use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method getFunction.
private MultivariateFunction getFunction(final int[] limits, final double[] y, final int max, final int maxEval) {
MultivariateFunction fun = new MultivariateFunction() {
int eval = 0;
public double value(double[] point) {
IJ.showProgress(++eval, maxEval);
if (Utils.isInterrupted())
throw new TooManyEvaluationsException(maxEval);
// Compute the sum of squares between the two functions
double photons = point[0];
double gain = point[1];
double noise = point[2];
int bias = (int) Math.round(point[3]);
//System.out.printf("[%d] = %s\n", eval, Arrays.toString(point));
final double[] g = pdf(max, photons, gain, noise, bias);
double ss = 0;
for (int c = limits[0]; c <= limits[1]; c++) {
final double d = g[c] - y[c];
ss += d * d;
}
return ss;
}
};
return fun;
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class DiffusionRateTest method msdAnalysis.
/**
* Tabulate the observed MSD for different jump distances
*
* @param points
*/
private void msdAnalysis(ArrayList<Point> points) {
if (myMsdAnalysisSteps == 0)
return;
IJ.showStatus("MSD analysis ...");
IJ.showProgress(1, myMsdAnalysisSteps);
// This will only be fast if the list is an array
Point[] list = points.toArray(new Point[points.size()]);
// Compute the base MSD
Point origin = new Point(0, 0, 0);
double sum = origin.distance2(list[0]);
int count = 1;
for (int i = 1; i < list.length; i++) {
Point last = list[i - 1];
Point current = list[i];
if (last.id == current.id) {
sum += last.distance2(current);
} else {
sum += origin.distance2(current);
}
count++;
}
createMsdTable((sum / count) * settings.stepsPerSecond / conversionFactor);
// Create a new set of points that have coordinates that
// are the rolling average over the number of aggregate steps
RollingArray x = new RollingArray(aggregateSteps);
RollingArray y = new RollingArray(aggregateSteps);
int id = 0;
int length = 0;
for (Point p : points) {
if (p.id != id) {
x.reset();
y.reset();
}
id = p.id;
x.add(p.x);
y.add(p.y);
// Only create a point if the full aggregation size is reached
if (x.isFull()) {
list[length++] = new Point(id, x.getAverage(), y.getAverage());
}
}
// Q - is this useful?
final double p = myPrecision / settings.pixelPitch;
final long seed = System.currentTimeMillis() + System.identityHashCode(this);
RandomGenerator rand = new Well19937c(seed);
final int totalSteps = (int) Math.ceil(settings.seconds * settings.stepsPerSecond - aggregateSteps);
final int limit = Math.min(totalSteps, myMsdAnalysisSteps);
final int interval = Utils.getProgressInterval(limit);
final ArrayList<String> results = new ArrayList<String>(totalSteps);
for (int step = 1; step <= myMsdAnalysisSteps; step++) {
if (step % interval == 0)
IJ.showProgress(step, limit);
sum = 0;
count = 0;
for (int i = step; i < length; i++) {
Point last = list[i - step];
Point current = list[i];
if (last.id == current.id) {
if (p == 0) {
sum += last.distance2(current);
count++;
} else {
// is the same if enough samples are present
for (int ii = 1; ii-- > 0; ) {
sum += last.distance2(current, p, rand);
count++;
}
}
}
}
if (count == 0)
break;
results.add(addResult(step, sum, count));
// Flush to auto-space the columns
if (step == 9) {
msdTable.getTextPanel().append(results);
results.clear();
}
}
msdTable.getTextPanel().append(results);
IJ.showProgress(1);
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class JumpDistanceAnalysis method doFitJumpDistanceHistogram.
/**
* Fit the jump distance histogram using a cumulative sum with the given number of species.
* <p>
* Results are sorted by the diffusion coefficient ascending.
*
* @param jdHistogram
* The cumulative jump distance histogram. X-axis is um^2, Y-axis is cumulative probability. Must be
* monototic ascending.
