use of org.apache.commons.math3.optim.PointValuePair in project GDSC-SMLM by aherbert.
the class MaximumLikelihoodFitter method computeFit.
/*
* (non-Javadoc)
*
* @see gdsc.smlm.fitting.nonlinear.BaseFunctionSolver#computeFit(double[], double[], double[], double[])
*/
public FitStatus computeFit(double[] y, double[] y_fit, double[] a, double[] a_dev) {
final int n = y.length;
LikelihoodWrapper maximumLikelihoodFunction = createLikelihoodWrapper((NonLinearFunction) f, n, y, a);
@SuppressWarnings("rawtypes") BaseOptimizer baseOptimiser = null;
try {
double[] startPoint = getInitialSolution(a);
PointValuePair optimum = null;
if (searchMethod == SearchMethod.POWELL || searchMethod == SearchMethod.POWELL_BOUNDED || searchMethod == SearchMethod.POWELL_ADAPTER) {
// Non-differentiable version using Powell Optimiser
// This is as per the method in Numerical Recipes 10.5 (Direction Set (Powell's) method)
// I could extend the optimiser and implement bounds on the directions moved. However the mapping
// adapter seems to work OK.
final boolean basisConvergence = false;
// Perhaps these thresholds should be tighter?
// The default is to use the sqrt() of the overall tolerance
//final double lineRel = FastMath.sqrt(relativeThreshold);
//final double lineAbs = FastMath.sqrt(absoluteThreshold);
//final double lineRel = relativeThreshold * 1e2;
//final double lineAbs = absoluteThreshold * 1e2;
// Since we are fitting only a small number of parameters then just use the same tolerance
// for each search direction
final double lineRel = relativeThreshold;
final double lineAbs = absoluteThreshold;
CustomPowellOptimizer o = new CustomPowellOptimizer(relativeThreshold, absoluteThreshold, lineRel, lineAbs, null, basisConvergence);
baseOptimiser = o;
OptimizationData maxIterationData = null;
if (getMaxIterations() > 0)
maxIterationData = new MaxIter(getMaxIterations());
if (searchMethod == SearchMethod.POWELL_ADAPTER) {
// Try using the mapping adapter for a bounded Powell search
MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(new MultivariateLikelihood(maximumLikelihoodFunction), lower, upper);
optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded(startPoint)));
double[] solution = adapter.unboundedToBounded(optimum.getPointRef());
optimum = new PointValuePair(solution, optimum.getValue());
} else {
if (powellFunction == null) {
// Python code by using the sqrt of the number of photons and background.
if (mapGaussian) {
Gaussian2DFunction gf = (Gaussian2DFunction) f;
// Re-map signal and background using the sqrt
int[] indices = gf.gradientIndices();
int[] map = new int[indices.length];
int count = 0;
// Background is always first
if (indices[0] == Gaussian2DFunction.BACKGROUND) {
map[count++] = 0;
}
// Look for the Signal in multiple peak 2D Gaussians
for (int i = 1; i < indices.length; i++) if (indices[i] % 6 == Gaussian2DFunction.SIGNAL) {
map[count++] = i;
}
if (count > 0) {
powellFunction = new MappedMultivariateLikelihood(maximumLikelihoodFunction, Arrays.copyOf(map, count));
}
}
if (powellFunction == null) {
powellFunction = new MultivariateLikelihood(maximumLikelihoodFunction);
}
}
// Update the maximum likelihood function in the Powell function wrapper
powellFunction.fun = maximumLikelihoodFunction;
OptimizationData positionChecker = null;
// new org.apache.commons.math3.optim.PositionChecker(relativeThreshold, absoluteThreshold);
SimpleBounds simpleBounds = null;
if (powellFunction.isMapped()) {
MappedMultivariateLikelihood adapter = (MappedMultivariateLikelihood) powellFunction;
if (searchMethod == SearchMethod.POWELL_BOUNDED)
simpleBounds = new SimpleBounds(adapter.map(lower), adapter.map(upper));
optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(adapter.map(startPoint)), positionChecker, simpleBounds);
double[] solution = adapter.unmap(optimum.getPointRef());
optimum = new PointValuePair(solution, optimum.getValue());
} else {
if (searchMethod == SearchMethod.POWELL_BOUNDED)
simpleBounds = new SimpleBounds(lower, upper);
optimum = o.optimize(maxIterationData, new MaxEval(getMaxEvaluations()), new ObjectiveFunction(powellFunction), GoalType.MINIMIZE, new InitialGuess(startPoint), positionChecker, simpleBounds);
}
}
} else if (searchMethod == SearchMethod.BOBYQA) {
// Differentiable approximation using Powell's BOBYQA algorithm.
