use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class AiryPSFModel method createAiryDistribution.
private static synchronized void createAiryDistribution() {
if (spline != null)
return;
final double relativeAccuracy = 1e-4;
final double absoluteAccuracy = 1e-8;
final int minimalIterationCount = 3;
final int maximalIterationCount = 32;
UnivariateIntegrator integrator = new SimpsonIntegrator(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
UnivariateFunction f = new UnivariateFunction() {
public double value(double x) {
//return AiryPattern.intensity(x) * 2 * Math.PI * x / (4 * Math.PI);
return AiryPattern.intensity(x) * 0.5 * x;
}
};
// Integrate up to a set number of dark rings
int samples = 1000;
final double step = RINGS[SAMPLE_RINGS] / samples;
double to = 0, from = 0;
r = new double[samples + 1];
sum = new double[samples + 1];
for (int i = 1; i < sum.length; i++) {
from = to;
r[i] = to = step * i;
sum[i] = integrator.integrate(2000, f, from, to) + sum[i - 1];
}
if (DoubleEquality.relativeError(sum[samples], POWER[SAMPLE_RINGS]) > 1e-3)
throw new RuntimeException("Failed to create the Airy distribution");
SplineInterpolator si = new SplineInterpolator();
spline = si.interpolate(sum, r);
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class GradientCalculatorSpeedTest method mleGradientCalculatorComputesLikelihood.
@Test
public void mleGradientCalculatorComputesLikelihood() {
//@formatter:off
NonLinearFunction func = new NonLinearFunction() {
double u;
public void initialise(double[] a) {
u = a[0];
}
public int[] gradientIndices() {
return null;
}
public double eval(int x, double[] dyda) {
return 0;
}
public double eval(int x) {
return u;
}
public double eval(int x, double[] dyda, double[] w) {
return 0;
}
public double evalw(int x, double[] w) {
return 0;
}
public boolean canComputeWeights() {
return false;
}
public int getNumberOfGradients() {
return 0;
}
};
//@formatter:on
int[] xx = Utils.newArray(100, 0, 1);
double[] xxx = Utils.newArray(100, 0, 1.0);
for (double u : new double[] { 0.79, 2.5, 5.32 }) {
double ll = 0;
PoissonDistribution pd = new PoissonDistribution(u);
for (int x : xx) {
double o = MLEGradientCalculator.likelihood(u, x);
double e = pd.probability(x);
Assert.assertEquals("likelihood", e, o, e * 1e-10);
o = MLEGradientCalculator.logLikelihood(u, x);
e = pd.logProbability(x);
Assert.assertEquals("log likelihood", e, o, Math.abs(e) * 1e-10);
ll += e;
}
MLEGradientCalculator gc = new MLEGradientCalculator(1);
double o = gc.logLikelihood(xxx, new double[] { u }, func);
Assert.assertEquals("sum log likelihood", ll, o, Math.abs(ll) * 1e-10);
}
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class SCMOSLikelihoodWrapperTest method instanceLikelihoodMatches.
private void instanceLikelihoodMatches(final double mu, boolean test) {
// Determine upper limit for a Poisson
int limit = new PoissonDistribution(mu).inverseCumulativeProbability(P_LIMIT);
// Map to observed values using the gain and offset
double max = limit * G;
double step = 0.1;
int n = (int) Math.ceil(max / step);
// Evaluate all values from (zero+offset) to large n
double[] k = Utils.newArray(n, O, step);
double[] a = new double[0];
double[] gradient = new double[0];
float[] var = newArray(n, VAR);
float[] g = newArray(n, G);
float[] o = newArray(n, O);
NonLinearFunction nlf = new NonLinearFunction() {
public void initialise(double[] a) {
}
public int[] gradientIndices() {
return new int[0];
}
public double eval(int x, double[] dyda, double[] w) {
return 0;
}
public double eval(int x) {
return mu;
}
public double eval(int x, double[] dyda) {
return mu;
}
public boolean canComputeWeights() {
return false;
}
public double evalw(int x, double[] w) {
return 0;
}
public int getNumberOfGradients() {
return 0;
}
};
SCMOSLikelihoodWrapper f = new SCMOSLikelihoodWrapper(nlf, a, k, n, var, g, o);
double total = 0, p = 0;
double maxp = 0;
int maxi = 0;
for (int i = 0; i < n; i++) {
double nll = f.computeLikelihood(i);
double nll2 = f.computeLikelihood(gradient, i);
double nll3 = SCMOSLikelihoodWrapper.negativeLogLikelihood(mu, var[i], g[i], o[i], k[i]);
total += nll;
Assert.assertEquals("computeLikelihood @" + i, nll3, nll, nll * 1e-10);
Assert.assertEquals("computeLikelihood+gradient @" + i, nll3, nll2, nll * 1e-10);
double pp = FastMath.exp(-nll);
if (maxp < pp) {
maxp = pp;
maxi = i;
//System.out.printf("mu=%f, e=%f, k=%f, pp=%f\n", mu, mu * G + O, k[i], pp);
}
p += pp * step;
}
// Expected max of the distribution is the mode of the Poisson distribution.
