use of org.apache.commons.math3.stat.descriptive.rank.Percentile in project OpenTripPlanner by opentripplanner.
the class PropagatedTimesStore method setFromArray.
/**
* @param times for search (varying departure time), an array of travel times to each destination.
* @param includeInAverages for each iteration, whether that iteration should be included in average calculations.
* In RaptorWorker's Monte Carlo code we also include minima and maxima, which should
* not be included in averages.
* Iterations that are not included in averages are still used to determine extrema.
*/
public void setFromArray(int[][] times, boolean[] includeInAverages, ConfidenceCalculationMethod confidenceCalculationMethod) {
if (times.length == 0)
// nothing to do
return;
// assume array is rectangular
int nTargets = times[0].length;
// cache random numbers. This should be fine as we're mixing it with the number of minutes
// at which each destination is accessible, which is sometimes not 120, as well as the stop
// position in the list (note that we have cleverly chosen a number which is a prime
// so is not divisible by the number of iterations on the bootstrap). Finally recall that
// the maximum number of times we're sampling from is generally 120 and we modulo this,
// so the pigeonhole principle applies.
// this is effectively a "random number generator" with phase 10007
int[] randomNumbers = random.ints().limit(10007).map(Math::abs).toArray();
int nextRandom = 0;
int effectiveIterations = 0;
for (int i = 0; i < includeInAverages.length; i++) {
if (includeInAverages[i])
effectiveIterations++;
}
// loop over targets on the outside so we can bootstrap
TARGETS: for (int target = 0; target < nTargets; target++) {
// compute the average
int sum = 0;
int count = 0;
TIntList timeList = new TIntArrayList();
TIntList avgList = new TIntArrayList();
ITERATIONS: for (int i = 0; i < times.length; i++) {
if (times[i][target] == RaptorWorker.UNREACHED)
continue ITERATIONS;
if (includeInAverages[i]) {
avgList.add(times[i][target]);
sum += times[i][target];
count++;
}
timeList.add(times[i][target]);
}
// never reachable
if (count == 0)
continue TARGETS;
// wait times as well.
if (count >= effectiveIterations * req.reachabilityThreshold)
avgs[target] = sum / count;
// TODO: correctly handle partial accessibility for bootstrap and percentile options.
switch(confidenceCalculationMethod) {
case BOOTSTRAP:
// now bootstrap out a 95% confidence interval on the time
int[] bootMeans = new int[N_BOOTSTRAPS];
// prevent overflow
nextRandom += N_BOOTSTRAPS * count % randomNumbers.length;
final int randOff = nextRandom;
final int finalCount = count;
IntStream.range(0, N_BOOTSTRAPS).parallel().forEach(boot -> {
int bsum = 0;
// sample from the Monte Carlo distribution with replacement
for (int iter = 0; iter < finalCount; iter++) {
bsum += avgList.get(randomNumbers[(randOff + boot * iter) % randomNumbers.length] % avgList.size());
// bsum += timeList.get(random.nextInt(count));
}
bootMeans[boot] = bsum / finalCount;
});
Arrays.sort(bootMeans);
// 2.5 percentile of distribution of means
mins[target] = bootMeans[N_BOOTSTRAPS / 40];
// 97.5 percentile of distribution of means
maxs[target] = bootMeans[N_BOOTSTRAPS - N_BOOTSTRAPS / 40];
break;
case PERCENTILE:
timeList.sort();
mins[target] = timeList.get(timeList.size() / 40);
maxs[target] = timeList.get(39 * timeList.size() / 40);
break;
case NONE:
mins[target] = maxs[target] = avgs[target];
break;
case MIN_MAX:
default:
mins[target] = timeList.min();
// NB not using count here as it doesn't count iterations that are not included in averages
if (timeList.size() == times.length)
maxs[target] = timeList.max();
break;
}
}
}
use of org.apache.commons.math3.stat.descriptive.rank.Percentile in project GDSC-SMLM by aherbert.
the class TraceLengthAnalysis method run.