// This is slower than the Powell optimiser and requires a high number of evaluations.
int numberOfInterpolationPoints = this.getNumberOfFittedParameters() + 2;
BOBYQAOptimizer o = new BOBYQAOptimizer(numberOfInterpolationPoints);
baseOptimiser = o;
optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lower, upper));
} else if (searchMethod == SearchMethod.CMAES) {
// TODO - Understand why the CMAES optimiser does not fit very well on test data. It appears
// to converge too early and the likelihood scores are not as low as the other optimisers.
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
RandomGenerator random = new Well19937c();
boolean generateStatistics = false;
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] sigma = new double[lower.length];
for (int i = 0; i < sigma.length; i++) sigma[i] = (upper[i] - lower[i]) / 3;
int popSize = (int) (4 + Math.floor(3 * Math.log(sigma.length)));
// The CMAES optimiser is random and restarting can overcome problems with quick convergence.
// The Apache commons documentations states that convergence should occur between 30N and 300N^2
// function evaluations
final int n30 = FastMath.min(sigma.length * sigma.length * 30, getMaxEvaluations() / 2);
evaluations = 0;
OptimizationData[] data = new OptimizationData[] { new InitialGuess(startPoint), new CMAESOptimizer.PopulationSize(popSize), new MaxEval(getMaxEvaluations()), new CMAESOptimizer.Sigma(sigma), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new SimpleBounds(lower, upper) };
// Iterate to prevent early convergence
int repeat = 0;
while (evaluations < n30) {
if (repeat++ > 1) {
// Update the start point and population size
data[0] = new InitialGuess(optimum.getPointRef());
popSize *= 2;
data[1] = new CMAESOptimizer.PopulationSize(popSize);
}
CMAESOptimizer o = new CMAESOptimizer(getMaxIterations(), stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
baseOptimiser = o;
PointValuePair result = o.optimize(data);
iterations += o.getIterations();
evaluations += o.getEvaluations();
// o.getEvaluations(), totalEvaluations);
if (optimum == null || result.getValue() < optimum.getValue()) {
optimum = result;
}
}
// Prevent incrementing the iterations again
baseOptimiser = null;
} else if (searchMethod == SearchMethod.BFGS) {
// BFGS can use an approximate line search minimisation where as Powell and conjugate gradient
// methods require a more accurate line minimisation. The BFGS search does not do a full
// minimisation but takes appropriate steps in the direction of the current gradient.
// Do not use the convergence checker on the value of the function. Use the convergence on the
// point coordinate and gradient
//BFGSOptimizer o = new BFGSOptimizer(new SimpleValueChecker(rel, abs));
BFGSOptimizer o = new BFGSOptimizer();
baseOptimiser = o;
// Configure maximum step length for each dimension using the bounds
double[] stepLength = new double[lower.length];
for (int i = 0; i < stepLength.length; i++) {
stepLength[i] = (upper[i] - lower[i]) * 0.3333333;
if (stepLength[i] <= 0)
stepLength[i] = Double.POSITIVE_INFINITY;
}
// The GoalType is always minimise so no need to pass this in
OptimizationData positionChecker = null;
//new org.apache.commons.math3.optim.PositionChecker(relativeThreshold, absoluteThreshold);
optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BFGSOptimizer.GradientTolerance(relativeThreshold), positionChecker, new BFGSOptimizer.StepLength(stepLength));
} else {
// The line search algorithm often fails. This is due to searching into a region where the
// function evaluates to a negative so has been clipped. This means the upper bound of the line
// cannot be found.
// Note that running it on an easy problem (200 photons with fixed fitting (no background)) the algorithm
// does sometimes produces results better than the Powell algorithm but it is slower.
BoundedNonLinearConjugateGradientOptimizer o = new BoundedNonLinearConjugateGradientOptimizer((searchMethod == SearchMethod.CONJUGATE_GRADIENT_FR) ? Formula.FLETCHER_REEVES : Formula.POLAK_RIBIERE, new SimpleValueChecker(relativeThreshold, absoluteThreshold));
baseOptimiser = o;
// Note: The gradients may become unstable at the edge of the bounds. Or they will not change
// direction if the true solution is on the bounds since the gradient will always continue
// towards the bounds. This is key to the conjugate gradient method. It searches along a vector
// until the direction of the gradient is in the opposite direction (using dot products, i.e.
// cosine of angle between them)
// NR 10.7 states there is no advantage of the variable metric DFP or BFGS methods over
// conjugate gradient methods. So I will try these first.