* @param estimatedD
* The estimated diffusion coefficient
* @param n
* The number of species in the mixed population
* @return Array containing: { D (um^2), Fractions }. Can be null if no fit was made.
*/
private double[][] doFitJumpDistanceHistogram(double[][] jdHistogram, double estimatedD, int n) {
calibrated = isCalibrated();
if (n == 1) {
// Fit using a single population model
LevenbergMarquardtOptimizer lvmOptimizer = new LevenbergMarquardtOptimizer();
try {
final JumpDistanceCumulFunction function = new JumpDistanceCumulFunction(jdHistogram[0], jdHistogram[1], estimatedD);
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(function.guess()).target(function.getY()).weight(new DiagonalMatrix(function.getWeights())).model(function, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return function.jacobian(point);
}
}).build();
//@formatter:on
Optimum lvmSolution = lvmOptimizer.optimize(problem);
double[] fitParams = lvmSolution.getPoint().toArray();
// True for an unweighted fit
ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
//ss = calculateSumOfSquares(function.getY(), function.value(fitParams));
lastIC = ic = Maths.getAkaikeInformationCriterionFromResiduals(ss, function.x.length, 1);
double[] coefficients = fitParams;
double[] fractions = new double[] { 1 };
logger.info("Fit Jump distance (N=1) : %s, SS = %s, IC = %s (%d evaluations)", formatD(fitParams[0]), Maths.rounded(ss, 4), Maths.rounded(ic, 4), lvmSolution.getEvaluations());
return new double[][] { coefficients, fractions };
} catch (TooManyIterationsException e) {
logger.info("LVM optimiser failed to fit (N=1) : Too many iterations : %s", e.getMessage());
} catch (ConvergenceException e) {
logger.info("LVM optimiser failed to fit (N=1) : %s", e.getMessage());
}
}
// Uses a weighted sum of n exponential functions, each function models a fraction of the particles.
// An LVM fit cannot restrict the parameters so the fractions do not go below zero.
// Use the CustomPowell/CMEASOptimizer which supports bounded fitting.
MixedJumpDistanceCumulFunctionMultivariate function = new MixedJumpDistanceCumulFunctionMultivariate(jdHistogram[0], jdHistogram[1], estimatedD, n);
double[] lB = function.getLowerBounds();
int evaluations = 0;
PointValuePair constrainedSolution = null;
MaxEval maxEval = new MaxEval(20000);
CustomPowellOptimizer powellOptimizer = createCustomPowellOptimizer();
try {
// The Powell algorithm can use more general bounds: 0 - Infinity
constrainedSolution = powellOptimizer.optimize(maxEval, new ObjectiveFunction(function), new InitialGuess(function.guess()), new SimpleBounds(lB, function.getUpperBounds(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)), new CustomPowellOptimizer.BasisStep(function.step()), GoalType.MINIMIZE);
evaluations = powellOptimizer.getEvaluations();
logger.debug("Powell optimiser fit (N=%d) : SS = %f (%d evaluations)", n, constrainedSolution.getValue(), evaluations);
} catch (TooManyEvaluationsException e) {
logger.info("Powell optimiser failed to fit (N=%d) : Too many evaluations (%d)", n, powellOptimizer.getEvaluations());
} catch (TooManyIterationsException e) {
logger.info("Powell optimiser failed to fit (N=%d) : Too many iterations (%d)", n, powellOptimizer.getIterations());
} catch (ConvergenceException e) {
logger.info("Powell optimiser failed to fit (N=%d) : %s", n, e.getMessage());
}
if (constrainedSolution == null) {
logger.info("Trying CMAES optimiser with restarts ...");
double[] uB = function.getUpperBounds();
SimpleBounds bounds = new SimpleBounds(lB, uB);
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] s = new double[lB.length];
for (int i = 0; i < s.length; i++) s[i] = (uB[i] - lB[i]) / 3;
OptimizationData sigma = new CMAESOptimizer.Sigma(s);
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(function.x.length))));
// Iterate this for stability in the initial guess
CMAESOptimizer cmaesOptimizer = createCMAESOptimizer();
for (int i = 0; i <= fitRestarts; i++) {
// Try from the initial guess
try {
PointValuePair solution = cmaesOptimizer.optimize(new InitialGuess(function.guess()), new ObjectiveFunction(function), GoalType.MINIMIZE, bounds, sigma, popSize, maxEval);
