 2) {
IJ.error(TITLE, "No results within the crop region");
return;
}
initialise(results, null);
// We need localisation precision.
// Build a histogram of the localisation precision.
// Get the initial mean and SD and plot as a Gaussian.
PrecisionHistogram histogram = calculatePrecisionHistogram();
if (histogram == null) {
IJ.error(TITLE, "No localisation precision available.\n \nPlease choose " + PrecisionMethod.FIXED + " and enter a precision mean and SD.");
return;
}
StoredDataStatistics precision = histogram.precision;
//String name = results.getName();
double fourierImageScale = SCALE_VALUES[imageScaleIndex];
int imageSize = IMAGE_SIZE_VALUES[imageSizeIndex];
// Create the image and compute the numerator of FRC.
// Do not use the signal so results.size() is the number of localisations.
IJ.showStatus("Computing FRC curve ...");
FireImages images = createImages(fourierImageScale, imageSize, false);
// DEBUGGING - Save the two images to disk. Load the images into the Matlab
// code that calculates the Q-estimation and make this plugin match the functionality.
//IJ.save(new ImagePlus("i1", images.ip1), "/scratch/i1.tif");
//IJ.save(new ImagePlus("i2", images.ip2), "/scratch/i2.tif");
FRC frc = new FRC();
frc.progress = progress;
frc.setFourierMethod(fourierMethod);
frc.setSamplingMethod(samplingMethod);
frc.setPerimeterSamplingFactor(perimeterSamplingFactor);
FRCCurve frcCurve = frc.calculateFrcCurve(images.ip1, images.ip2, images.nmPerPixel);
if (frcCurve == null) {
IJ.error(TITLE, "Failed to compute FRC curve");
return;
}
IJ.showStatus("Running Q-estimation ...");
// Note:
// The method implemented here is based on Matlab code provided by Bernd Rieger.
// The idea is to compute the spurious correlation component of the FRC Numerator
// using an initial estimate of distribution of the localisation precision (assumed
// to be Gaussian). This component is the contribution of repeat localisations of
// the same molecule to the numerator and is modelled as an exponential decay
// (exp_decay). The component is scaled by the Q-value which
// is the average number of times a molecule is seen in addition to the first time.
// At large spatial frequencies the scaled component should match the numerator,
// i.e. at high resolution (low FIRE number) the numerator is made up of repeat
// localisations of the same molecule and not actual structure in the image.
// The best fit is where the numerator equals the scaled component, i.e. num / (q*exp_decay) == 1.
// The FRC Numerator is plotted and Q can be determined by
// adjusting Q and the precision mean and SD to maximise the cost function.
// This can be done interactively by the user with the effect on the FRC curve
// dynamically updated and displayed.
// Compute the scaled FRC numerator
double qNorm = (1 / frcCurve.mean1 + 1 / frcCurve.mean2);
double[] frcnum = new double[frcCurve.getSize()];
for (int i = 0; i < frcnum.length; i++) {
FRCCurveResult r = frcCurve.get(i);
frcnum[i] = qNorm * r.getNumerator() / r.getNumberOfSamples();
}
// Compute the spatial frequency and the region for curve fitting
double[] q = FRC.computeQ(frcCurve, false);
int low = 0, high = q.length;
while (high > 0 && q[high - 1] > maxQ) high--;
while (low < q.length && q[low] < minQ) low++;
// Require we fit at least 10% of the curve
if (high - low < q.length * 0.1) {
IJ.error(TITLE, "Not enough points for Q estimation");
return;
}
// Obtain initial estimate of Q plateau height and decay.
// This can be done by fitting the precision histogram and then fixing the mean and sigma.
// Or it can be done by allowing the precision to be sampled and the mean and sigma
// become parameters for fitting.