// This has two modes for integer input counts. We take the mean of those.
// https://en.wikipedia.org/wiki/Poisson_distribution
// Note that the shift of VAR/(G*G) is a constant applied to both the expected and
// observed values and consequently cancels when predicting the max, i.e. we add
// a constant count to the observed values and shift the distribution by the same
// constant. We can thus compute the mode for the unshifted distribution.
double lambda = mu;
double mode1 = Math.floor(lambda);
double mode2 = Math.ceil(lambda) - 1;
// Scale to observed values
double kmax = ((mode1 + mode2) * 0.5) * G + O;
//System.out.printf("mu=%f, p=%f, maxp=%f @ %f (expected=%f %f)\n", mu, p, maxp, k[maxi], kmax, kmax - k[maxi]);
Assert.assertEquals("k-max", kmax, k[maxi], kmax * 1e-3);
if (test) {
Assert.assertEquals(String.format("mu=%f", mu), P_LIMIT, p, 0.02);
}
// Check the function can compute the same total
double delta = total * 1e-10;
double sum, sum2;
sum = f.computeLikelihood();
sum2 = f.computeLikelihood(gradient);
Assert.assertEquals("computeLikelihood", total, sum, delta);
Assert.assertEquals("computeLikelihood with gradient", total, sum2, delta);
// Check the function can compute the same total after duplication
f = f.build(nlf, a);
sum = f.computeLikelihood();
sum2 = f.computeLikelihood(gradient);
Assert.assertEquals("computeLikelihood", total, sum, delta);
Assert.assertEquals("computeLikelihood with gradient", total, sum2, delta);
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class PoissonLikelihoodWrapperTest method cumulativeProbabilityIsOneFromLikelihood.
private void cumulativeProbabilityIsOneFromLikelihood(final double mu) {
// Determine upper limit for a Poisson
int limit = new PoissonDistribution(mu).inverseCumulativeProbability(0.999);
// Expand to allow for the gain
int n = (int) Math.ceil(limit / alpha);
// Evaluate all values from zero to large n
double[] k = Utils.newArray(n, 0, 1.0);
double[] a = new double[0];
double[] g = new double[0];
NonLinearFunction nlf = new NonLinearFunction() {
public void initialise(double[] a) {
}
public int[] gradientIndices() {
return new int[0];
}
public double eval(int x, double[] dyda, double[] w) {
return 0;
}
public double eval(int x) {
return mu / alpha;
}
public double eval(int x, double[] dyda) {
return mu / alpha;
}
public boolean canComputeWeights() {
return false;
}
public double evalw(int x, double[] w) {
return 0;
}
public int getNumberOfGradients() {
return 0;
}
};
PoissonLikelihoodWrapper f = new PoissonLikelihoodWrapper(nlf, a, Arrays.copyOf(k, n), n, alpha);
// Keep evaluating up until no difference
final double changeTolerance = 1e-6;
double total = 0;
double p = 0;
int i = 0;
while (i < n) {
double nll = f.computeLikelihood(i);
double nll2 = f.computeLikelihood(g, i);
i++;
Assert.assertEquals("computeLikelihood(i)", nll, nll2, 1e-10);
total += nll;
double pp = FastMath.exp(-nll);
//System.out.printf("mu=%f, o=%f, i=%d, pp=%f\n", mu, mu / alpha, i, pp);
p += pp;
if (p > 0.5 && pp / p < changeTolerance)
break;
}
System.out.printf("mu=%f, limit=%d, p=%f\n", mu, limit, p);
Assert.assertEquals(String.format("mu=%f", mu), 1, p, 0.02);
// Check the function can compute the same total
f = new PoissonLikelihoodWrapper(nlf, a, k, i, alpha);
double sum = f.computeLikelihood();
double sum2 = f.computeLikelihood(g);
double delta = total * 1e-10;
Assert.assertEquals("computeLikelihood", total, sum, delta);
Assert.assertEquals("computeLikelihood with gradient", total, sum2, delta);
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class FIRE method runQEstimation.