if (constrainedSolution == null || solution.getValue() < constrainedSolution.getValue()) {
evaluations = cmaesOptimizer.getEvaluations();
constrainedSolution = solution;
logger.debug("CMAES optimiser [%da] fit (N=%d) : SS = %f (%d evaluations)", i, n, solution.getValue(), evaluations);
}
} catch (TooManyEvaluationsException e) {
}
if (constrainedSolution == null)
continue;
// Try from the current optimum
try {
PointValuePair solution = cmaesOptimizer.optimize(new InitialGuess(constrainedSolution.getPointRef()), new ObjectiveFunction(function), GoalType.MINIMIZE, bounds, sigma, popSize, maxEval);
if (solution.getValue() < constrainedSolution.getValue()) {
evaluations = cmaesOptimizer.getEvaluations();
constrainedSolution = solution;
logger.debug("CMAES optimiser [%db] fit (N=%d) : SS = %f (%d evaluations)", i, n, solution.getValue(), evaluations);
}
} catch (TooManyEvaluationsException e) {
}
}
if (constrainedSolution != null) {
// Re-optimise with Powell?
try {
PointValuePair solution = powellOptimizer.optimize(maxEval, new ObjectiveFunction(function), new InitialGuess(constrainedSolution.getPointRef()), new SimpleBounds(lB, function.getUpperBounds(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)), new CustomPowellOptimizer.BasisStep(function.step()), GoalType.MINIMIZE);
if (solution.getValue() < constrainedSolution.getValue()) {
evaluations = cmaesOptimizer.getEvaluations();
constrainedSolution = solution;
logger.info("Powell optimiser re-fit (N=%d) : SS = %f (%d evaluations)", n, constrainedSolution.getValue(), evaluations);
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} catch (ConvergenceException e) {
}
}
}
if (constrainedSolution == null) {
logger.info("Failed to fit N=%d", n);
return null;
}
double[] fitParams = constrainedSolution.getPointRef();
ss = constrainedSolution.getValue();
// TODO - Try a bounded BFGS optimiser
// Try and improve using a LVM fit
final MixedJumpDistanceCumulFunctionGradient functionGradient = new MixedJumpDistanceCumulFunctionGradient(jdHistogram[0], jdHistogram[1], estimatedD, n);
Optimum lvmSolution;
LevenbergMarquardtOptimizer lvmOptimizer = new LevenbergMarquardtOptimizer();
try {
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(fitParams).target(functionGradient.getY()).weight(new DiagonalMatrix(functionGradient.getWeights())).model(functionGradient, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return functionGradient.jacobian(point);
}
}).build();
//@formatter:on
lvmSolution = lvmOptimizer.optimize(problem);
// True for an unweighted fit
double ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
// All fitted parameters must be above zero
if (ss < this.ss && Maths.min(lvmSolution.getPoint().toArray()) > 0) {
logger.info(" Re-fitting improved the SS from %s to %s (-%s%%)", Maths.rounded(this.ss, 4), Maths.rounded(ss, 4), Maths.rounded(100 * (this.ss - ss) / this.ss, 4));
fitParams = lvmSolution.getPoint().toArray();
this.ss = ss;
evaluations += lvmSolution.getEvaluations();
}
} catch (TooManyIterationsException e) {
logger.error("Failed to re-fit : Too many iterations : %s", e.getMessage());
} catch (ConvergenceException e) {
logger.error("Failed to re-fit : %s", e.getMessage());
}
// Since the fractions must sum to one we subtract 1 degree of freedom from the number of parameters
ic = Maths.getAkaikeInformationCriterionFromResiduals(ss, function.x.length, fitParams.length - 1);
double[] d = new double[n];
double[] f = new double[n];
double sum = 0;
for (int i = 0; i < d.length; i++) {
f[i] = fitParams[i * 2];
sum += f[i];
d[i] = fitParams[i * 2 + 1];
}
for (int i = 0; i < f.length; i++) f[i] /= sum;
// Sort by coefficient size
sort(d, f);
double[] coefficients = d;
double[] fractions = f;
logger.info("Fit Jump distance (N=%d) : %s (%s), SS = %s, IC = %s (%d evaluations)", n, formatD(d), format(f), Maths.rounded(ss, 4), Maths.rounded(ic, 4), evaluations);
if (isValid(d, f)) {
lastIC = ic;
return new double[][] { coefficients, fractions };
}
return null;
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class JumpDistanceAnalysis method doFitJumpDistancesMLE.