// Check if we can sample precision values
boolean sampleDecay = precision != null && FIRE.sampleDecay;
double[] exp_decay;
if (sampleDecay) {
// Random sample of precision values from the distribution is used to
// construct the decay curve
int[] sample = Random.sample(10000, precision.getN(), new Well19937c());
final double four_pi2 = 4 * Math.PI * Math.PI;
double[] pre = new double[q.length];
for (int i = 1; i < q.length; i++) pre[i] = -four_pi2 * q[i] * q[i];
// Sample
final int n = sample.length;
double[] hq = new double[n];
for (int j = 0; j < n; j++) {
// Scale to SR pixels
double s2 = precision.getValue(sample[j]) / images.nmPerPixel;
s2 *= s2;
for (int i = 1; i < q.length; i++) hq[i] += FastMath.exp(pre[i] * s2);
}
for (int i = 1; i < q.length; i++) hq[i] /= n;
exp_decay = new double[q.length];
exp_decay[0] = 1;
for (int i = 1; i < q.length; i++) {
double sinc_q = sinc(Math.PI * q[i]);
exp_decay[i] = sinc_q * sinc_q * hq[i];
}
} else {
// Note: The sigma mean and std should be in the units of super-resolution
// pixels so scale to SR pixels
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Smoothing
double[] smooth;
if (loessSmoothing) {
// Note: This computes the log then smooths it
double bandwidth = 0.1;
int robustness = 0;
double[] l = new double[exp_decay.length];
for (int i = 0; i < l.length; i++) {
// Original Matlab code computes the log for each array.
// This is equivalent to a single log on the fraction of the two.
// Perhaps the two log method is more numerically stable.
//l[i] = Math.log(Math.abs(frcnum[i])) - Math.log(exp_decay[i]);
l[i] = Math.log(Math.abs(frcnum[i] / exp_decay[i]));
}
try {
LoessInterpolator loess = new LoessInterpolator(bandwidth, robustness);
smooth = loess.smooth(q, l);
} catch (Exception e) {
IJ.error(TITLE, "LOESS smoothing failed");
return;
}
} else {
// Note: This smooths the curve before computing the log
double[] norm = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
norm[i] = frcnum[i] / exp_decay[i];
}
// Median window of 5 == radius of 2
MedianWindow mw = new MedianWindow(norm, 2);
smooth = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
smooth[i] = Math.log(Math.abs(mw.getMedian()));
mw.increment();
}
}
// Fit with quadratic to find the initial guess.
// Note: example Matlab code frc_Qcorrection7.m identifies regions of the
// smoothed log curve with low derivative and only fits those. The fit is
// used for the final estimate. Fitting a subset with low derivative is not
// implemented here since the initial estimate is subsequently optimised
// to maximise a cost function.
Quadratic curve = new Quadratic();
SimpleCurveFitter fit = SimpleCurveFitter.create(curve, new double[2]);
WeightedObservedPoints points = new WeightedObservedPoints();
for (int i = low; i < high; i++) points.add(q[i], smooth[i]);
double[] estimate = fit.fit(points.toList());
double qValue = FastMath.exp(estimate[0]);
//System.out.printf("Initial q-estimate = %s => %.3f\n", Arrays.toString(estimate), qValue);
// This could be made an option. Just use for debugging
boolean debug = false;
if (debug) {
// Plot the initial fit and the fit curve
double[] qScaled = FRC.computeQ(frcCurve, true);
double[] line = new double[q.length];
for (int i = 0; i < q.length; i++) line[i] = curve.value(q[i], estimate);
String title = TITLE + " Initial fit";
Plot2 plot = new Plot2(title, "Spatial Frequency (nm^-1)", "FRC Numerator");
String label = String.format("Q = %.3f", qValue);
plot.addPoints(qScaled, smooth, Plot.LINE);
plot.setColor(Color.red);
plot.addPoints(qScaled, line, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
Utils.display(title, plot, Utils.NO_TO_FRONT);
}
if (fitPrecision) {
// Q - Should this be optional?
if (sampleDecay) {
// If a sample of the precision was used to construct the data for the initial fit
// then update the estimate using the fit result since it will be a better start point.
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
// Do a multivariate fit ...
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
PointValuePair p = null;
MultiPlateauness f = new MultiPlateauness(frcnum, q, low, high);
double[] initial = new double[] { histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, qValue };
p = findMin(p, opt, f, scale(initial, 0.1));
p = findMin(p, opt, f, scale(initial, 0.5));
p = findMin(p, opt, f, initial);
p = findMin(p, opt, f, scale(initial, 2));
p = findMin(p, opt, f, scale(initial, 10));
if (p != null) {
double[] point = p.getPointRef();
histogram.mean = point[0] * images.nmPerPixel;
histogram.sigma = point[1] * images.nmPerPixel;
qValue = point[2];
}
} else {
// If so then this should be optional.
if (sampleDecay) {
if (precisionMethod != PrecisionMethod.FIXED) {
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Estimate spurious component by promoting plateauness.