@Override
public void run(String arg) {
SmlmUsageTracker.recordPlugin(this.getClass(), arg);
if (MemoryPeakResults.isMemoryEmpty()) {
IJ.error(TITLE, "No localisations in memory");
return;
}
if (!showDialog()) {
return;
}
// Load the results
MemoryPeakResults results = ResultsManager.loadInputResults(settings.inputOption, false, null, null);
if (MemoryPeakResults.isEmpty(results)) {
IJ.error(TITLE, "No results could be loaded");
return;
}
try {
distanceConverter = results.getDistanceConverter(DistanceUnit.UM);
timeConverter = results.getTimeConverter(TimeUnit.SECOND);
} catch (final Exception ex) {
IJ.error(TITLE, "Cannot convert units to um or seconds: " + ex.getMessage());
return;
}
// Get the localisation error (4s^2) in raw units^2
double precision = 0;
try {
final PrecisionResultProcedure p = new PrecisionResultProcedure(results);
p.getPrecision();
// Precision in nm using the median
precision = new Percentile().evaluate(p.precisions, 50);
// Convert from nm to um to raw units
final double rawPrecision = distanceConverter.convertBack(precision / 1e3);
// Get the localisation error (4s^2) in units^2
error = 4 * rawPrecision * rawPrecision;
} catch (final Exception ex) {
ImageJUtils.log(TITLE + " - Unable to compute precision: " + ex.getMessage());
}
// Analyse the track lengths
results = results.copy();
results.sort(IdFramePeakResultComparator.INSTANCE);
// Ensure the first result triggers an id change
lastid = results.getFirst().getId() - 1;
results.forEach(this::processTrackLength);
// For the final track
store();
msds = msdList.toArray();
lengths = lengthList.toArray();
ids = idList.toArray();
final int[] limits = MathUtils.limits(lengths);
h1 = new int[limits[1] + 1];
h2 = new int[h1.length];
x1 = SimpleArrayUtils.newArray(h1.length, 0, 1f);
y1 = new float[x1.length];
y2 = new float[x1.length];
// Sort by MSD
final int[] indices = SimpleArrayUtils.natural(msds.length);
SortUtils.sortIndices(indices, msds, false);
final double[] msds2 = msds.clone();
final int[] lengths2 = lengths.clone();
final int[] ids2 = ids.clone();
for (int i = 0; i < indices.length; i++) {
msds[i] = msds2[indices[i]];
lengths[i] = lengths2[indices[i]];
ids[i] = ids2[indices[i]];
}
// Interactive analysis
final NonBlockingExtendedGenericDialog gd = new NonBlockingExtendedGenericDialog(TITLE);
ImageJUtils.addMessage(gd, "Split traces into fixed or moving using the track diffusion coefficient (D).\n" + "Localisation error has been subtracted from jumps (%s nm).", MathUtils.rounded(precision));
final Statistics s = Statistics.create(msds);
final double av = s.getMean();
final String msg = String.format("Average D per track = %s um^2/s", MathUtils.rounded(av));
gd.addMessage(msg);
// Histogram the diffusion coefficients
final WindowOrganiser wo = new WindowOrganiser();
final HistogramPlot histogramPlot = new HistogramPlotBuilder("Trace diffusion coefficient", StoredData.create(msds), "D (um^2/s)").setRemoveOutliersOption(1).setPlotLabel(msg).build();
histogramPlot.show(wo);
final double[] xvalues = histogramPlot.getPlotXValues();
final double min = xvalues[0];
final double max = xvalues[xvalues.length - 1];
// see if we can build a nice slider range from the histogram limits
if (max - min < 5) {
// Because sliders are used when the range is <5 and floating point
gd.addSlider("D_threshold", min, max, settings.msdThreshold);
} else {
gd.addNumericField("D_threshold", settings.msdThreshold, 2, 6, "um^2/s");
}
gd.addCheckbox("Normalise", settings.normalise);
gd.addDialogListener((gd1, event) -> {
settings.msdThreshold = gd1.getNextNumber();
settings.normalise = gd1.getNextBoolean();
update();
return true;
});
if (ImageJUtils.isShowGenericDialog()) {
draw(wo);
wo.tile();
}
gd.setOKLabel("Save datasets");
gd.setCancelLabel("Close");
gd.addHelp(HelpUrls.getUrl("trace-length-analysis"));
gd.showDialog();
if (gd.wasCanceled()) {
return;
}
// Sort by ID
final PeakResult[] list = results.toArray();
Arrays.sort(list, IdFramePeakResultComparator.INSTANCE);
createResults(results, "Fixed", 0, lastIndex, list);
createResults(results, "Moving", lastIndex, msds.length, list);
}
use of org.apache.commons.math3.stat.descriptive.rank.Percentile in project GDSC-SMLM by aherbert.