private void runQEstimation() {
IJ.showStatus(TITLE + " ...");
if (!showQEstimationInputDialog())
return;
MemoryPeakResults results = ResultsManager.loadInputResults(inputOption, false);
if (results == null || results.size() == 0) {
IJ.error(TITLE, "No results could be loaded");
return;
}
if (results.getCalibration() == null) {
IJ.error(TITLE, "The results are not calibrated");
return;
}
results = cropToRoi(results);
if (results.size() < 2) {
IJ.error(TITLE, "No results within the crop region");
return;
}
initialise(results, null);
// We need localisation precision.
// Build a histogram of the localisation precision.
// Get the initial mean and SD and plot as a Gaussian.
PrecisionHistogram histogram = calculatePrecisionHistogram();
if (histogram == null) {
IJ.error(TITLE, "No localisation precision available.\n \nPlease choose " + PrecisionMethod.FIXED + " and enter a precision mean and SD.");
return;
}
StoredDataStatistics precision = histogram.precision;
//String name = results.getName();
double fourierImageScale = SCALE_VALUES[imageScaleIndex];
int imageSize = IMAGE_SIZE_VALUES[imageSizeIndex];
// Create the image and compute the numerator of FRC.
// Do not use the signal so results.size() is the number of localisations.
IJ.showStatus("Computing FRC curve ...");
FireImages images = createImages(fourierImageScale, imageSize, false);
// DEBUGGING - Save the two images to disk. Load the images into the Matlab
// code that calculates the Q-estimation and make this plugin match the functionality.
//IJ.save(new ImagePlus("i1", images.ip1), "/scratch/i1.tif");
//IJ.save(new ImagePlus("i2", images.ip2), "/scratch/i2.tif");
FRC frc = new FRC();
frc.progress = progress;
frc.setFourierMethod(fourierMethod);
frc.setSamplingMethod(samplingMethod);
frc.setPerimeterSamplingFactor(perimeterSamplingFactor);
FRCCurve frcCurve = frc.calculateFrcCurve(images.ip1, images.ip2, images.nmPerPixel);
if (frcCurve == null) {
IJ.error(TITLE, "Failed to compute FRC curve");
return;
}
IJ.showStatus("Running Q-estimation ...");
// Note:
// The method implemented here is based on Matlab code provided by Bernd Rieger.
// The idea is to compute the spurious correlation component of the FRC Numerator
// using an initial estimate of distribution of the localisation precision (assumed
// to be Gaussian). This component is the contribution of repeat localisations of
// the same molecule to the numerator and is modelled as an exponential decay
// (exp_decay). The component is scaled by the Q-value which
// is the average number of times a molecule is seen in addition to the first time.
// At large spatial frequencies the scaled component should match the numerator,
// i.e. at high resolution (low FIRE number) the numerator is made up of repeat
// localisations of the same molecule and not actual structure in the image.
// The best fit is where the numerator equals the scaled component, i.e. num / (q*exp_decay) == 1.
// The FRC Numerator is plotted and Q can be determined by
// adjusting Q and the precision mean and SD to maximise the cost function.
// This can be done interactively by the user with the effect on the FRC curve
// dynamically updated and displayed.