/**
* Fit the jump distances using a maximum likelihood estimation with the given number of species.
* | *
* <p>
* Results are sorted by the diffusion coefficient ascending.
*
* @param jumpDistances
* The jump distances (in um^2)
* @param estimatedD
* The estimated diffusion coefficient
* @param n
* The number of species in the mixed population
* @return Array containing: { D (um^2), Fractions }. Can be null if no fit was made.
*/
private double[][] doFitJumpDistancesMLE(double[] jumpDistances, double estimatedD, int n) {
MaxEval maxEval = new MaxEval(20000);
CustomPowellOptimizer powellOptimizer = createCustomPowellOptimizer();
calibrated = isCalibrated();
if (n == 1) {
try {
final JumpDistanceFunction function = new JumpDistanceFunction(jumpDistances, estimatedD);
// The Powell algorithm can use more general bounds: 0 - Infinity
SimpleBounds bounds = new SimpleBounds(function.getLowerBounds(), function.getUpperBounds(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY));
PointValuePair solution = powellOptimizer.optimize(maxEval, new ObjectiveFunction(function), new InitialGuess(function.guess()), bounds, new CustomPowellOptimizer.BasisStep(function.step()), GoalType.MAXIMIZE);
double[] fitParams = solution.getPointRef();
ll = solution.getValue();
lastIC = ic = Maths.getAkaikeInformationCriterion(ll, jumpDistances.length, 1);
double[] coefficients = fitParams;
double[] fractions = new double[] { 1 };
logger.info("Fit Jump distance (N=1) : %s, MLE = %s, IC = %s (%d evaluations)", formatD(fitParams[0]), Maths.rounded(ll, 4), Maths.rounded(ic, 4), powellOptimizer.getEvaluations());
return new double[][] { coefficients, fractions };
} catch (TooManyEvaluationsException e) {
logger.info("Powell optimiser failed to fit (N=1) : Too many evaluation (%d)", powellOptimizer.getEvaluations());
} catch (TooManyIterationsException e) {
logger.info("Powell optimiser failed to fit (N=1) : Too many iterations (%d)", powellOptimizer.getIterations());
} catch (ConvergenceException e) {
logger.info("Powell optimiser failed to fit (N=1) : %s", e.getMessage());
}
return null;
}
MixedJumpDistanceFunction function = new MixedJumpDistanceFunction(jumpDistances, estimatedD, n);
double[] lB = function.getLowerBounds();
int evaluations = 0;
PointValuePair constrainedSolution = null;
try {
// The Powell algorithm can use more general bounds: 0 - Infinity
constrainedSolution = powellOptimizer.optimize(maxEval, new ObjectiveFunction(function), new InitialGuess(function.guess()), new SimpleBounds(lB, function.getUpperBounds(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)), new CustomPowellOptimizer.BasisStep(function.step()), GoalType.MAXIMIZE);
evaluations = powellOptimizer.getEvaluations();
logger.debug("Powell optimiser fit (N=%d) : MLE = %f (%d evaluations)", n, constrainedSolution.getValue(), powellOptimizer.getEvaluations());
} catch (TooManyEvaluationsException e) {
logger.info("Powell optimiser failed to fit (N=%d) : Too many evaluation (%d)", n, powellOptimizer.getEvaluations());
} catch (TooManyIterationsException e) {
logger.info("Powell optimiser failed to fit (N=%d) : Too many iterations (%d)", n, powellOptimizer.getIterations());
} catch (ConvergenceException e) {
logger.info("Powell optimiser failed to fit (N=%d) : %s", n, e.getMessage());
}
if (constrainedSolution == null) {
logger.info("Trying CMAES optimiser with restarts ...");
double[] uB = function.getUpperBounds();
SimpleBounds bounds = new SimpleBounds(lB, uB);
// Try a bounded CMAES optimiser since the Powell optimiser appears to be
// sensitive to the order of the parameters. It is not good when the fast particle
// is the minority fraction. Could this be due to too low an upper bound?