// Try this:
// Adapt the conjugate gradient optimiser to use the gradient to pick the search direction
// and then for the line minimisation. However if the function is out of bounds then clip the
// variables at the bounds and continue.
// If the current point is at the bounds and the gradient is to continue out of bounds then
// clip the gradient too.
// Or: just use the gradient for the search direction then use the line minimisation/rest
// as per the Powell optimiser. The bounds should limit the search.
// I tried a Bounded conjugate gradient optimiser with clipped variables:
// This sometimes works. However when the variables go a long way out of the expected range the gradients
// can have vastly different magnitudes. This results in the algorithm stalling since the gradients
// can be close to zero and the some of the parameters are no longer adjusted.
// Perhaps this can be looked for and the algorithm then gives up and resorts to a Powell optimiser from
// the current point.
// Changed the bracketing step to very small (default is 1, changed to 0.001). This improves the
// performance. The gradient direction is very sensitive to small changes in the coordinates so a
// tighter bracketing of the line search helps.
// Tried using a non-gradient method for the line search copied from the Powell optimiser:
// This also works when the bracketing step is small but the number of iterations is higher.
// 24.10.2014: I have tried to get conjugate gradient to work but the gradient function
// must not behave suitably for the optimiser. In the current state both methods of using a
// Bounded Conjugate Gradient Optimiser perform poorly relative to other optimisers:
// Simulated : n=1000, signal=200, x=0.53, y=0.47
// LVM : n=1000, signal=171, x=0.537, y=0.471 (1.003s)
// Powell : n=1000, signal=187, x=0.537, y=0.48 (1.238s)
// Gradient based PR (constrained): n=858, signal=161, x=0.533, y=0.474 (2.54s)
// Gradient based PR (bounded): n=948, signal=161, x=0.533, y=0.473 (2.67s)
// Non-gradient based : n=1000, signal=151.47, x=0.535, y=0.474 (1.626s)
// The conjugate optimisers are slower, under predict the signal by the most and in the case of
// the gradient based optimiser, fail to converge on some problems. This is worse when constrained
// fitting is used and not tightly bounded fitting.
// I will leave the code in as an option but would not recommend using it. I may remove it in the
// future.
// Note: It is strange that the non-gradient based line minimisation is more successful.
// It may be that the gradient function is not accurate (due to round off error) or that it is
// simply wrong when far from the optimum. My JUnit tests only evaluate the function within the
// expected range of the answer.
// Note the default step size on the Powell optimiser is 1 but the initial directions are unit vectors.
// So our bracketing step should be a minimum of 1 / average length of the first gradient vector to prevent
// the first step being too large when bracketing.
final double[] gradient = new double[startPoint.length];
maximumLikelihoodFunction.likelihood(startPoint, gradient);
double l = 0;
for (double d : gradient) l += d * d;
final double bracketingStep = FastMath.min(0.001, ((l > 1) ? 1.0 / l : 1));
//System.out.printf("Bracketing step = %f (length=%f)\n", bracketingStep, l);
o.setUseGradientLineSearch(gradientLineMinimisation);
optimum = o.optimize(new MaxEval(getMaxEvaluations()), new ObjectiveFunctionGradient(new MultivariateVectorLikelihood(maximumLikelihoodFunction)), new ObjectiveFunction(new MultivariateLikelihood(maximumLikelihoodFunction)), GoalType.MINIMIZE, new InitialGuess(startPoint), new SimpleBounds(lowerConstraint, upperConstraint), new BoundedNonLinearConjugateGradientOptimizer.BracketingStep(bracketingStep));
//maximumLikelihoodFunction.value(solution, gradient);
//System.out.printf("Iter = %d, %g @ %s : %s\n", iterations, ll, Arrays.toString(solution),
// Arrays.toString(gradient));
}
final double[] solution = optimum.getPointRef();
setSolution(a, solution);
if (a_dev != null) {
// Assume the Maximum Likelihood estimator returns the optimum fit (achieves the Cramer Roa
// lower bounds) and so the covariance can be obtained from the Fisher Information Matrix.