// The Matlab code used random initial points for a Simplex optimiser.
// A Brent line search should be pretty deterministic so do simple repeats.
// However it will proceed downhill so if the initial point is wrong then
// it will find a sub-optimal result.
UnivariateOptimizer o = new BrentOptimizer(1e-3, 1e-6);
Plateauness f = new Plateauness(frcnum, exp_decay, low, high);
UnivariatePointValuePair p = null;
p = findMin(p, o, f, qValue, 0.1);
p = findMin(p, o, f, qValue, 0.2);
p = findMin(p, o, f, qValue, 0.333);
p = findMin(p, o, f, qValue, 0.5);
// Do some Simplex repeats as well
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
p = findMin(p, opt, f, qValue * 0.1);
p = findMin(p, opt, f, qValue * 0.5);
p = findMin(p, opt, f, qValue);
p = findMin(p, opt, f, qValue * 2);
p = findMin(p, opt, f, qValue * 10);
if (p != null)
qValue = p.getPoint();
}
QPlot qplot = new QPlot(frcCurve, qValue, low, high);
// Interactive dialog to estimate Q (blinking events per flourophore) using
// sliders for the mean and standard deviation of the localisation precision.
showQEstimationDialog(histogram, qplot, frcCurve, images.nmPerPixel);
IJ.showStatus(TITLE + " complete");
}
use of org.apache.commons.math3.analysis.interpolation.LoessInterpolator in project GDSC-SMLM by aherbert.
the class BenchmarkFilterAnalysis method depthAnalysis.
/**
* Depth analysis.
*
* @param allAssignments
* The assignments generated from running the filter (or null)
* @param filter
* the filter
* @return the assignments
*/
private ArrayList<FractionalAssignment[]> depthAnalysis(ArrayList<FractionalAssignment[]> allAssignments, DirectFilter filter) {
if (!depthRecallAnalysis || simulationParameters.fixedDepth)
return null;
// Build a histogram of the number of spots at different depths
final double[] depths = depthStats.getValues();
double[] limits = Maths.limits(depths);
//final int bins = Math.max(10, nActual / 100);
//final int bins = Utils.getBinsSturges(depths.length);
final int bins = Utils.getBinsSqrt(depths.length);
double[][] h1 = Utils.calcHistogram(depths, limits[0], limits[1], bins);
double[][] h2 = Utils.calcHistogram(depthFitStats.getValues(), limits[0], limits[1], bins);
// manually to get the results that pass.
if (allAssignments == null)
allAssignments = getAssignments(filter);
double[] depths2 = new double[results.size()];
int count = 0;
for (FractionalAssignment[] assignments : allAssignments) {
if (assignments == null)
continue;
for (int i = 0; i < assignments.length; i++) {
final CustomFractionalAssignment c = (CustomFractionalAssignment) assignments[i];
depths2[count++] = c.peak.error;
}
}
depths2 = Arrays.copyOf(depths2, count);
// Build a histogram using the same limits
double[][] h3 = Utils.calcHistogram(depths2, limits[0], limits[1], bins);
// Convert pixel depth to nm
for (int i = 0; i < h1[0].length; i++) h1[0][i] *= simulationParameters.a;
limits[0] *= simulationParameters.a;
limits[1] *= simulationParameters.a;
// Produce a histogram of the number of spots at each depth
String title1 = TITLE + " Depth Histogram";
Plot2 plot1 = new Plot2(title1, "Depth (nm)", "Frequency");
plot1.setLimits(limits[0], limits[1], 0, Maths.max(h1[1]));
plot1.setColor(Color.black);
plot1.addPoints(h1[0], h1[1], Plot2.BAR);
plot1.addLabel(0, 0, "Black = Spots; Blue = Fitted; Red = Filtered");
plot1.setColor(Color.blue);
plot1.addPoints(h1[0], h2[1], Plot2.BAR);
plot1.setColor(Color.red);
plot1.addPoints(h1[0], h3[1], Plot2.BAR);
plot1.setColor(Color.magenta);
PlotWindow pw1 = Utils.display(title1, plot1);
if (Utils.isNewWindow())
wo.add(pw1);
// Interpolate
final double halfBinWidth = (h1[0][1] - h1[0][0]) * 0.5;
// Remove final value of the histogram as this is at the upper limit of the range (i.e. count zero)
h1[0] = Arrays.copyOf(h1[0], h1[0].length - 1);
h1[1] = Arrays.copyOf(h1[1], h1[0].length);
h2[1] = Arrays.copyOf(h2[1], h1[0].length);
h3[1] = Arrays.copyOf(h3[1], h1[0].length);
// TODO : Fix the smoothing since LOESS sometimes does not work.
