Search in sources :

Example 26 with DSFactory

use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.

the class CircularOrbitTest method differentiate.

private <S extends Function<CircularOrbit, Double>> double differentiate(TimeStampedPVCoordinates pv, Frame frame, double mu, S picker) {
    final DSFactory factory = new DSFactory(1, 1);
    FiniteDifferencesDifferentiator differentiator = new FiniteDifferencesDifferentiator(8, 0.1);
    UnivariateDifferentiableFunction diff = differentiator.differentiate(new UnivariateFunction() {

        public double value(double dt) {
            return picker.apply(new CircularOrbit(pv.shiftedBy(dt), frame, mu));
        }
    });
    return diff.value(factory.variable(0, 0.0)).getPartialDerivative(1);
}
Also used : UnivariateFunction(org.hipparchus.analysis.UnivariateFunction) DSFactory(org.hipparchus.analysis.differentiation.DSFactory) UnivariateDifferentiableFunction(org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction) FiniteDifferencesDifferentiator(org.hipparchus.analysis.differentiation.FiniteDifferencesDifferentiator)

Example 27 with DSFactory

use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.

the class FieldCircularOrbitTest method differentiate.

private <T extends RealFieldElement<T>, S extends Function<FieldCircularOrbit<T>, T>> double differentiate(TimeStampedFieldPVCoordinates<T> pv, Frame frame, double mu, S picker) {
    final DSFactory factory = new DSFactory(1, 1);
    FiniteDifferencesDifferentiator differentiator = new FiniteDifferencesDifferentiator(8, 0.1);
    UnivariateDifferentiableFunction diff = differentiator.differentiate(new UnivariateFunction() {

        public double value(double dt) {
            return picker.apply(new FieldCircularOrbit<>(pv.shiftedBy(dt), frame, mu)).getReal();
        }
    });
    return diff.value(factory.variable(0, 0.0)).getPartialDerivative(1);
}
Also used : UnivariateFunction(org.hipparchus.analysis.UnivariateFunction) DSFactory(org.hipparchus.analysis.differentiation.DSFactory) UnivariateDifferentiableFunction(org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction) FiniteDifferencesDifferentiator(org.hipparchus.analysis.differentiation.FiniteDifferencesDifferentiator)

Example 28 with DSFactory

use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.

the class ConstantThrustManeuverTest method RealFieldTest.