FisherInformationMatrix m = new FisherInformationMatrix(maximumLikelihoodFunction.fisherInformation(a));
setDeviations(a_dev, m.crlb(true));
}
// Reverse negative log likelihood for maximum likelihood score
value = -optimum.getValue();
} catch (TooManyIterationsException e) {
//e.printStackTrace();
return FitStatus.TOO_MANY_ITERATIONS;
} catch (TooManyEvaluationsException e) {
//e.printStackTrace();
return FitStatus.TOO_MANY_EVALUATIONS;
} catch (ConvergenceException e) {
//System.out.printf("Singular non linear model = %s\n", e.getMessage());
return FitStatus.SINGULAR_NON_LINEAR_MODEL;
} catch (BFGSOptimizer.LineSearchRoundoffException e) {
//e.printStackTrace();
return FitStatus.FAILED_TO_CONVERGE;
} catch (Exception e) {
//System.out.printf("Unknown error = %s\n", e.getMessage());
e.printStackTrace();
return FitStatus.UNKNOWN;
} finally {
if (baseOptimiser != null) {
iterations += baseOptimiser.getIterations();
evaluations += baseOptimiser.getEvaluations();
}
}
// Check this as likelihood functions can go wrong
if (Double.isInfinite(value) || Double.isNaN(value))
return FitStatus.INVALID_LIKELIHOOD;
return FitStatus.OK;
}
use of org.apache.commons.math3.optim.PointValuePair in project GDSC-SMLM by aherbert.
the class PCPALMClusters method fitBinomial.
/**
* Fit a zero-truncated Binomial to the cumulative histogram
*
* @param histogramData
* @return
*/
private double[] fitBinomial(HistogramData histogramData) {
// Get the mean and sum of the input histogram
double mean;
double sum = 0;
count = 0;
for (int i = 0; i < histogramData.histogram[1].length; i++) {
count += histogramData.histogram[1][i];
sum += histogramData.histogram[1][i] * i;
}
mean = sum / count;
String name = "Zero-truncated Binomial distribution";
Utils.log("Mean cluster size = %s", Utils.rounded(mean));
Utils.log("Fitting cumulative " + name);
// Convert to a normalised double array for the binomial fitter
double[] histogram = new double[histogramData.histogram[1].length];
for (int i = 0; i < histogramData.histogram[1].length; i++) histogram[i] = histogramData.histogram[1][i] / count;
// Plot the cumulative histogram
String title = TITLE + " Cumulative Distribution";
Plot2 plot = null;
if (showCumulativeHistogram) {
// Create a cumulative histogram for fitting
double[] cumulativeHistogram = new double[histogram.length];
sum = 0;
for (int i = 0; i < histogram.length; i++) {
sum += histogram[i];
cumulativeHistogram[i] = sum;
}
double[] values = Utils.newArray(histogram.length, 0.0, 1.0);
plot = new Plot2(title, "N", "Cumulative Probability", values, cumulativeHistogram);
plot.setLimits(0, histogram.length - 1, 0, 1.05);
plot.addPoints(values, cumulativeHistogram, Plot2.CIRCLE);
Utils.display(title, plot);
}
// Do fitting for different N
double bestSS = Double.POSITIVE_INFINITY;
double[] parameters = null;
int worse = 0;
int N = histogram.length - 1;
int min = minN;
final boolean customRange = (minN > 1) || (maxN > 0);
if (min > N)
min = N;
if (maxN > 0 && N > maxN)
N = maxN;
Utils.log("Fitting N from %d to %d%s", min, N, (customRange) ? " (custom-range)" : "");
// Since varying the N should be done in integer steps do this
// for n=1,2,3,... until the SS peaks then falls off (is worse then the best
// score several times in succession)
BinomialFitter bf = new BinomialFitter(new IJLogger());
bf.setMaximumLikelihood(maximumLikelihood);
for (int n = min; n <= N; n++) {
PointValuePair solution = bf.fitBinomial(histogram, mean, n, true);
if (solution == null)
continue;
double p = solution.getPointRef()[0];
Utils.log("Fitted %s : N=%d, p=%s. SS=%g", name, n, Utils.rounded(p), solution.getValue());
if (bestSS > solution.getValue()) {
bestSS = solution.getValue();
parameters = new double[] { n, p };
worse = 0;
} else if (bestSS < Double.POSITIVE_INFINITY) {
if (++worse >= 3)
break;
}
if (showCumulativeHistogram)
addToPlot(n, p, title, plot, new Color((float) n / N, 0, 1f - (float) n / N));
}
// Add best it in magenta
if (showCumulativeHistogram && parameters != null)
addToPlot((int) parameters[0], parameters[1], title, plot, Color.magenta);
return parameters;
}
use of org.apache.commons.math3.optim.PointValuePair in project GDSC-SMLM by aherbert.
the class PCPALMFitting method fitEmulsionModel.
/**
* Fits the correlation curve with r>0 to the clustered model using the estimated density and precision. Parameters
* must be fit within a tolerance of the starting values.