// Perhaps allow configuration of the number of histogram bins and the smoothing bandwidth.
// Use minimum of 3 points for smoothing
// Ensure we use at least x% of data
double bandwidth = Math.max(3.0 / h1[0].length, 0.15);
LoessInterpolator loess = new LoessInterpolator(bandwidth, 1);
PolynomialSplineFunction spline1 = loess.interpolate(h1[0], h1[1]);
PolynomialSplineFunction spline2 = loess.interpolate(h1[0], h2[1]);
PolynomialSplineFunction spline3 = loess.interpolate(h1[0], h3[1]);
// Use a second interpolator in case the LOESS fails
LinearInterpolator lin = new LinearInterpolator();
PolynomialSplineFunction spline1b = lin.interpolate(h1[0], h1[1]);
PolynomialSplineFunction spline2b = lin.interpolate(h1[0], h2[1]);
PolynomialSplineFunction spline3b = lin.interpolate(h1[0], h3[1]);
// Increase the number of points to show a smooth curve
double[] points = new double[bins * 5];
limits = Maths.limits(h1[0]);
final double interval = (limits[1] - limits[0]) / (points.length - 1);
double[] v = new double[points.length];
double[] v2 = new double[points.length];
double[] v3 = new double[points.length];
for (int i = 0; i < points.length - 1; i++) {
points[i] = limits[0] + i * interval;
v[i] = getSplineValue(spline1, spline1b, points[i]);
v2[i] = getSplineValue(spline2, spline2b, points[i]);
v3[i] = getSplineValue(spline3, spline3b, points[i]);
points[i] += halfBinWidth;
}
// Final point on the limit of the spline range
int ii = points.length - 1;
v[ii] = getSplineValue(spline1, spline1b, limits[1]);
v2[ii] = getSplineValue(spline2, spline2b, limits[1]);
v3[ii] = getSplineValue(spline3, spline3b, limits[1]);
points[ii] = limits[1] + halfBinWidth;
// Calculate recall
for (int i = 0; i < v.length; i++) {
v2[i] = v2[i] / v[i];
v3[i] = v3[i] / v[i];
}
final double halfSummaryDepth = summaryDepth * 0.5;
String title2 = TITLE + " Depth Histogram (normalised)";
Plot2 plot2 = new Plot2(title2, "Depth (nm)", "Recall");
plot2.setLimits(limits[0] + halfBinWidth, limits[1] + halfBinWidth, 0, Maths.min(1, Maths.max(v2)));
plot2.setColor(Color.black);
plot2.addLabel(0, 0, "Blue = Fitted; Red = Filtered");
plot2.setColor(Color.blue);
plot2.addPoints(points, v2, Plot2.LINE);
plot2.setColor(Color.red);
plot2.addPoints(points, v3, Plot2.LINE);
plot2.setColor(Color.magenta);
if (-halfSummaryDepth - halfBinWidth >= limits[0]) {
plot2.drawLine(-halfSummaryDepth, 0, -halfSummaryDepth, getSplineValue(spline3, spline3b, -halfSummaryDepth - halfBinWidth) / getSplineValue(spline1, spline1b, -halfSummaryDepth - halfBinWidth));
}
if (halfSummaryDepth - halfBinWidth <= limits[1]) {
plot2.drawLine(halfSummaryDepth, 0, halfSummaryDepth, getSplineValue(spline3, spline3b, halfSummaryDepth - halfBinWidth) / getSplineValue(spline1, spline1b, halfSummaryDepth - halfBinWidth));
}
PlotWindow pw2 = Utils.display(title2, plot2);
if (Utils.isNewWindow())
wo.add(pw2);
return allAssignments;
}
use of org.apache.commons.math3.analysis.interpolation.LoessInterpolator in project GDSC-SMLM by aherbert.