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
double[] s = new double[lB.length];
for (int i = 0; i < s.length; i++) s[i] = (uB[i] - lB[i]) / 3;
OptimizationData sigma = new CMAESOptimizer.Sigma(s);
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(function.x.length))));
// Iterate this for stability in the initial guess
CMAESOptimizer cmaesOptimizer = createCMAESOptimizer();
for (int i = 0; i <= fitRestarts; i++) {
// Try from the initial guess
try {
PointValuePair solution = cmaesOptimizer.optimize(new InitialGuess(function.guess()), new ObjectiveFunction(function), GoalType.MAXIMIZE, bounds, sigma, popSize, maxEval);
if (constrainedSolution == null || solution.getValue() > constrainedSolution.getValue()) {
evaluations = cmaesOptimizer.getEvaluations();
constrainedSolution = solution;
logger.debug("CMAES optimiser [%da] fit (N=%d) : MLE = %f (%d evaluations)", i, n, solution.getValue(), evaluations);
}
} catch (TooManyEvaluationsException e) {
}
if (constrainedSolution == null)
continue;
// Try from the current optimum
try {
PointValuePair solution = cmaesOptimizer.optimize(new InitialGuess(constrainedSolution.getPointRef()), new ObjectiveFunction(function), GoalType.MAXIMIZE, bounds, sigma, popSize, maxEval);
if (solution.getValue() > constrainedSolution.getValue()) {
evaluations = cmaesOptimizer.getEvaluations();
constrainedSolution = solution;
logger.debug("CMAES optimiser [%db] fit (N=%d) : MLE = %f (%d evaluations)", i, n, solution.getValue(), evaluations);
}
} catch (TooManyEvaluationsException e) {
}
}
if (constrainedSolution != null) {
try {
// Re-optimise with Powell?
