use of org.apache.commons.math3.random.RandomGenerator in project GDSC-SMLM by aherbert.
the class PoissonGammaGaussianFunctionTest method fasterThan.
private void fasterThan(PoissonGammaGaussianFunction f1, PoissonGammaGaussianFunction f2) {
// Generate realistic data from the probability mass function
double[][] samples = new double[photons.length][];
for (int j = 0; j < photons.length; j++) {
int start = (int) (4 * -s);
int u = start;
StoredDataStatistics stats = new StoredDataStatistics();
while (stats.getSum() < 0.995) {
stats.add(f1.likelihood(u, photons[j]));
u++;
}
// Generate cumulative probability
double[] data = stats.getValues();
for (int i = 1; i < data.length; i++) data[i] += data[i - 1];
// Sample
RandomGenerator rand = new Well19937c();
double[] sample = new double[1000];
for (int i = 0; i < sample.length; i++) {
final double p = rand.nextDouble();
int x = 0;
while (x < data.length && data[x] < p) x++;
sample[i] = x;
}
samples[j] = sample;
}
// Warm-up
run(f1, samples, photons);
run(f2, samples, photons);
long t1 = 0;
for (int i = 0; i < 5; i++) t1 += run(f1, samples, photons);
long t2 = 0;
for (int i = 0; i < 5; i++) t2 += run(f2, samples, photons);
System.out.printf("%s %d -> %s %d = %f x\n", getName(f1), t1, getName(f2), t2, (double) t1 / t2);
}
use of org.apache.commons.math3.random.RandomGenerator in project GDSC-SMLM by aherbert.
the class PulseActivationAnalysis method simulateActivations.
private void simulateActivations(RandomDataGenerator rdg, float[][][] molecules, int c, MemoryPeakResults[] results) {
int n = molecules[c].length;
if (n == 0)
return;
// Compute desired number per frame
double umPerPixel = sim_nmPerPixel / 1000;
double um2PerPixel = umPerPixel * umPerPixel;
double area = sim_size * sim_size * um2PerPixel;
double nPerFrame = area * sim_activationDensity;
// Compute the activation probability (but set an upper limit so not all are on in every frame)
double p = Math.min(0.5, nPerFrame / n);
// Determine the other channels activation probability using crosstalk
double[] p0 = { p, p, p };
int index1, index2, c1, c2;
switch(c) {
case 0:
index1 = C12;
index2 = C13;
c1 = 1;
c2 = 2;
break;
case 1:
index1 = C21;
index2 = C23;
c1 = 0;
c2 = 2;
break;
case 2:
default:
index1 = C31;
index2 = C32;
c1 = 0;
c2 = 1;
break;
}
p0[c1] *= ct[index1];
p0[c2] *= ct[index2];
// Assume 10 frames after each channel pulse => 30 frames per cycle
double precision = sim_precision[c] / sim_nmPerPixel;
int id = c + 1;
RandomGenerator rand = rdg.getRandomGenerator();
BinomialDistribution[] bd = new BinomialDistribution[4];
for (int i = 0; i < 3; i++) bd[i] = createBinomialDistribution(rand, n, p0[i]);
int[] frames = new int[27];
for (int i = 1, j = 0; i <= 30; i++) {
if (i % 10 == 1)
// Skip specific activation frames
continue;
frames[j++] = i;
}
bd[3] = createBinomialDistribution(rand, n, p * sim_nonSpecificFrequency);
// Count the actual cross talk
int[] count = new int[3];
for (int i = 0, t = 1; i < sim_cycles; i++, t += 30) {
count[0] += simulateActivations(rdg, bd[0], molecules[c], results[c], t, precision, id);
count[1] += simulateActivations(rdg, bd[1], molecules[c], results[c], t + 10, precision, id);
count[2] += simulateActivations(rdg, bd[2], molecules[c], results[c], t + 20, precision, id);
// Add non-specific activations
if (bd[3] != null) {
for (int t2 : frames) simulateActivations(rdg, bd[3], molecules[c], results[c], t2, precision, id);
}
}
// Report simulated cross talk
double[] crosstalk = computeCrosstalk(count, c);
Utils.log("Simulated crosstalk C%s %s=>%s, C%s %s=>%s", ctNames[index1], Utils.rounded(ct[index1]), Utils.rounded(crosstalk[c1]), ctNames[index2], Utils.rounded(ct[index2]), Utils.rounded(crosstalk[c2]));
}
use of org.apache.commons.math3.random.RandomGenerator in project GDSC-SMLM by aherbert.