the class PcPalmMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog()) {
return;
}
startLog();
log("Simulation parameters");
if (settings.blinkingDistribution == 3) {
log(" - Clusters = %d", settings.numberOfMolecules);
log(" - Simulation size = %s um", MathUtils.rounded(settings.simulationSize, 4));
log(" - Molecules/cluster = %s", MathUtils.rounded(settings.blinkingRate, 4));
log(" - Blinking distribution = %s", Settings.BLINKING_DISTRIBUTION[settings.blinkingDistribution]);
log(" - p-Value = %s", MathUtils.rounded(settings.pvalue, 4));
} else {
log(" - Molecules = %d", settings.numberOfMolecules);
log(" - Simulation size = %s um", MathUtils.rounded(settings.simulationSize, 4));
log(" - Blinking rate = %s", MathUtils.rounded(settings.blinkingRate, 4));
log(" - Blinking distribution = %s", Settings.BLINKING_DISTRIBUTION[settings.blinkingDistribution]);
}
log(" - Average precision = %s nm", MathUtils.rounded(settings.sigmaS, 4));
log(" - Clusters simulation = " + Settings.CLUSTER_SIMULATION[settings.clusterSimulation]);
if (settings.clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", MathUtils.rounded(settings.clusterNumber, 4), MathUtils.rounded(settings.clusterNumberStdDev, 4));
log(" - Cluster radius = %s nm", MathUtils.rounded(settings.clusterRadius, 4));
}
final double nmPerPixel = 100;
final double width = settings.simulationSize * 1000.0;
final UniformRandomProvider rng = UniformRandomProviders.create();
final UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, rng.nextInt());
final NormalizedGaussianSampler gauss = SamplerUtils.createNormalizedGaussianSampler(rng);
settings.molecules = new ArrayList<>(settings.numberOfMolecules);
// Create some dummy results since the calibration is required for later analysis
settings.results = new MemoryPeakResults(PsfHelper.create(PSFType.CUSTOM));
settings.results.setCalibration(CalibrationHelper.create(nmPerPixel, 1, 100));
settings.results.setSource(new NullSource("Molecule Simulation"));
settings.results.begin();
int count = 0;
// Generate a sequence of coordinates
final ArrayList<double[]> xyz = new ArrayList<>((int) (settings.numberOfMolecules * 1.1));
final Statistics statsRadius = new Statistics();
final Statistics statsSize = new Statistics();
final String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (settings.clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using
// circles with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A
// fluctuations model is created at T = 1.075 Tc. It is not clear exactly how the particles
// are distributed.
// It may be that a mask is created first using the model. The particles are placed on the
// mask using a specified density. This simulation produces a figure to show either a damped
// cosine function (circles) or an exponential (fluctuations). The number of particles in
// each circle may be randomly determined just by density. The figure does not discuss the
// derivation of the cluster size statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then
// the damped cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent
// to the average distance to the centre-of-mass of each drawn cluster, not the input cluster
// radius parameter (which is a hard upper limit on the distance to centre).