/**
 *Testing if the propagation between the FieldPropagation and the propagation
 * is equivalent.
 * Also testing if propagating X+dX with the propagation is equivalent to
 * propagation X with the FieldPropagation and then applying the taylor
 * expansion of dX to the result.
 */
@Test
public void RealFieldTest() throws OrekitException {
    DSFactory factory = new DSFactory(6, 5);
    DerivativeStructure a_0 = factory.variable(0, 7e7);
    DerivativeStructure e_0 = factory.variable(1, 0.4);
    DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
    DerivativeStructure R_0 = factory.variable(3, 0.7);
    DerivativeStructure O_0 = factory.variable(4, 0.5);
    DerivativeStructure n_0 = factory.variable(5, 0.1);
    Field<DerivativeStructure> field = a_0.getField();
    DerivativeStructure zero = field.getZero();
    FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
    Frame EME = FramesFactory.getEME2000();
    FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
    FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
    SpacecraftState iSR = initialState.toSpacecraftState();
    final OrbitType type = OrbitType.KEPLERIAN;
    double[][] tolerance = NumericalPropagator.tolerances(10.0, FKO.toOrbit(), type);
    AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
    integrator.setInitialStepSize(zero.add(60));
    AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
    RIntegrator.setInitialStepSize(60);
    FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
    FNP.setOrbitType(type);
    FNP.setInitialState(initialState);
    NumericalPropagator NP = new NumericalPropagator(RIntegrator);
    NP.setOrbitType(type);
    NP.setInitialState(iSR);
    final ConstantThrustManeuver forceModel = new ConstantThrustManeuver(J2000.toAbsoluteDate().shiftedBy(100), 100.0, 400.0, 300.0, Vector3D.PLUS_K);
    FNP.addForceModel(forceModel);
    NP.addForceModel(forceModel);
    FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
    FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
    SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
    FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
    PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
    Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getX(), finPVC_R.getPosition().getX(), FastMath.abs(finPVC_R.getPosition().getX()) * 1e-11);
    Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getY(), finPVC_R.getPosition().getY(), FastMath.abs(finPVC_R.getPosition().getY()) * 1e-11);
    Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getZ(), finPVC_R.getPosition().getZ(), FastMath.abs(finPVC_R.getPosition().getZ()) * 1e-11);
    long number = 23091991;
    RandomGenerator RG = new Well19937a(number);
    GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
    UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, new double[] { 1e3, 0.01, 0.01, 0.01, 0.01, 0.01 }, NGG);
    double a_R = a_0.getReal();
    double e_R = e_0.getReal();
    double i_R = i_0.getReal();
    double R_R = R_0.getReal();
    double O_R = O_0.getReal();
    double n_R = n_0.getReal();
    for (int ii = 0; ii < 1; ii++) {
        double[] rand_next = URVG.nextVector();
        double a_shift = a_R + rand_next[0];
        double e_shift = e_R + rand_next[1];
        double i_shift = i_R + rand_next[2];
        double R_shift = R_R + rand_next[3];
        double O_shift = O_R + rand_next[4];
        double n_shift = n_R + rand_next[5];
        KeplerianOrbit shiftedOrb = new KeplerianOrbit(a_shift, e_shift, i_shift, R_shift, O_shift, n_shift, PositionAngle.MEAN, EME, J2000.toAbsoluteDate(), Constants.EIGEN5C_EARTH_MU);
        SpacecraftState shift_iSR = new SpacecraftState(shiftedOrb);
        NumericalPropagator shift_NP = new NumericalPropagator(RIntegrator);
        shift_NP.setInitialState(shift_iSR);
        shift_NP.addForceModel(forceModel);
        SpacecraftState finalState_shift = shift_NP.propagate(target.toAbsoluteDate());