the class PulseActivationAnalysisTest method canLinearlyUnmix3Channels.
private void canLinearlyUnmix3Channels(int n, int m) {
RandomGenerator r = new Well19937c(30051977);
try {
for (int loop = 0; loop < 10; loop++) {
// A rough mix of each channel
double[] d = create(6, r, 100, 100);
// Total crosstalk per channel should be below 50%
double[] c = create(6, r, 0, 0.25);
// Enumerate
Iterator<int[]> it = CombinatoricsUtils.combinationsIterator(3, n);
while (it.hasNext()) {
final int[] channels = it.next();
double[] dd = new double[3];
for (int i : channels) dd[i] = d[i];
Iterator<int[]> it2 = CombinatoricsUtils.combinationsIterator(6, m);
while (it2.hasNext()) {
final int[] crosstalk = it2.next();
double[] cc = new double[6];
for (int i : crosstalk) cc[i] = c[i];
canLinearlyUnmix3Channels(dd[0], dd[1], dd[2], cc[0], cc[1], cc[2], cc[3], cc[4], cc[5]);
}
}
}
} catch (AssertionError e) {
throw new AssertionError(String.format("channels=%d, crosstalk=%d", n, m), e);
}
}
use of org.apache.commons.math3.random.RandomGenerator in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog())
return;
startLog();
log("Simulation parameters");
if (blinkingDistribution == 3) {
log(" - Clusters = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Molecules/cluster = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
log(" - p-Value = %s", Utils.rounded(p, 4));
} else {
log(" - Molecules = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Blinking rate = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
}
log(" - Average precision = %s nm", Utils.rounded(sigmaS, 4));
log(" - Clusters simulation = " + CLUSTER_SIMULATION[clusterSimulation]);
if (clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", Utils.rounded(clusterNumber, 4), Utils.rounded(clusterNumberSD, 4));
log(" - Cluster radius = %s nm", Utils.rounded(clusterRadius, 4));
}
final double nmPerPixel = 100;
double width = simulationSize * 1000.0;
// Allow a border of 3 x sigma for +/- precision
//if (blinkingRate > 1)
width -= 3 * sigmaS;
RandomGenerator randomGenerator = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
RandomDataGenerator dataGenerator = new RandomDataGenerator(randomGenerator);
UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, randomGenerator.nextInt());
molecules = new ArrayList<Molecule>(nMolecules);
// Create some dummy results since the calibration is required for later analysis
results = new MemoryPeakResults();
results.setCalibration(new gdsc.smlm.results.Calibration(nmPerPixel, 1, 100));
results.setSource(new NullSource("Molecule Simulation"));
results.begin();
int count = 0;
// Generate a sequence of coordinates
ArrayList<double[]> xyz = new ArrayList<double[]>((int) (nMolecules * 1.1));
Statistics statsRadius = new Statistics();
Statistics statsSize = new Statistics();
String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using circles
// with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A fluctuations model is
// created at T = 1.075 Tc. It is not clear exactly how the particles are distributed.