// Compute the scaled FRC numerator
double qNorm = (1 / frcCurve.mean1 + 1 / frcCurve.mean2);
double[] frcnum = new double[frcCurve.getSize()];
for (int i = 0; i < frcnum.length; i++) {
FRCCurveResult r = frcCurve.get(i);
frcnum[i] = qNorm * r.getNumerator() / r.getNumberOfSamples();
}
// Compute the spatial frequency and the region for curve fitting
double[] q = FRC.computeQ(frcCurve, false);
int low = 0, high = q.length;
while (high > 0 && q[high - 1] > maxQ) high--;
while (low < q.length && q[low] < minQ) low++;
// Require we fit at least 10% of the curve
if (high - low < q.length * 0.1) {
IJ.error(TITLE, "Not enough points for Q estimation");
return;
}
// Obtain initial estimate of Q plateau height and decay.
// This can be done by fitting the precision histogram and then fixing the mean and sigma.
// Or it can be done by allowing the precision to be sampled and the mean and sigma
// become parameters for fitting.
// Check if we can sample precision values
boolean sampleDecay = precision != null && FIRE.sampleDecay;
double[] exp_decay;
if (sampleDecay) {
// Random sample of precision values from the distribution is used to
// construct the decay curve
int[] sample = Random.sample(10000, precision.getN(), new Well19937c());
final double four_pi2 = 4 * Math.PI * Math.PI;
double[] pre = new double[q.length];
for (int i = 1; i < q.length; i++) pre[i] = -four_pi2 * q[i] * q[i];
// Sample
final int n = sample.length;
double[] hq = new double[n];
for (int j = 0; j < n; j++) {
// Scale to SR pixels
double s2 = precision.getValue(sample[j]) / images.nmPerPixel;
s2 *= s2;
for (int i = 1; i < q.length; i++) hq[i] += FastMath.exp(pre[i] * s2);
}
for (int i = 1; i < q.length; i++) hq[i] /= n;
exp_decay = new double[q.length];
exp_decay[0] = 1;
for (int i = 1; i < q.length; i++) {
double sinc_q = sinc(Math.PI * q[i]);
exp_decay[i] = sinc_q * sinc_q * hq[i];
}
} else {
// Note: The sigma mean and std should be in the units of super-resolution
// pixels so scale to SR pixels
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Smoothing
double[] smooth;
if (loessSmoothing) {
// Note: This computes the log then smooths it
double bandwidth = 0.1;
int robustness = 0;
double[] l = new double[exp_decay.length];
for (int i = 0; i < l.length; i++) {
// Original Matlab code computes the log for each array.
// This is equivalent to a single log on the fraction of the two.
// Perhaps the two log method is more numerically stable.
//l[i] = Math.log(Math.abs(frcnum[i])) - Math.log(exp_decay[i]);
l[i] = Math.log(Math.abs(frcnum[i] / exp_decay[i]));
}
try {
LoessInterpolator loess = new LoessInterpolator(bandwidth, robustness);
smooth = loess.smooth(q, l);
} catch (Exception e) {
IJ.error(TITLE, "LOESS smoothing failed");
return;
}
} else {
// Note: This smooths the curve before computing the log
double[] norm = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
norm[i] = frcnum[i] / exp_decay[i];
}
// Median window of 5 == radius of 2
MedianWindow mw = new MedianWindow(norm, 2);
smooth = new double[exp_decay.length];
for (int i = 0; i < norm.length; i++) {
smooth[i] = Math.log(Math.abs(mw.getMedian()));
mw.increment();
}
}
// Fit with quadratic to find the initial guess.
// Note: example Matlab code frc_Qcorrection7.m identifies regions of the
// smoothed log curve with low derivative and only fits those. The fit is
// used for the final estimate. Fitting a subset with low derivative is not
// implemented here since the initial estimate is subsequently optimised
// to maximise a cost function.