        PVCoordinates finPVC_shift = finalState_shift.getPVCoordinates();
        // position check
        FieldVector3D<DerivativeStructure> pos_DS = finPVC_DS.getPosition();
        double x_DS = pos_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double y_DS = pos_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double z_DS = pos_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        // System.out.println(pos_DS.getX().getPartialDerivative(1));
        double x = finPVC_shift.getPosition().getX();
        double y = finPVC_shift.getPosition().getY();
        double z = finPVC_shift.getPosition().getZ();
        Assert.assertEquals(x_DS, x, FastMath.abs(x - pos_DS.getX().getReal()) * 1e-8);
        Assert.assertEquals(y_DS, y, FastMath.abs(y - pos_DS.getY().getReal()) * 1e-8);
        Assert.assertEquals(z_DS, z, FastMath.abs(z - pos_DS.getZ().getReal()) * 1e-8);
        // velocity check
        FieldVector3D<DerivativeStructure> vel_DS = finPVC_DS.getVelocity();
        double vx_DS = vel_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double vy_DS = vel_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double vz_DS = vel_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double vx = finPVC_shift.getVelocity().getX();
        double vy = finPVC_shift.getVelocity().getY();
        double vz = finPVC_shift.getVelocity().getZ();
        Assert.assertEquals(vx_DS, vx, FastMath.abs(vx) * 1e-9);
        Assert.assertEquals(vy_DS, vy, FastMath.abs(vy) * 1e-9);
        Assert.assertEquals(vz_DS, vz, FastMath.abs(vz) * 1e-9);
        // acceleration check
        FieldVector3D<DerivativeStructure> acc_DS = finPVC_DS.getAcceleration();
        double ax_DS = acc_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double ay_DS = acc_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double az_DS = acc_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
        double ax = finPVC_shift.getAcceleration().getX();
        double ay = finPVC_shift.getAcceleration().getY();
        double az = finPVC_shift.getAcceleration().getZ();
        Assert.assertEquals(ax_DS, ax, FastMath.abs(ax) * 1e-8);
        Assert.assertEquals(ay_DS, ay, FastMath.abs(ay) * 1e-8);
        Assert.assertEquals(az_DS, az, FastMath.abs(az) * 1e-8);
    }
}
Also used : Frame(org.orekit.frames.Frame) GaussianRandomGenerator(org.hipparchus.random.GaussianRandomGenerator) AdaptiveStepsizeIntegrator(org.hipparchus.ode.nonstiff.AdaptiveStepsizeIntegrator) PVCoordinates(org.orekit.utils.PVCoordinates) FieldPVCoordinates(org.orekit.utils.FieldPVCoordinates) Well19937a(org.hipparchus.random.Well19937a) RandomGenerator(org.hipparchus.random.RandomGenerator) GaussianRandomGenerator(org.hipparchus.random.GaussianRandomGenerator) FieldKeplerianOrbit(org.orekit.orbits.FieldKeplerianOrbit) SpacecraftState(org.orekit.propagation.SpacecraftState) FieldSpacecraftState(org.orekit.propagation.FieldSpacecraftState) NumericalPropagator(org.orekit.propagation.numerical.NumericalPropagator) FieldNumericalPropagator(org.orekit.propagation.numerical.FieldNumericalPropagator) FieldKeplerianOrbit(org.orekit.orbits.FieldKeplerianOrbit) KeplerianOrbit(org.orekit.orbits.KeplerianOrbit) DormandPrince853Integrator(org.hipparchus.ode.nonstiff.DormandPrince853Integrator) DormandPrince853FieldIntegrator(org.hipparchus.ode.nonstiff.DormandPrince853FieldIntegrator) FieldSpacecraftState(org.orekit.propagation.FieldSpacecraftState) DerivativeStructure(org.hipparchus.analysis.differentiation.DerivativeStructure) DSFactory(org.hipparchus.analysis.differentiation.DSFactory) FieldNumericalPropagator(org.orekit.propagation.numerical.FieldNumericalPropagator) OrbitType(org.orekit.orbits.OrbitType) UncorrelatedRandomVectorGenerator(org.hipparchus.random.UncorrelatedRandomVectorGenerator) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate) AbstractLegacyForceModelTest(org.orekit.forces.AbstractLegacyForceModelTest) Test(org.junit.Test)