*
* @param gr
* @param sigmaS
* The estimated precision
* @param proteinDensity
* The estimated protein density
* @return The fitted parameters [precision, density, clusterRadius, clusterDensity]
*/
private double[] fitEmulsionModel(double[][] gr, double sigmaS, double proteinDensity, String resultColour) {
final EmulsionModelFunctionGradient function = new EmulsionModelFunctionGradient();
emulsionModel = function;
log("Fitting %s: Estimated precision = %f nm, estimated protein density = %g um^-2", emulsionModel.getName(), sigmaS, proteinDensity * 1e6);
emulsionModel.setLogging(true);
for (int i = offset; i < gr[0].length; i++) {
// Only fit the curve above the estimated resolution (points below it will be subject to error)
if (gr[0][i] > sigmaS * fitAboveEstimatedPrecision)
emulsionModel.addPoint(gr[0][i], gr[1][i]);
}
double[] parameters;
// The model is: sigma, density, range, amplitude, alpha
double[] initialSolution = new double[] { sigmaS, proteinDensity, sigmaS * 5, 1, sigmaS * 5 };
int evaluations = 0;
// Constrain the fitting to be close to the estimated precision (sigmaS) and protein density.
// LVM fitting does not support constrained fitting so use a bounded optimiser.
SumOfSquaresModelFunction emulsionModelMulti = new SumOfSquaresModelFunction(emulsionModel);
double[] x = emulsionModelMulti.x;
double[] y = emulsionModelMulti.y;
// Range should be equal to the first time the g(r) curve crosses 1
for (int i = 0; i < x.length; i++) if (y[i] < 1) {
initialSolution[4] = initialSolution[2] = (i > 0) ? (x[i - 1] + x[i]) * 0.5 : x[i];
break;
}
// Put some bounds around the initial guess. Use the fitting tolerance (in %) if provided.
double limit = (fittingTolerance > 0) ? 1 + fittingTolerance / 100 : 2;
double[] lB = new double[] { initialSolution[0] / limit, initialSolution[1] / limit, 0, 0, 0 };
// The amplitude and range should not extend beyond the limits of the g(r) curve.
// TODO - Find out the expected range for the alpha parameter.
double[] uB = new double[] { initialSolution[0] * limit, initialSolution[1] * limit, Maths.max(x), Maths.max(gr[1]), Maths.max(x) * 2 };
log("Fitting %s using a bounded search: %s < precision < %s & %s < density < %s", emulsionModel.getName(), Utils.rounded(lB[0], 4), Utils.rounded(uB[0], 4), Utils.rounded(lB[1] * 1e6, 4), Utils.rounded(uB[1] * 1e6, 4));
PointValuePair constrainedSolution = runBoundedOptimiser(gr, initialSolution, lB, uB, emulsionModelMulti);
if (constrainedSolution == null)
return null;
parameters = constrainedSolution.getPointRef();
evaluations = boundedEvaluations;
// Refit using a LVM
if (useLSE) {
log("Re-fitting %s using a gradient optimisation", emulsionModel.getName());
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
Optimum lvmSolution;
try {
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(parameters).target(function.getY()).weight(new DiagonalMatrix(function.getWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
lvmSolution = optimizer.optimize(problem);
evaluations += lvmSolution.getEvaluations();
double ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
if (ss < constrainedSolution.getValue()) {
log("Re-fitting %s improved the SS from %s to %s (-%s%%)", emulsionModel.getName(), Utils.rounded(constrainedSolution.getValue(), 4), Utils.rounded(ss, 4), Utils.rounded(100 * (constrainedSolution.getValue() - ss) / constrainedSolution.getValue(), 4));
parameters = lvmSolution.getPoint().toArray();
}
} catch (TooManyIterationsException e) {
log("Failed to re-fit %s: Too many iterations (%s)", emulsionModel.getName(), e.getMessage());
} catch (ConvergenceException e) {
log("Failed to re-fit %s: %s", emulsionModel.getName(), e.getMessage());
}
}
emulsionModel.setLogging(false);
// Ensure the width is positive
parameters[0] = Math.abs(parameters[0]);
//parameters[2] = Math.abs(parameters[2]);
double ss = 0;
double[] obs = emulsionModel.getY();
double[] exp = emulsionModel.value(parameters);
for (int i = 0; i < obs.length; i++) ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
ic3 = Maths.getAkaikeInformationCriterionFromResiduals(ss, emulsionModel.size(), parameters.length);
final double fitSigmaS = parameters[0];
final double fitProteinDensity = parameters[1];
//The radius of the cluster domain
final double domainRadius = parameters[2];
//The density of the cluster domain
final double domainDensity = parameters[3];
//The coherence length between circles
final double coherence = parameters[4];
// This is from the PC-PALM paper. It may not be correct for the emulsion model.