Quadratic curve = new Quadratic();
SimpleCurveFitter fit = SimpleCurveFitter.create(curve, new double[2]);
WeightedObservedPoints points = new WeightedObservedPoints();
for (int i = low; i < high; i++) points.add(q[i], smooth[i]);
double[] estimate = fit.fit(points.toList());
double qValue = FastMath.exp(estimate[0]);
//System.out.printf("Initial q-estimate = %s => %.3f\n", Arrays.toString(estimate), qValue);
// This could be made an option. Just use for debugging
boolean debug = false;
if (debug) {
// Plot the initial fit and the fit curve
double[] qScaled = FRC.computeQ(frcCurve, true);
double[] line = new double[q.length];
for (int i = 0; i < q.length; i++) line[i] = curve.value(q[i], estimate);
String title = TITLE + " Initial fit";
Plot2 plot = new Plot2(title, "Spatial Frequency (nm^-1)", "FRC Numerator");
String label = String.format("Q = %.3f", qValue);
plot.addPoints(qScaled, smooth, Plot.LINE);
plot.setColor(Color.red);
plot.addPoints(qScaled, line, Plot.LINE);
plot.setColor(Color.black);
plot.addLabel(0, 0, label);
Utils.display(title, plot, Utils.NO_TO_FRONT);
}
if (fitPrecision) {
// Q - Should this be optional?
if (sampleDecay) {
// If a sample of the precision was used to construct the data for the initial fit
// then update the estimate using the fit result since it will be a better start point.
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
// Do a multivariate fit ...
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
PointValuePair p = null;
MultiPlateauness f = new MultiPlateauness(frcnum, q, low, high);
double[] initial = new double[] { histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, qValue };
p = findMin(p, opt, f, scale(initial, 0.1));
p = findMin(p, opt, f, scale(initial, 0.5));
p = findMin(p, opt, f, initial);
p = findMin(p, opt, f, scale(initial, 2));
p = findMin(p, opt, f, scale(initial, 10));
if (p != null) {
double[] point = p.getPointRef();
histogram.mean = point[0] * images.nmPerPixel;
histogram.sigma = point[1] * images.nmPerPixel;
qValue = point[2];
}
} else {
// If so then this should be optional.
if (sampleDecay) {
if (precisionMethod != PrecisionMethod.FIXED) {
histogram.sigma = precision.getStandardDeviation();
// Normalise sum-of-squares to the SR pixel size
double meanSumOfSquares = (precision.getSumOfSquares() / (images.nmPerPixel * images.nmPerPixel)) / precision.getN();
histogram.mean = images.nmPerPixel * Math.sqrt(meanSumOfSquares - estimate[1] / (4 * Math.PI * Math.PI));
}
exp_decay = computeExpDecay(histogram.mean / images.nmPerPixel, histogram.sigma / images.nmPerPixel, q);
}
// Estimate spurious component by promoting plateauness.
// The Matlab code used random initial points for a Simplex optimiser.
// A Brent line search should be pretty deterministic so do simple repeats.
// However it will proceed downhill so if the initial point is wrong then
// it will find a sub-optimal result.
UnivariateOptimizer o = new BrentOptimizer(1e-3, 1e-6);
Plateauness f = new Plateauness(frcnum, exp_decay, low, high);
UnivariatePointValuePair p = null;
p = findMin(p, o, f, qValue, 0.1);
p = findMin(p, o, f, qValue, 0.2);
p = findMin(p, o, f, qValue, 0.333);
p = findMin(p, o, f, qValue, 0.5);
// Do some Simplex repeats as well
SimplexOptimizer opt = new SimplexOptimizer(1e-6, 1e-10);
p = findMin(p, opt, f, qValue * 0.1);
p = findMin(p, opt, f, qValue * 0.5);
p = findMin(p, opt, f, qValue);
p = findMin(p, opt, f, qValue * 2);
p = findMin(p, opt, f, qValue * 10);
if (p != null)
qValue = p.getPoint();
}
QPlot qplot = new QPlot(frcCurve, qValue, low, high);
// Interactive dialog to estimate Q (blinking events per flourophore) using
// sliders for the mean and standard deviation of the localisation precision.
showQEstimationDialog(histogram, qplot, frcCurve, images.nmPerPixel);
IJ.showStatus(TITLE + " complete");
}
Aggregations