Example 29 with DSFactory

use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.

the class ConstantThrustManeuverTest method RealFieldExpectErrorTest.

/**
 *Same test as the previous one but not adding the ForceModel to the NumericalPropagator
 *    it is a test to validate the previous test.
 *    (to test if the ForceModel it's actually
 *    doing something in the Propagator and the FieldPropagator)
 */
@Test
public void RealFieldExpectErrorTest() throws OrekitException {
    DSFactory factory = new DSFactory(6, 0);
    DerivativeStructure a_0 = factory.variable(0, 7e7);
    DerivativeStructure e_0 = factory.variable(1, 0.4);
    DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
    DerivativeStructure R_0 = factory.variable(3, 0.7);
    DerivativeStructure O_0 = factory.variable(4, 0.5);
    DerivativeStructure n_0 = factory.variable(5, 0.1);
    Field<DerivativeStructure> field = a_0.getField();
    DerivativeStructure zero = field.getZero();
    FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
    Frame EME = FramesFactory.getEME2000();
    FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
    FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
    SpacecraftState iSR = initialState.toSpacecraftState();
    final OrbitType type = OrbitType.KEPLERIAN;
    double[][] tolerance = NumericalPropagator.tolerances(10.0, FKO.toOrbit(), type);
    AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
    integrator.setInitialStepSize(zero.add(60));
    AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
    RIntegrator.setInitialStepSize(60);
    FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
    FNP.setOrbitType(type);
    FNP.setInitialState(initialState);
    NumericalPropagator NP = new NumericalPropagator(RIntegrator);
    NP.setInitialState(iSR);
    final ConstantThrustManeuver forceModel = new ConstantThrustManeuver(J2000.toAbsoluteDate().shiftedBy(100), 100.0, 400.0, 300.0, Vector3D.PLUS_K);
    FNP.addForceModel(forceModel);
    // NOT ADDING THE FORCE MODEL TO THE NUMERICAL PROPAGATOR   NP.addForceModel(forceModel);
    FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
    FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
    SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
    FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
    PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
    Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getX() - finPVC_R.getPosition().getX()) < FastMath.abs(finPVC_R.getPosition().getX()) * 1e-11);
    Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getY() - finPVC_R.getPosition().getY()) < FastMath.abs(finPVC_R.getPosition().getY()) * 1e-11);
    Assert.assertFalse(FastMath.abs(finPVC_DS.toPVCoordinates().getPosition().getZ() - finPVC_R.getPosition().getZ()) < FastMath.abs(finPVC_R.getPosition().getZ()) * 1e-11);
}
Also used : DormandPrince853FieldIntegrator(org.hipparchus.ode.nonstiff.DormandPrince853FieldIntegrator) Frame(org.orekit.frames.Frame) FieldSpacecraftState(org.orekit.propagation.FieldSpacecraftState) AdaptiveStepsizeIntegrator(org.hipparchus.ode.nonstiff.AdaptiveStepsizeIntegrator) DerivativeStructure(org.hipparchus.analysis.differentiation.DerivativeStructure) DSFactory(org.hipparchus.analysis.differentiation.DSFactory) PVCoordinates(org.orekit.utils.PVCoordinates) FieldPVCoordinates(org.orekit.utils.FieldPVCoordinates) FieldKeplerianOrbit(org.orekit.orbits.FieldKeplerianOrbit) SpacecraftState(org.orekit.propagation.SpacecraftState) FieldSpacecraftState(org.orekit.propagation.FieldSpacecraftState) FieldNumericalPropagator(org.orekit.propagation.numerical.FieldNumericalPropagator) NumericalPropagator(org.orekit.propagation.numerical.NumericalPropagator) FieldNumericalPropagator(org.orekit.propagation.numerical.FieldNumericalPropagator) OrbitType(org.orekit.orbits.OrbitType) DormandPrince853Integrator(org.hipparchus.ode.nonstiff.DormandPrince853Integrator) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate) AbstractLegacyForceModelTest(org.orekit.forces.AbstractLegacyForceModelTest) Test(org.junit.Test)

Example 30 with DSFactory

use of org.hipparchus.analysis.differentiation.DSFactory in project Orekit by CS-SI.

the class Range method theoreticalEvaluation.