the class PSFDrift method computeDrift.
private void computeDrift() {
// Create a grid of XY offset positions between 0-1 for PSF insert
final double[] grid = new double[gridSize];
for (int i = 0; i < grid.length; i++) grid[i] = (double) i / gridSize;
// Configure fitting region
final int w = 2 * regionSize + 1;
centrePixel = w / 2;
// Check region size using the image PSF
double newPsfWidth = (double) imp.getWidth() / scale;
if (Math.ceil(newPsfWidth) > w)
Utils.log(TITLE + ": Fitted region size (%d) is smaller than the scaled PSF (%.1f)", w, newPsfWidth);
// Create robust PSF fitting settings
final double a = psfSettings.nmPerPixel * scale;
final double sa = PSFCalculator.squarePixelAdjustment(psfSettings.nmPerPixel * (psfSettings.fwhm / Gaussian2DFunction.SD_TO_FWHM_FACTOR), a);
fitConfig.setInitialPeakStdDev(sa / a);
fitConfig.setBackgroundFitting(backgroundFitting);
fitConfig.setNotSignalFitting(false);
fitConfig.setComputeDeviations(false);
fitConfig.setDisableSimpleFilter(true);
// Create the PSF over the desired z-depth
int depth = (int) Math.round(zDepth / psfSettings.nmPerSlice);
int startSlice = psfSettings.zCentre - depth;
int endSlice = psfSettings.zCentre + depth;
int nSlices = imp.getStackSize();
startSlice = (startSlice < 1) ? 1 : (startSlice > nSlices) ? nSlices : startSlice;
endSlice = (endSlice < 1) ? 1 : (endSlice > nSlices) ? nSlices : endSlice;
ImagePSFModel psf = createImagePSF(startSlice, endSlice);
int minz = startSlice - psfSettings.zCentre;
int maxz = endSlice - psfSettings.zCentre;
final int nZ = maxz - minz + 1;
final int gridSize2 = grid.length * grid.length;
total = nZ * gridSize2;
// Store all the fitting results
int nStartPoints = getNumberOfStartPoints();
results = new double[total * nStartPoints][];
// TODO - Add ability to iterate this, adjusting the current offset in the PSF
// each iteration
// Create a pool of workers
int nThreads = Prefs.getThreads();
BlockingQueue<Job> jobs = new ArrayBlockingQueue<Job>(nThreads * 2);
List<Worker> workers = new LinkedList<Worker>();
List<Thread> threads = new LinkedList<Thread>();
for (int i = 0; i < nThreads; i++) {
Worker worker = new Worker(jobs, psf, w, fitConfig);
Thread t = new Thread(worker);
workers.add(worker);
threads.add(t);
t.start();
}
// Fit
Utils.showStatus("Fitting ...");
final int step = Utils.getProgressInterval(total);
outer: for (int z = minz, i = 0; z <= maxz; z++) {
for (int x = 0; x < grid.length; x++) for (int y = 0; y < grid.length; y++, i++) {
if (IJ.escapePressed()) {
break outer;
}
put(jobs, new Job(z, grid[x], grid[y], i));
if (i % step == 0) {
IJ.showProgress(i, total);
}
}
}
// If escaped pressed then do not need to stop the workers, just return
if (Utils.isInterrupted()) {
IJ.showProgress(1);
return;
}
// Finish all the worker threads by passing in a null job
for (int i = 0; i < threads.size(); i++) {
put(jobs, new Job());
}
// Wait for all to finish
for (int i = 0; i < threads.size(); i++) {
try {
threads.get(i).join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
threads.clear();
IJ.showProgress(1);
IJ.showStatus("");
// Plot the average and SE for the drift curve
// Plot the recall
double[] zPosition = new double[nZ];
double[] avX = new double[nZ];
double[] seX = new double[nZ];
double[] avY = new double[nZ];
double[] seY = new double[nZ];