final int maskSize = settings.lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
final ArrayList<double[]> clusterCentres = new ArrayList<>();
int totalSteps = 1 + (int) Math.ceil(settings.numberOfMolecules / settings.clusterNumber);
if (settings.clusterSimulation == 2 || settings.clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, rng);
double[] centre;
IJ.showStatus("Computing clusters mask");
final int roiRadius = (int) Math.round((settings.clusterRadius * 2) / maskScale);
if (settings.clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * MathUtils.pow2(settings.clusterRadius / maskScale)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
final double cx = centre[0] / maskScale;
final double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, rng);
} catch (final IllegalArgumentException ex) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
ImageJUtils.finished();
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) {
clusterCentres.add(dist.next());
}
}
final double scaledRadius = settings.clusterRadius / maskScale;
if (settings.showClusterMask || settings.clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null) {
mask = new int[maskSize * maskSize];
} else {
Arrays.fill(mask, 0);
}
final int roiRadius = (int) Math.round(scaledRadius);
for (final double[] c : clusterCentres) {
final double cx = c[0] / maskScale;
final double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (settings.clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
final MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, rng);
// Allocate each molecule position to a parent circle so defining clusters.
final int[][] clusters = new int[clusterCentres.size()][];
final int[] clusterSize = new int[clusters.length];
for (int i = 0; i < settings.numberOfMolecules; i++) {
final double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
final double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0) {
continue;
}
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
final double[] com = new double[2];
for (int n = 0; n < size; n++) {
final double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) {
com[k] += xy[k];
}
}
for (int k = 0; k < 2; k++) {
com[k] /= size;
}
for (int n = 0; n < size; n++) {
final double dx = xyz.get(clusters[j][n])[0] - com[0];
final double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (settings.showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) {
if (mask[i] != 0) {
bp.set(i, 128);
}
}
ImageJUtils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (settings.clusterSimulation == 1 || settings.clusterSimulation == 2) {
for (final double[] clusterCentre : clusterCentres) {
final int clusterN = (int) Math.round((settings.clusterNumberStdDev > 0) ? settings.clusterNumber + gauss.sample() * settings.clusterNumberStdDev : settings.clusterNumber);
if (clusterN < 1) {
continue;
}
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
final double[] com = new double[3];
int size = 0;
while (size < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
final double t = 2.0 * Math.PI * rng.nextDouble();
final double u = rng.nextDouble() + rng.nextDouble();
final double r = settings.clusterRadius * ((u > 1) ? 2 - u : u);
final double x = r * Math.cos(t);
final double y = r * Math.sin(t);
final double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) {
com[k] += xy[k];
}
size++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) {
com[k] /= size;
}
while (size > 0) {
final double dx = xyz.get(xyz.size() - size)[0] - com[0];
final double dy = xyz.get(xyz.size() - size)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
size--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < settings.numberOfMolecules; i++) {
xyz.add(dist.next());
}
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = settings.sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (settings.showHistograms) {
final int capacity = (int) (xyz.size() * settings.blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
final Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int occurrences = getBlinks(rng, settings.blinkingRate);
if (blinks != null) {
blinks.add(occurrences);
}
final int size = settings.molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && occurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (occurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = gauss.sample() * sigma1D;
final double dy = gauss.sample() * sigma1D;
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXy(localisationXy)) {
continue;
}
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
settings.molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
final float xx = (float) (x / nmPerPixel);
final float yy = (float) (y / nmPerPixel);
final float[] params = PeakResult.createParams(0, 0, xx, yy, 0);
settings.results.add(i + 1, (int) xx, (int) yy, 0, 0, 0, 0, params, null);
}
if (settings.molecules.size() > size) {
count++;
if (intraDistances != null) {
final int newCount = settings.molecules.size() - size;
if (newCount == 1) {
// No intra-molecule distances
continue;
}
// Get the distance matrix between these molecules
final double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < settings.molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < settings.molecules.size(); jj++, y++) {
final double d2 = settings.molecules.get(ii).distance2(settings.molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y) {
continue;
}
if (matrix[x][y] < linkDistance) {
linkDistance = matrix[x][y];
}
}
// Check if this is larger
if (max < linkDistance) {
max = linkDistance;
}
}
intraDistances.add(Math.sqrt(max));
}
}
}
settings.results.end();
if (bp != null) {
final ImagePlus imp = ImageJUtils.display(maskTitle, bp);
final Calibration cal = imp.getCalibration();
cal.setUnit("nm");
cal.pixelWidth = cal.pixelHeight = maskScale;
}
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", MathUtils.rounded((double) settings.molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? MathUtils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (intraDistances != null) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
final double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
// Will not be null as we requested a non-integer histogram.