/**
 * {@inheritDoc}
 */
@Override
protected EstimatedMeasurement<Range> theoreticalEvaluation(final int iteration, final int evaluation, final SpacecraftState[] states) throws OrekitException {
    final SpacecraftState state = states[getPropagatorsIndices().get(0)];
    // Range derivatives are computed with respect to spacecraft state in inertial frame
    // and station parameters
    // ----------------------
    // 
    // Parameters:
    // - 0..2 - Position of the spacecraft in inertial frame
    // - 3..5 - Velocity of the spacecraft in inertial frame
    // - 6..n - station parameters (station offsets, pole, prime meridian...)
    int nbParams = 6;
    final Map<String, Integer> indices = new HashMap<>();
    for (ParameterDriver driver : getParametersDrivers()) {
        if (driver.isSelected()) {
            indices.put(driver.getName(), nbParams++);
        }
    }
    final DSFactory factory = new DSFactory(nbParams, 1);
    final Field<DerivativeStructure> field = factory.getDerivativeField();
    final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
    // Coordinates of the spacecraft expressed as a derivative structure
    final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);
    // transform between station and inertial frame, expressed as a derivative structure
    // The components of station's position in offset frame are the 3 last derivative parameters
    final AbsoluteDate downlinkDate = getDate();
    final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS = new FieldAbsoluteDate<>(field, downlinkDate);
    final FieldTransform<DerivativeStructure> offsetToInertialDownlink = station.getOffsetToInertial(state.getFrame(), downlinkDateDS, factory, indices);
    // Station position in inertial frame at end of the downlink leg
    final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink = offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS, zero, zero, zero));
    // Compute propagation times
    // (if state has already been set up to pre-compensate propagation delay,
    // we will have delta == tauD and transitState will be the same as state)
    // Downlink delay
    final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
    // Transit state
    final double delta = downlinkDate.durationFrom(state.getDate());
    final DerivativeStructure deltaMTauD = tauD.negate().add(delta);
    final SpacecraftState transitState = state.shiftedBy(deltaMTauD.getValue());
    // Transit state (re)computed with derivative structures
    final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(deltaMTauD);
    // Station at transit state date (derivatives of tauD taken into account)
    final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate = stationDownlink.shiftedBy(tauD.negate());
    // Uplink delay
    final DerivativeStructure tauU = signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
    final TimeStampedFieldPVCoordinates<DerivativeStructure> stationUplink = stationDownlink.shiftedBy(-tauD.getValue() - tauU.getValue());
    // Prepare the evaluation
    final EstimatedMeasurement<Range> estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation, new SpacecraftState[] { transitState }, new TimeStampedPVCoordinates[] { stationUplink.toTimeStampedPVCoordinates(), transitStateDS.toTimeStampedPVCoordinates(), stationDownlink.toTimeStampedPVCoordinates() });
    // Range value
    final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
    final DerivativeStructure tau = tauD.add(tauU);
    final DerivativeStructure range = tau.multiply(cOver2);
    estimated.setEstimatedValue(range.getValue());
    // Range partial derivatives with respect to state
    final double[] derivatives = range.getAllDerivatives();
    estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
    // (beware element at index 0 is the value, not a derivative)
    for (final ParameterDriver driver : getParametersDrivers()) {
        final Integer index = indices.get(driver.getName());
        if (index != null) {
            estimated.setParameterDerivatives(driver, derivatives[index + 1]);
        }
    }
    return estimated;
}
Also used : HashMap(java.util.HashMap) DerivativeStructure(org.hipparchus.analysis.differentiation.DerivativeStructure) DSFactory(org.hipparchus.analysis.differentiation.DSFactory) ParameterDriver(org.orekit.utils.ParameterDriver) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate)

Aggregations

DSFactory (org.hipparchus.analysis.differentiation.DSFactory)76 DerivativeStructure (org.hipparchus.analysis.differentiation.DerivativeStructure)64 Test (org.junit.Test)41 FieldAbsoluteDate (org.orekit.time.FieldAbsoluteDate)36 FiniteDifferencesDifferentiator (org.hipparchus.analysis.differentiation.FiniteDifferencesDifferentiator)25 SpacecraftState (org.orekit.propagation.SpacecraftState)24 Frame (org.orekit.frames.Frame)23 AbsoluteDate (org.orekit.time.AbsoluteDate)20 UnivariateFunction (org.hipparchus.analysis.UnivariateFunction)18 UnivariateDifferentiableFunction (org.hipparchus.analysis.differentiation.UnivariateDifferentiableFunction)17 FieldSpacecraftState (org.orekit.propagation.FieldSpacecraftState)17 PVCoordinates (org.orekit.utils.PVCoordinates)17 FieldVector3D (org.hipparchus.geometry.euclidean.threed.FieldVector3D)16 Vector3D (org.hipparchus.geometry.euclidean.threed.Vector3D)15 OrbitType (org.orekit.orbits.OrbitType)15 RandomGenerator (org.hipparchus.random.RandomGenerator)14 FieldKeplerianOrbit (org.orekit.orbits.FieldKeplerianOrbit)14 FieldNumericalPropagator (org.orekit.propagation.numerical.FieldNumericalPropagator)14 NumericalPropagator (org.orekit.propagation.numerical.NumericalPropagator)14 FieldPVCoordinates (org.orekit.utils.FieldPVCoordinates)14