// It may be that a mask is created first using the model. The particles are placed on the mask using
// a specified density. This simulation produces a figure to show either a damped cosine function
// (circles) or an exponential (fluctuations). The number of particles in each circle may be randomly
// determined just by density. The figure does not discuss the derivation of the cluster size
// statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then the damped
// cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent to the average
// distance to the centre-of-mass of each drawn cluster, not the input cluster radius parameter (which
// is a hard upper limit on the distance to centre).
final int maskSize = lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
ArrayList<double[]> clusterCentres = new ArrayList<double[]>();
int totalSteps = 1 + (int) Math.ceil(nMolecules / clusterNumber);
if (clusterSimulation == 2 || clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
double[] centre;
IJ.showStatus("Computing clusters mask");
int roiRadius = (int) Math.round((clusterRadius * 2) / maskScale);
if (clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * Math.pow(clusterRadius / maskScale, 2)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
double cx = centre[0] / maskScale;
double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
//Utils.display("Mask", new ColorProcessor(maskSize, maskSize, mask));
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
} catch (IllegalArgumentException e) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
IJ.showProgress(1);
IJ.showStatus("");
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) clusterCentres.add(dist.next());
}
if (showClusterMask || clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null)
mask = new int[maskSize * maskSize];
else
Arrays.fill(mask, 0);
int roiRadius = (int) Math.round((clusterRadius) / maskScale);
for (double[] c : clusterCentres) {
double cx = c[0] / maskScale;
double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
// Allocate each molecule position to a parent circle so defining clusters.
int[][] clusters = new int[clusterCentres.size()][];
int[] clusterSize = new int[clusters.length];
for (int i = 0; i < nMolecules; i++) {
double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0)
continue;
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
double[] com = new double[2];
for (int n = 0; n < size; n++) {
double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) com[k] += xy[k];
}
for (int k = 0; k < 2; k++) com[k] /= size;
for (int n = 0; n < size; n++) {
double dx = xyz.get(clusters[j][n])[0] - com[0];
double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) if (mask[i] != 0)
bp.set(i, 128);
Utils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (clusterSimulation == 1 || clusterSimulation == 2) {
for (double[] clusterCentre : clusterCentres) {
int clusterN = (int) Math.round((clusterNumberSD > 0) ? dataGenerator.nextGaussian(clusterNumber, clusterNumberSD) : clusterNumber);
if (clusterN < 1)
continue;
//double[] clusterCentre = dist.next();
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
double[] com = new double[3];
int j = 0;
while (j < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
double t = 2.0 * Math.PI * randomGenerator.nextDouble();
double u = randomGenerator.nextDouble() + randomGenerator.nextDouble();
double r = clusterRadius * ((u > 1) ? 2 - u : u);
double x = r * Math.cos(t);
double y = r * Math.sin(t);
double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) com[k] += xy[k];
j++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(j);
if (j == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) com[k] /= j;
while (j > 0) {
double dx = xyz.get(xyz.size() - j)[0] - com[0];
double dy = xyz.get(xyz.size() - j)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
j--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < nMolecules; i++) xyz.add(dist.next());
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (showHistograms) {
int capacity = (int) (xyz.size() * blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int nOccurrences = getBlinks(dataGenerator, blinkingRate);
if (showHistograms)
blinks.add(nOccurrences);
final int size = molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && nOccurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (nOccurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = dataGenerator.nextGaussian(0, sigma1D);
final double dy = dataGenerator.nextGaussian(0, sigma1D);
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXY(localisationXy))
continue;
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) (x / nmPerPixel);
params[Gaussian2DFunction.Y_POSITION] = (float) (y / nmPerPixel);
results.addf(i + 1, (int) x, (int) y, 0, 0, 0, params, null);
}
if (molecules.size() > size) {
count++;
if (showHistograms) {
int newCount = molecules.size() - size;
if (newCount == 1) {
//intraDistances.add(0);
continue;
}
// Get the distance matrix between these molecules
double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < molecules.size(); jj++, y++) {
final double d2 = molecules.get(ii).distance2(molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y)
continue;
if (matrix[x][y] < linkDistance)
linkDistance = matrix[x][y];
}
// Check if this is larger
if (max < linkDistance)
max = linkDistance;
}
intraDistances.add(Math.sqrt(max));
}
}
}
results.end();
if (bp != null)
Utils.display(maskTitle, bp);
// Used for debugging
//System.out.printf(" * Molecules = %d (%d activated)\n", xyz.size(), count);
//if (clusterSimulation > 0)
// System.out.printf(" * Cluster number = %s +/- %s. Radius = %s +/- %s\n",
// Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4),
// Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", Utils.rounded((double) molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? Utils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (showHistograms) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
int p99 = intraHist[0].length - 1;
double limit1 = 0.99 * intraHist[1][p99];
double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) p99--;
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) p95--;
log(" * Mean Intra-Molecule particle linkage distance = %s nm (95%% = %s, 99%% = %s, 100%% = %s)", Utils.rounded(intraDistances.getMean(), 4), Utils.rounded(intraHist[0][p95], 4), Utils.rounded(intraHist[0][p99], 4), Utils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
use of org.apache.commons.math3.random.RandomGenerator in project gatk by broadinstitute.