final double nCluster = 2 * domainDensity * Math.PI * domainRadius * domainRadius * fitProteinDensity;
double e1 = parameterDrift(sigmaS, fitSigmaS);
double e2 = parameterDrift(proteinDensity, fitProteinDensity);
log(" %s fit: SS = %f. cAIC = %f. %d evaluations", emulsionModel.getName(), ss, ic3, evaluations);
log(" %s parameters:", emulsionModel.getName());
log(" Average precision = %s nm (%s%%)", Utils.rounded(fitSigmaS, 4), Utils.rounded(e1, 4));
log(" Average protein density = %s um^-2 (%s%%)", Utils.rounded(fitProteinDensity * 1e6, 4), Utils.rounded(e2, 4));
log(" Domain radius = %s nm", Utils.rounded(domainRadius, 4));
log(" Domain density = %s", Utils.rounded(domainDensity, 4));
log(" Domain coherence = %s", Utils.rounded(coherence, 4));
log(" nCluster = %s", Utils.rounded(nCluster, 4));
// Check the fitted parameters are within tolerance of the initial estimates
valid2 = true;
if (fittingTolerance > 0 && (Math.abs(e1) > fittingTolerance || Math.abs(e2) > fittingTolerance)) {
log(" Failed to fit %s within tolerance (%s%%): Average precision = %f nm (%s%%), average protein density = %g um^-2 (%s%%)", emulsionModel.getName(), Utils.rounded(fittingTolerance, 4), fitSigmaS, Utils.rounded(e1, 4), fitProteinDensity * 1e6, Utils.rounded(e2, 4));
valid2 = false;
}
// Check extra parameters. Domain radius should be higher than the precision. Density should be positive
if (domainRadius < fitSigmaS) {
log(" Failed to fit %s: Domain radius is smaller than the average precision (%s < %s)", emulsionModel.getName(), Utils.rounded(domainRadius, 4), Utils.rounded(fitSigmaS, 4));
valid2 = false;
}
if (domainDensity < 0) {
log(" Failed to fit %s: Domain density is negative (%s)", emulsionModel.getName(), Utils.rounded(domainDensity, 4));
valid2 = false;
}
if (ic3 > ic1) {
log(" Failed to fit %s - Information Criterion has increased %s%%", emulsionModel.getName(), Utils.rounded((100 * (ic3 - ic1) / ic1), 4));
valid2 = false;
}
addResult(emulsionModel.getName(), resultColour, valid2, fitSigmaS, fitProteinDensity, domainRadius, domainDensity, nCluster, coherence, ic3);
return parameters;
}
use of org.apache.commons.math3.optim.PointValuePair in project vcell by virtualcell.
the class FitTimeSeries method fitToGaussian.
static GaussianFitResults fitToGaussian(double init_center_i, double init_center_j, double init_radius2, FloatImage image) {
//
// do some optimization on the image (fitting to a Gaussian)
// set initial guesses from ROI operation.
//
ISize imageSize = image.getISize();
final int num_i = imageSize.getX();
final int num_j = imageSize.getY();
final float[] floatPixels = image.getFloatPixels();
//
// initial guess based on previous fit of ROI
// do gaussian fit in index space for center and standard deviation (later to translate it back to world coordinates)
//
final int window_size = (int) Math.sqrt(init_radius2) * 4;
// final int window_min_i = 0; // (int) Math.max(0, Math.floor(init_center_i - window_size/2));
// final int window_max_i = num_i-1; // (int) Math.min(num_i-1, Math.ceil(init_center_i + window_size/2));
// final int window_min_j = 0; // (int) Math.max(0, Math.floor(init_center_j - window_size/2));
// final int window_max_j = num_j-1; // (int) Math.min(num_j-1, Math.ceil(init_center_j + window_size/2));
final int window_min_i = (int) Math.max(0, Math.floor(init_center_i - window_size / 2));
final int window_max_i = (int) Math.min(num_i - 1, Math.ceil(init_center_i + window_size / 2));
final int window_min_j = (int) Math.max(0, Math.floor(init_center_j - window_size / 2));
final int window_max_j = (int) Math.min(num_j - 1, Math.ceil(init_center_j + window_size / 2));
final int PARAM_INDEX_CENTER_I = 0;
final int PARAM_INDEX_CENTER_J = 1;
final int PARAM_INDEX_K = 2;
final int PARAM_INDEX_HIGH = 3;
final int PARAM_INDEX_RADIUS_SQUARED = 4;
final int NUM_PARAMETERS = 5;