double[] recall = new double[nZ];
for (int z = minz, i = 0; z <= maxz; z++, i++) {
Statistics statsX = new Statistics();
Statistics statsY = new Statistics();
for (int s = 0; s < nStartPoints; s++) {
int resultPosition = i * gridSize2 + s * total;
final int endResultPosition = resultPosition + gridSize2;
while (resultPosition < endResultPosition) {
if (results[resultPosition] != null) {
statsX.add(results[resultPosition][0]);
statsY.add(results[resultPosition][1]);
}
resultPosition++;
}
}
zPosition[i] = z * psfSettings.nmPerSlice;
avX[i] = statsX.getMean();
seX[i] = statsX.getStandardError();
avY[i] = statsY.getMean();
seY[i] = statsY.getStandardError();
recall[i] = (double) statsX.getN() / (nStartPoints * gridSize2);
}
// Find the range from the z-centre above the recall limit
int centre = 0;
for (int slice = startSlice, i = 0; slice <= endSlice; slice++, i++) {
if (slice == psfSettings.zCentre) {
centre = i;
break;
}
}
if (recall[centre] < recallLimit)
return;
int start = centre, end = centre;
for (int i = centre; i-- > 0; ) {
if (recall[i] < recallLimit)
break;
start = i;
}
for (int i = centre; ++i < recall.length; ) {
if (recall[i] < recallLimit)
break;
end = i;
}
int iterations = 1;
LoessInterpolator loess = null;
if (smoothing > 0)
loess = new LoessInterpolator(smoothing, iterations);
double[][] smoothx = displayPlot("Drift X", "X (nm)", zPosition, avX, seX, loess, start, end);
double[][] smoothy = displayPlot("Drift Y", "Y (nm)", zPosition, avY, seY, loess, start, end);
displayPlot("Recall", "Recall", zPosition, recall, null, null, start, end);
WindowOrganiser wo = new WindowOrganiser();
wo.tileWindows(idList);
// Ask the user if they would like to store them in the image
GenericDialog gd = new GenericDialog(TITLE);
gd.enableYesNoCancel();
gd.hideCancelButton();
startSlice = psfSettings.zCentre - (centre - start);
endSlice = psfSettings.zCentre + (end - centre);
gd.addMessage(String.format("Save the drift to the PSF?\n \nSlices %d (%s nm) - %d (%s nm) above recall limit", startSlice, Utils.rounded(zPosition[start]), endSlice, Utils.rounded(zPosition[end])));
gd.addMessage("Optionally average the end points to set drift outside the limits.\n(Select zero to ignore)");
gd.addSlider("Number_of_points", 0, 10, positionsToAverage);
gd.showDialog();
if (gd.wasOKed()) {
positionsToAverage = Math.abs((int) gd.getNextNumber());
ArrayList<PSFOffset> offset = new ArrayList<PSFOffset>();
final double pitch = psfSettings.nmPerPixel;
int j = 0, jj = 0;
for (int i = start, slice = startSlice; i <= end; slice++, i++) {
j = findCentre(zPosition[i], smoothx, j);
if (j == -1) {
Utils.log("Failed to find the offset for depth %.2f", zPosition[i]);
continue;
}
// The offset should store the difference to the centre in pixels so divide by the pixel pitch
double cx = smoothx[1][j] / pitch;
double cy = smoothy[1][j] / pitch;
jj = findOffset(slice, jj);
if (jj != -1) {
cx += psfSettings.offset[jj].cx;
cy += psfSettings.offset[jj].cy;
}
offset.add(new PSFOffset(slice, cx, cy));
}
addMissingOffsets(startSlice, endSlice, nSlices, offset);
psfSettings.offset = offset.toArray(new PSFOffset[offset.size()]);
psfSettings.addNote(TITLE, String.format("Solver=%s, Region=%d", PeakFit.getSolverName(fitConfig), regionSize));
imp.setProperty("Info", XmlUtils.toXML(psfSettings));
}
}
Aggregations