use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.
the class FieldPropagation method main.
/**
* Program entry point.
* @param args program arguments (unused here)
* @throws IOException
* @throws OrekitException
*/
public static void main(String[] args) throws IOException, OrekitException {
// the goal of this example is to make a Montecarlo simulation giving an error on the semiaxis,
// the inclination and the RAAN. The interest of doing it with Orekit based on the
// DerivativeStructure is that instead of doing a large number of propagation around the initial
// point we will do a single propagation of the initial state, and thanks to the Taylor expansion
// we will see the evolution of the std deviation of the position, which is divided in the
// CrossTrack, the LongTrack and the Radial error.
// configure Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n", orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from the %s page and unzip it in %s for this tutorial to work%n", "orekit-data.zip", "https://www.orekit.org/forge/projects/orekit/files", home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
// output file in user's home directory
File workingDir = new File(System.getProperty("user.home"));
File errorFile = new File(workingDir, "error.txt");
System.out.println("Output file is in : " + errorFile.getAbsolutePath());
PrintWriter PW = new PrintWriter(errorFile, "UTF-8");
PW.printf("time \t\tCrossTrackErr \tLongTrackErr \tRadialErr \tTotalErr%n");
// setting the parameters of the simulation
// Order of derivation of the DerivativeStructures
int params = 3;
int order = 3;
DSFactory factory = new DSFactory(params, order);
// number of samples of the montecarlo simulation
int montecarlo_size = 100;
// nominal values of the Orbital parameters
double a_nominal = 7.278E6;
double e_nominal = 1e-3;
double i_nominal = FastMath.toRadians(98.3);
double pa_nominal = FastMath.PI / 2;
double raan_nominal = 0.0;
double ni_nominal = 0.0;
// mean of the gaussian curve for each of the errors around the nominal values
// {a, i, RAAN}
double[] mean = { 0, 0, 0 };
// standard deviation of the gaussian curve for each of the errors around the nominal values
// {dA, dI, dRaan}
double[] dAdIdRaan = { 5, FastMath.toRadians(1e-3), FastMath.toRadians(1e-3) };
// time of integration
double final_Dt = 1 * 60 * 60;
// number of steps per orbit
double num_step_orbit = 10;
DerivativeStructure a_0 = factory.variable(0, a_nominal);
DerivativeStructure e_0 = factory.constant(e_nominal);
DerivativeStructure i_0 = factory.variable(1, i_nominal);
DerivativeStructure pa_0 = factory.constant(pa_nominal);
DerivativeStructure raan_0 = factory.variable(2, raan_nominal);
DerivativeStructure ni_0 = factory.constant(ni_nominal);
// sometimes we will need the field of the DerivativeStructure to build new instances
Field<DerivativeStructure> field = a_0.getField();
// sometimes we will need the zero of the DerivativeStructure to build new instances
DerivativeStructure zero = field.getZero();
// initializing the FieldAbsoluteDate with only the field it will generate the day J2000
FieldAbsoluteDate<DerivativeStructure> date_0 = new FieldAbsoluteDate<>(field);
// initialize a basic frame
Frame frame = FramesFactory.getEME2000();
// initialize the orbit
double mu = 3.9860047e14;
FieldKeplerianOrbit<DerivativeStructure> KO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, pa_0, raan_0, ni_0, PositionAngle.ECCENTRIC, frame, date_0, mu);
// step of integration (how many times per orbit we take the mesures)
double int_step = KO.getKeplerianPeriod().getReal() / num_step_orbit;
// random generator to conduct an
long number = 23091991;
RandomGenerator RG = new Well19937a(number);
GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(mean, dAdIdRaan, NGG);
double[][] rand_gen = new double[montecarlo_size][3];
for (int jj = 0; jj < montecarlo_size; jj++) {
rand_gen[jj] = URVG.nextVector();
}
//
FieldSpacecraftState<DerivativeStructure> SS_0 = new FieldSpacecraftState<>(KO);
// adding force models
ForceModel fModel_Sun = new ThirdBodyAttraction(CelestialBodyFactory.getSun());
ForceModel fModel_Moon = new ThirdBodyAttraction(CelestialBodyFactory.getMoon());
ForceModel fModel_HFAM = new HolmesFeatherstoneAttractionModel(FramesFactory.getITRF(IERSConventions.IERS_2010, true), GravityFieldFactory.getNormalizedProvider(18, 18));
// setting an hipparchus field integrator
OrbitType type = OrbitType.CARTESIAN;
double[][] tolerance = NumericalPropagator.tolerances(0.001, KO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
// setting of the field propagator, we used the numerical one in order to add the third body attraction
// and the holmes featherstone force models
FieldNumericalPropagator<DerivativeStructure> numProp = new FieldNumericalPropagator<>(field, integrator);
numProp.setOrbitType(type);
numProp.setInitialState(SS_0);
numProp.addForceModel(fModel_Sun);
numProp.addForceModel(fModel_Moon);
numProp.addForceModel(fModel_HFAM);
// with the master mode we will calulcate and print the error on every fixed step on the file error.txt
// we defined the StepHandler to do that giving him the random number generator,
// the size of the montecarlo simulation and the initial date
numProp.setMasterMode(zero.add(int_step), new MyStepHandler<DerivativeStructure>(rand_gen, montecarlo_size, date_0, PW));
//
long START = System.nanoTime();
FieldSpacecraftState<DerivativeStructure> finalState = numProp.propagate(date_0.shiftedBy(final_Dt));
long STOP = System.nanoTime();
System.out.println((STOP - START) / 1E6 + " ms");
System.out.println(finalState.getDate());
PW.close();
}
use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.
the class DSConverter method getState.