the class CoverageModelParameters method generateRandomModel.
/**
* Generates random coverage model parameters.
*
* @param targetList list of targets
* @param numLatents number of latent variables
* @param seed random seed
* @param randomMeanLogBiasStandardDeviation std of mean log bias (mean is set to 0)
* @param randomBiasCovariatesStandardDeviation std of bias covariates (mean is set to 0)
* @param randomMaxUnexplainedVariance max value of unexplained variance (samples are taken from a uniform
* distribution [0, {@code randomMaxUnexplainedVariance}])
* @param initialBiasCovariatesARDCoefficients initial row vector of ARD coefficients
* @return an instance of {@link CoverageModelParameters}
*/
public static CoverageModelParameters generateRandomModel(final List<Target> targetList, final int numLatents, final long seed, final double randomMeanLogBiasStandardDeviation, final double randomBiasCovariatesStandardDeviation, final double randomMaxUnexplainedVariance, final INDArray initialBiasCovariatesARDCoefficients) {
Utils.validateArg(numLatents >= 0, "Dimension of the bias space must be non-negative");
Utils.validateArg(randomBiasCovariatesStandardDeviation >= 0, "Standard deviation of random bias covariates" + " must be non-negative");
Utils.validateArg(randomMeanLogBiasStandardDeviation >= 0, "Standard deviation of random mean log bias" + " must be non-negative");
Utils.validateArg(randomMaxUnexplainedVariance >= 0, "Max random unexplained variance must be non-negative");
Utils.validateArg(initialBiasCovariatesARDCoefficients == null || numLatents > 0 && initialBiasCovariatesARDCoefficients.length() == numLatents, "If ARD is enabled, the dimension" + " of the bias latent space must be positive and match the length of ARD coeffecient vector");
final boolean biasCovariatesEnabled = numLatents > 0;
final int numTargets = targetList.size();
final RandomGenerator rng = RandomGeneratorFactory.createRandomGenerator(new Random(seed));
/* Gaussian random for mean log bias */
final INDArray initialMeanLogBias = Nd4j.create(getNormalRandomNumbers(numTargets, 0, randomMeanLogBiasStandardDeviation, rng), new int[] { 1, numTargets });
/* Uniform random for unexplained variance */
final INDArray initialUnexplainedVariance = Nd4j.create(getUniformRandomNumbers(numTargets, 0, randomMaxUnexplainedVariance, rng), new int[] { 1, numTargets });
final INDArray initialMeanBiasCovariates;
if (biasCovariatesEnabled) {
/* Gaussian random for bias covariates */
initialMeanBiasCovariates = Nd4j.create(getNormalRandomNumbers(numTargets * numLatents, 0, randomBiasCovariatesStandardDeviation, rng), new int[] { numTargets, numLatents });
} else {
initialMeanBiasCovariates = null;
}
return new CoverageModelParameters(targetList, initialMeanLogBias, initialUnexplainedVariance, initialMeanBiasCovariates, initialBiasCovariatesARDCoefficients);
}
Aggregations