double[] initParameters = new double[NUM_PARAMETERS];
initParameters[PARAM_INDEX_CENTER_I] = init_center_i;
initParameters[PARAM_INDEX_CENTER_J] = init_center_j;
initParameters[PARAM_INDEX_HIGH] = 1.0;
initParameters[PARAM_INDEX_K] = 10;
initParameters[PARAM_INDEX_RADIUS_SQUARED] = init_radius2;
PowellOptimizer optimizer = new PowellOptimizer(1e-4, 1e-1);
MultivariateFunction func = new MultivariateFunction() {
@Override
public double value(double[] point) {
double center_i = point[PARAM_INDEX_CENTER_I];
double center_j = point[PARAM_INDEX_CENTER_J];
double high = point[PARAM_INDEX_HIGH];
double K = point[PARAM_INDEX_K];
double radius2 = point[PARAM_INDEX_RADIUS_SQUARED];
double error2 = 0;
for (int j = window_min_j; j <= window_max_j; j++) {
// double y = j - center_j;
double y = j;
for (int i = window_min_i; i <= window_max_i; i++) {
// double x = i - center_i;
double x = i;
double modelValue = high - FastMath.exp(-K * FastMath.exp(-2 * (x * x + y * y) / radius2));
double imageValue = floatPixels[j * num_i + i];
double error = modelValue - imageValue;
error2 += error * error;
}
}
System.out.println(new GaussianFitResults(center_i, center_j, radius2, K, high, error2));
return error2;
}
};
PointValuePair pvp = optimizer.optimize(new ObjectiveFunction(func), new InitialGuess(initParameters), new MaxEval(100000), GoalType.MINIMIZE);
double[] fittedParamValues = pvp.getPoint();
double fitted_center_i = fittedParamValues[PARAM_INDEX_CENTER_I];
double fitted_center_j = fittedParamValues[PARAM_INDEX_CENTER_J];
double fitted_radius2 = fittedParamValues[PARAM_INDEX_RADIUS_SQUARED];
double fitted_K = fittedParamValues[PARAM_INDEX_K];
double fitted_high = fittedParamValues[PARAM_INDEX_HIGH];
double objectiveFunctionValue = pvp.getValue();
return new GaussianFitResults(fitted_center_i, fitted_center_j, fitted_radius2, fitted_K, fitted_high, objectiveFunctionValue);
}
use of org.apache.commons.math3.optim.PointValuePair in project GDSC-SMLM by aherbert.
the class PCPALMFitting method fitClusteredModel.
/**
* Fits the correlation curve with r>0 to the clustered model using the estimated density and precision. Parameters
* must be fit within a tolerance of the starting values.
*
* @param gr
* @param sigmaS
* The estimated precision
* @param proteinDensity
* The estimated protein density
* @return The fitted parameters [precision, density, clusterRadius, clusterDensity]
*/
private double[] fitClusteredModel(double[][] gr, double sigmaS, double proteinDensity, String resultColour) {
final ClusteredModelFunctionGradient function = new ClusteredModelFunctionGradient();
clusteredModel = function;
log("Fitting %s: Estimated precision = %f nm, estimated protein density = %g um^-2", clusteredModel.getName(), sigmaS, proteinDensity * 1e6);
clusteredModel.setLogging(true);
for (int i = offset; i < gr[0].length; i++) {
// Only fit the curve above the estimated resolution (points below it will be subject to error)
if (gr[0][i] > sigmaS * fitAboveEstimatedPrecision)
clusteredModel.addPoint(gr[0][i], gr[1][i]);
}
double[] parameters;
// The model is: sigma, density, range, amplitude
double[] initialSolution = new double[] { sigmaS, proteinDensity, sigmaS * 5, 1 };
int evaluations = 0;
// Constrain the fitting to be close to the estimated precision (sigmaS) and protein density.
// LVM fitting does not support constrained fitting so use a bounded optimiser.
SumOfSquaresModelFunction clusteredModelMulti = new SumOfSquaresModelFunction(clusteredModel);
double[] x = clusteredModelMulti.x;
// Put some bounds around the initial guess. Use the fitting tolerance (in %) if provided.
double limit = (fittingTolerance > 0) ? 1 + fittingTolerance / 100 : 2;
double[] lB = new double[] { initialSolution[0] / limit, initialSolution[1] / limit, 0, 0 };
// The amplitude and range should not extend beyond the limits of the g(r) curve.