/**
* Get the state with the number of parameters consistent with force model.
* @param forceModel force model
* @return state with the number of parameters consistent with force model
*/
public FieldSpacecraftState<DerivativeStructure> getState(final ForceModel forceModel) {
// count the required number of parameters
int nbParams = 0;
for (final ParameterDriver driver : forceModel.getParametersDrivers()) {
if (driver.isSelected()) {
++nbParams;
}
}
// fill in intermediate slots
while (dsStates.size() < nbParams + 1) {
dsStates.add(null);
}
if (dsStates.get(nbParams) == null) {
// it is the first time we need this number of parameters
// we need to create the state
final DSFactory factory = new DSFactory(freeStateParameters + nbParams, 1);
final FieldSpacecraftState<DerivativeStructure> s0 = dsStates.get(0);
// orbit
final FieldPVCoordinates<DerivativeStructure> pv0 = s0.getPVCoordinates();
final FieldOrbit<DerivativeStructure> dsOrbit = new FieldCartesianOrbit<>(new TimeStampedFieldPVCoordinates<>(s0.getDate().toAbsoluteDate(), extend(pv0.getPosition(), factory), extend(pv0.getVelocity(), factory), extend(pv0.getAcceleration(), factory)), s0.getFrame(), s0.getMu());
// attitude
final FieldAngularCoordinates<DerivativeStructure> ac0 = s0.getAttitude().getOrientation();
final FieldAttitude<DerivativeStructure> dsAttitude = new FieldAttitude<>(s0.getAttitude().getReferenceFrame(), new TimeStampedFieldAngularCoordinates<>(dsOrbit.getDate(), extend(ac0.getRotation(), factory), extend(ac0.getRotationRate(), factory), extend(ac0.getRotationAcceleration(), factory)));
// mass
final DerivativeStructure dsM = extend(s0.getMass(), factory);
dsStates.set(nbParams, new FieldSpacecraftState<>(dsOrbit, dsAttitude, dsM));
}
return dsStates.get(nbParams);
}
use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.
the class DSConverter method getParameters.
/**
* Get the force model parameters.
* @param state state as returned by {@link #getState(ForceModel)}
* @param forceModel force model associated with the parameters
* @return force model parameters
* @since 9.0
*/
public DerivativeStructure[] getParameters(final FieldSpacecraftState<DerivativeStructure> state, final ForceModel forceModel) {
final DSFactory factory = state.getMass().getFactory();
final ParameterDriver[] drivers = forceModel.getParametersDrivers();
final DerivativeStructure[] parameters = new DerivativeStructure[drivers.length];
int index = freeStateParameters;
for (int i = 0; i < drivers.length; ++i) {
parameters[i] = drivers[i].isSelected() ? factory.variable(index++, drivers[i].getValue()) : factory.constant(drivers[i].getValue());
}
return parameters;
}
use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.
the class RelativityTest method RealFieldExpectErrorTest.
/**
*Same test as the previous one but not adding the ForceModel to the NumericalPropagator
* it is a test to validate the previous test.
* (to test if the ForceModel it's actually
* doing something in the Propagator and the FieldPropagator)
*/
@Test
public void RealFieldExpectErrorTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 0);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(0.001, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setOrbitType(type);
NP.setInitialState(iSR);
final Relativity forceModel = new Relativity(Constants.EIGEN5C_EARTH_MU);
FNP.addForceModel(forceModel);
// NOT ADDING THE FORCE MODEL TO THE NUMERICAL PROPAGATOR NP.addForceModel(forceModel);
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertEquals(0, Vector3D.distance(finPVC_DS.toPVCoordinates().getPosition(), finPVC_R.getPosition()), 8.0e-13 * finPVC_R.getPosition().getNorm());
}
use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.
the class CartesianOrbitTest method differentiate.
private <S extends Function<CartesianOrbit, Double>> double differentiate(TimeStampedPVCoordinates pv, Frame frame, double mu, S picker) {
final DSFactory factory = new DSFactory(1, 1);
FiniteDifferencesDifferentiator differentiator = new FiniteDifferencesDifferentiator(8, 0.1);
UnivariateDifferentiableFunction diff = differentiator.differentiate(new UnivariateFunction() {
public double value(double dt) {
return picker.apply(new CartesianOrbit(pv.shiftedBy(dt), frame, mu));
}
});
return diff.value(factory.variable(0, 0.0)).getPartialDerivative(1);
}
Aggregations