PointValuePair solution = powellOptimizer.optimize(maxEval, new ObjectiveFunction(function), new InitialGuess(constrainedSolution.getPointRef()), new SimpleBounds(lB, function.getUpperBounds(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY)), new CustomPowellOptimizer.BasisStep(function.step()), GoalType.MAXIMIZE);
if (solution.getValue() > constrainedSolution.getValue()) {
evaluations = cmaesOptimizer.getEvaluations();
constrainedSolution = solution;
logger.info("Powell optimiser re-fit (N=%d) : MLE = %f (%d evaluations)", n, constrainedSolution.getValue(), powellOptimizer.getEvaluations());
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
} catch (ConvergenceException e) {
}
}
}
if (constrainedSolution == null) {
logger.info("Failed to fit N=%d", n);
return null;
}
double[] fitParams = constrainedSolution.getPointRef();
ll = constrainedSolution.getValue();
// Since the fractions must sum to one we subtract 1 degree of freedom from the number of parameters
ic = Maths.getAkaikeInformationCriterion(ll, jumpDistances.length, fitParams.length - 1);
double[] d = new double[n];
double[] f = new double[n];
double sum = 0;
for (int i = 0; i < d.length; i++) {
f[i] = fitParams[i * 2];
sum += f[i];
d[i] = fitParams[i * 2 + 1];
}
for (int i = 0; i < f.length; i++) f[i] /= sum;
// Sort by coefficient size
sort(d, f);
double[] coefficients = d;
double[] fractions = f;
logger.info("Fit Jump distance (N=%d) : %s (%s), MLE = %s, IC = %s (%d evaluations)", n, formatD(d), format(f), Maths.rounded(ll, 4), Maths.rounded(ic, 4), evaluations);
if (isValid(d, f)) {
lastIC = ic;
return new double[][] { coefficients, fractions };
}
return null;
}
use of org.apache.commons.math3.stat.descriptive.summary.Sum in project GDSC-SMLM by aherbert.
the class BinomialFitter method fitBinomial.
/**
* Fit the binomial distribution (n,p) to the cumulative histogram. Performs fitting assuming a fixed n value and
* attempts to optimise p.
*
* @param histogram
* The input histogram
* @param mean
* The histogram mean (used to estimate p). Calculated if NaN.
* @param n
* The n to evaluate
* @param zeroTruncated
* True if the model should ignore n=0 (zero-truncated binomial)
* @return The best fit (n, p)
* @throws IllegalArgumentException
* If any of the input data values are negative
* @throws IllegalArgumentException
* If any fitting a zero truncated binomial and there are no values above zero
*/
public PointValuePair fitBinomial(double[] histogram, double mean, int n, boolean zeroTruncated) {
if (Double.isNaN(mean))
mean = getMean(histogram);
if (zeroTruncated && histogram[0] > 0) {
log("Fitting zero-truncated histogram but there are zero values - Renormalising to ignore zero");
double cumul = 0;
for (int i = 1; i < histogram.length; i++) cumul += histogram[i];
if (cumul == 0)
throw new IllegalArgumentException("Fitting zero-truncated histogram but there are no non-zero values");
histogram[0] = 0;
for (int i = 1; i < histogram.length; i++) histogram[i] /= cumul;
}
int nFittedPoints = Math.min(histogram.length, n + 1) - ((zeroTruncated) ? 1 : 0);
if (nFittedPoints < 1) {
log("No points to fit (%d): Histogram.length = %d, n = %d, zero-truncated = %b", nFittedPoints, histogram.length, n, zeroTruncated);
return null;
}
// The model is only fitting the probability p
// For a binomial n*p = mean => p = mean/n
double[] initialSolution = new double[] { FastMath.min(mean / n, 1) };
// Create the function
BinomialModelFunction function = new BinomialModelFunction(histogram, n, zeroTruncated);
double[] lB = new double[1];
double[] uB = new double[] { 1 };
SimpleBounds bounds = new SimpleBounds(lB, uB);
// Fit
// CMAESOptimizer or BOBYQAOptimizer support bounds
// CMAESOptimiser based on Matlab code:
// https://www.lri.fr/~hansen/cmaes.m
// Take the defaults from the Matlab documentation
int maxIterations = 2000;
//Double.NEGATIVE_INFINITY;
double stopFitness = 0;
boolean isActiveCMA = true;
int diagonalOnly = 0;
int checkFeasableCount = 1;
RandomGenerator random = new Well19937c();
boolean generateStatistics = false;
ConvergenceChecker<PointValuePair> checker = new SimpleValueChecker(1e-6, 1e-10);
// The sigma determines the search range for the variables. It should be 1/3 of the initial search region.