int p99 = intraHist[0].length - 1;
final double limit1 = 0.99 * intraHist[1][p99];
final double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) {
p99--;
}
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) {
p95--;
}
log(" * Mean Intra-Molecule particle linkage distance = %s nm" + " (95%% = %s, 99%% = %s, 100%% = %s)", MathUtils.rounded(intraDistances.getMean(), 4), MathUtils.rounded(intraHist[0][p95], 4), MathUtils.rounded(intraHist[0][p99], 4), MathUtils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (settings.distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (settings.clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", MathUtils.rounded(statsSize.getMean(), 4), MathUtils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", MathUtils.rounded(statsRadius.getMean(), 4), MathUtils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
use of org.apache.commons.math3.stat.descriptive.rank.Percentile in project GDSC-SMLM by aherbert.
the class PcPalmMolecules method performDistanceAnalysis.
private void performDistanceAnalysis(double[][] intraHist, int p99) {
// We want to know the fraction of distances between molecules at the 99th percentile
// that are intra- rather than inter-molecule.
// Do single linkage clustering of closest pair at this distance and count the number of
// links that are inter and intra.
// Convert molecules for clustering
final ArrayList<ClusterPoint> points = new ArrayList<>(settings.molecules.size());
for (final Molecule m : settings.molecules) {
// Precision was used to store the molecule ID
points.add(ClusterPoint.newClusterPoint((int) m.precision, m.x, m.y, m.photons));
}
final ClusteringEngine engine = new ClusteringEngine(Prefs.getThreads(), ClusteringAlgorithm.PARTICLE_SINGLE_LINKAGE, SimpleImageJTrackProgress.getInstance());
IJ.showStatus("Clustering to check inter-molecule distances");
engine.setTrackJoins(true);
final List<Cluster> clusters = engine.findClusters(points, intraHist[0][p99]);
IJ.showStatus("");
if (clusters != null) {
final double[] intraIdDistances = engine.getIntraIdDistances();
final double[] interIdDistances = engine.getInterIdDistances();
final int all = interIdDistances.length + intraIdDistances.length;
log(" * Fraction of inter-molecule particle linkage @ %s nm = %s %%", MathUtils.rounded(intraHist[0][p99], 4), (all > 0) ? MathUtils.rounded(100.0 * interIdDistances.length / all, 4) : "0");
// Show a double cumulative histogram plot
final double[][] intraIdHist = MathUtils.cumulativeHistogram(intraIdDistances, false);
final double[][] interIdHist = MathUtils.cumulativeHistogram(interIdDistances, false);
// Plot
final String title = TITLE + " molecule linkage distance";
final Plot plot = new Plot(title, "Distance", "Frequency");
plot.addPoints(intraIdHist[0], intraIdHist[1], Plot.LINE);
double max = (intraIdHist[1].length > 0) ? intraIdHist[1][intraIdHist[1].length - 1] : 0;
if (interIdHist[1].length > 0) {
max = Math.max(max, interIdHist[1][interIdHist[1].length - 1]);
}
plot.setLimits(0, intraIdHist[0][intraIdHist[0].length - 1], 0, max);
plot.setColor(Color.blue);
plot.addPoints(interIdHist[0], interIdHist[1], Plot.LINE);
plot.setColor(Color.black);
plot.addLegend("Intra-molecule\nInter-molecule");
ImageJUtils.display(title, plot);
} else {
log("Aborted clustering to check inter-molecule distances");
}
}
use of org.apache.commons.math3.stat.descriptive.rank.Percentile in project jmeter by apache.
the class DescriptiveStatisticsFactory method createDescriptiveStatistics.
public static DescriptiveStatistics createDescriptiveStatistics(int windowSize) {
DescriptiveStatistics statistics = new DescriptiveStatistics(windowSize);
statistics.setPercentileImpl(new Percentile().withEstimationType(ESTIMATION_TYPE));
return statistics;
}
Aggregations