double[] uB = new double[] { initialSolution[0] * limit, initialSolution[1] * limit, Maths.max(x), Maths.max(gr[1]) };
log("Fitting %s using a bounded search: %s < precision < %s & %s < density < %s", clusteredModel.getName(), Utils.rounded(lB[0], 4), Utils.rounded(uB[0], 4), Utils.rounded(lB[1] * 1e6, 4), Utils.rounded(uB[1] * 1e6, 4));
PointValuePair constrainedSolution = runBoundedOptimiser(gr, initialSolution, lB, uB, clusteredModelMulti);
if (constrainedSolution == null)
return null;
parameters = constrainedSolution.getPointRef();
evaluations = boundedEvaluations;
// Refit using a LVM
if (useLSE) {
log("Re-fitting %s using a gradient optimisation", clusteredModel.getName());
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
Optimum lvmSolution;
try {
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(parameters).target(function.getY()).weight(new DiagonalMatrix(function.getWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
lvmSolution = optimizer.optimize(problem);
evaluations += lvmSolution.getEvaluations();
double ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
if (ss < constrainedSolution.getValue()) {
log("Re-fitting %s improved the SS from %s to %s (-%s%%)", clusteredModel.getName(), Utils.rounded(constrainedSolution.getValue(), 4), Utils.rounded(ss, 4), Utils.rounded(100 * (constrainedSolution.getValue() - ss) / constrainedSolution.getValue(), 4));
parameters = lvmSolution.getPoint().toArray();
}
} catch (TooManyIterationsException e) {
log("Failed to re-fit %s: Too many iterations (%s)", clusteredModel.getName(), e.getMessage());
} catch (ConvergenceException e) {
log("Failed to re-fit %s: %s", clusteredModel.getName(), e.getMessage());
}
}
clusteredModel.setLogging(false);
// Ensure the width is positive
parameters[0] = Math.abs(parameters[0]);
//parameters[2] = Math.abs(parameters[2]);
double ss = 0;
double[] obs = clusteredModel.getY();
double[] exp = clusteredModel.value(parameters);
for (int i = 0; i < obs.length; i++) ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
ic2 = Maths.getAkaikeInformationCriterionFromResiduals(ss, clusteredModel.size(), parameters.length);
final double fitSigmaS = parameters[0];
final double fitProteinDensity = parameters[1];
//The radius of the cluster domain
final double domainRadius = parameters[2];
//The density of the cluster domain
final double domainDensity = parameters[3];
// This is from the PC-PALM paper. However that paper fits the g(r)protein exponential convolved in 2D
// with the g(r)PSF. In this method we have just fit the exponential
final double nCluster = 2 * domainDensity * Math.PI * domainRadius * domainRadius * fitProteinDensity;
double e1 = parameterDrift(sigmaS, fitSigmaS);
double e2 = parameterDrift(proteinDensity, fitProteinDensity);
log(" %s fit: SS = %f. cAIC = %f. %d evaluations", clusteredModel.getName(), ss, ic2, evaluations);
log(" %s parameters:", clusteredModel.getName());
log(" Average precision = %s nm (%s%%)", Utils.rounded(fitSigmaS, 4), Utils.rounded(e1, 4));
log(" Average protein density = %s um^-2 (%s%%)", Utils.rounded(fitProteinDensity * 1e6, 4), Utils.rounded(e2, 4));
log(" Domain radius = %s nm", Utils.rounded(domainRadius, 4));
log(" Domain density = %s", Utils.rounded(domainDensity, 4));
log(" nCluster = %s", Utils.rounded(nCluster, 4));
// Check the fitted parameters are within tolerance of the initial estimates
valid2 = true;
if (fittingTolerance > 0 && (Math.abs(e1) > fittingTolerance || Math.abs(e2) > fittingTolerance)) {
log(" Failed to fit %s within tolerance (%s%%): Average precision = %f nm (%s%%), average protein density = %g um^-2 (%s%%)", clusteredModel.getName(), Utils.rounded(fittingTolerance, 4), fitSigmaS, Utils.rounded(e1, 4), fitProteinDensity * 1e6, Utils.rounded(e2, 4));
valid2 = false;
}
// Check extra parameters. Domain radius should be higher than the precision. Density should be positive
if (domainRadius < fitSigmaS) {
log(" Failed to fit %s: Domain radius is smaller than the average precision (%s < %s)", clusteredModel.getName(), Utils.rounded(domainRadius, 4), Utils.rounded(fitSigmaS, 4));
valid2 = false;
}
if (domainDensity < 0) {
log(" Failed to fit %s: Domain density is negative (%s)", clusteredModel.getName(), Utils.rounded(domainDensity, 4));
valid2 = false;
}
if (ic2 > ic1) {
log(" Failed to fit %s - Information Criterion has increased %s%%", clusteredModel.getName(), Utils.rounded((100 * (ic2 - ic1) / ic1), 4));
valid2 = false;
}
addResult(clusteredModel.getName(), resultColour, valid2, fitSigmaS, fitProteinDensity, domainRadius, domainDensity, nCluster, 0, ic2);
return parameters;
}
Aggregations