OptimizationData sigma = new CMAESOptimizer.Sigma(new double[] { (uB[0] - lB[0]) / 3 });
OptimizationData popSize = new CMAESOptimizer.PopulationSize((int) (4 + Math.floor(3 * Math.log(2))));
try {
PointValuePair solution = null;
boolean noRefit = maximumLikelihood;
if (n == 1 && zeroTruncated) {
// No need to fit
solution = new PointValuePair(new double[] { 1 }, 0);
noRefit = true;
} else {
GoalType goalType = (maximumLikelihood) ? GoalType.MAXIMIZE : GoalType.MINIMIZE;
// Iteratively fit
CMAESOptimizer opt = new CMAESOptimizer(maxIterations, stopFitness, isActiveCMA, diagonalOnly, checkFeasableCount, random, generateStatistics, checker);
for (int iteration = 0; iteration <= fitRestarts; iteration++) {
try {
// Start from the initial solution
PointValuePair result = opt.optimize(new InitialGuess(initialSolution), new ObjectiveFunction(function), goalType, bounds, sigma, popSize, new MaxIter(maxIterations), new MaxEval(maxIterations * 2));
// opt.getEvaluations());
if (solution == null || result.getValue() < solution.getValue()) {
solution = result;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
}
if (solution == null)
continue;
try {
// Also restart from the current optimum
PointValuePair result = opt.optimize(new InitialGuess(solution.getPointRef()), new ObjectiveFunction(function), goalType, bounds, sigma, popSize, new MaxIter(maxIterations), new MaxEval(maxIterations * 2));
// opt.getEvaluations());
if (result.getValue() < solution.getValue()) {
solution = result;
}
} catch (TooManyEvaluationsException e) {
} catch (TooManyIterationsException e) {
}
}
if (solution == null)
return null;
}
if (noRefit) {
// Although we fit the log-likelihood, return the sum-of-squares to allow
// comparison across different n
double p = solution.getPointRef()[0];
double ss = 0;
double[] obs = function.p;
double[] exp = function.getP(p);
for (int i = 0; i < obs.length; i++) ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
return new PointValuePair(solution.getPointRef(), ss);
} else // We can do a LVM refit if the number of fitted points is more than 1
if (nFittedPoints > 1) {
// Improve SS fit with a gradient based LVM optimizer
LevenbergMarquardtOptimizer optimizer = new LevenbergMarquardtOptimizer();
try {
final BinomialModelFunctionGradient gradientFunction = new BinomialModelFunctionGradient(histogram, n, zeroTruncated);
//@formatter:off
LeastSquaresProblem problem = new LeastSquaresBuilder().maxEvaluations(Integer.MAX_VALUE).maxIterations(3000).start(solution.getPointRef()).target(gradientFunction.p).weight(new DiagonalMatrix(gradientFunction.getWeights())).model(gradientFunction, new MultivariateMatrixFunction() {
public double[][] value(double[] point) throws IllegalArgumentException {
return gradientFunction.jacobian(point);
}
}).build();
//@formatter:on
Optimum lvmSolution = optimizer.optimize(problem);
// Check the pValue is valid since the LVM is not bounded.
double p = lvmSolution.getPoint().getEntry(0);
if (p <= 1 && p >= 0) {
// True if the weights are 1
double ss = lvmSolution.getResiduals().dotProduct(lvmSolution.getResiduals());
// ss += (obs[i] - exp[i]) * (obs[i] - exp[i]);
if (ss < solution.getValue()) {
// Utils.rounded(100 * (solution.getValue() - ss) / solution.getValue(), 4));
return new PointValuePair(lvmSolution.getPoint().toArray(), ss);
}
}
} catch (TooManyIterationsException e) {
log("Failed to re-fit: Too many iterations: %s", e.getMessage());
} catch (ConvergenceException e) {
log("Failed to re-fit: %s", e.getMessage());
} catch (Exception e) {
// Ignore this ...
}
}
return solution;
} catch (Exception e) {
log("Failed to fit Binomial distribution with N=%d : %s", n, e.getMessage());
}
return null;
}
Aggregations