use of org.orekit.forces.gravity.ThirdBodyAttraction in project Orekit by CS-SI.
the class FieldNumericalPropagatorTest method createPropagator.
private static <T extends RealFieldElement<T>> FieldNumericalPropagator<T> createPropagator(FieldSpacecraftState<T> spacecraftState, OrbitType orbitType, PositionAngle angleType) throws OrekitException {
final Field<T> field = spacecraftState.getDate().getField();
final T zero = field.getZero();
final double minStep = 0.001;
final double maxStep = 120.0;
final T positionTolerance = zero.add(0.1);
final int degree = 20;
final int order = 20;
final double spacecraftArea = 1.0;
final double spacecraftDragCoefficient = 2.0;
final double spacecraftReflectionCoefficient = 2.0;
// propagator main configuration
final double[][] tol = FieldNumericalPropagator.tolerances(positionTolerance, spacecraftState.getOrbit(), orbitType);
final FieldODEIntegrator<T> integrator = new DormandPrince853FieldIntegrator<>(field, minStep, maxStep, tol[0], tol[1]);
final FieldNumericalPropagator<T> np = new FieldNumericalPropagator<>(field, integrator);
np.setOrbitType(orbitType);
np.setPositionAngleType(angleType);
np.setInitialState(spacecraftState);
// Earth gravity field
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final NormalizedSphericalHarmonicsProvider harmonicsGravityProvider = GravityFieldFactory.getNormalizedProvider(degree, order);
np.addForceModel(new HolmesFeatherstoneAttractionModel(earth.getBodyFrame(), harmonicsGravityProvider));
// Sun and Moon attraction
np.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
np.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
// atmospheric drag
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("Jan2000F10-edited-data\\.txt", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager.getInstance().feed(msafe.getSupportedNames(), msafe);
DTM2000 atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), earth);
np.addForceModel(new DragForce(atmosphere, new IsotropicDrag(spacecraftArea, spacecraftDragCoefficient)));
// solar radiation pressure
np.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), earth.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(spacecraftArea, spacecraftReflectionCoefficient)));
return np;
}
use of org.orekit.forces.gravity.ThirdBodyAttraction in project Orekit by CS-SI.
the class PartialDerivativesTest method testWrongParametersDimension.
@Test
public void testWrongParametersDimension() throws OrekitException {
Orbit initialOrbit = new KeplerianOrbit(8000000.0, 0.01, 0.1, 0.7, 0, 1.2, PositionAngle.TRUE, FramesFactory.getEME2000(), AbsoluteDate.J2000_EPOCH, Constants.EIGEN5C_EARTH_MU);
double dP = 0.001;
ForceModel sunAttraction = new ThirdBodyAttraction(CelestialBodyFactory.getSun());
sunAttraction.getParameterDriver("Sun attraction coefficient").setSelected(true);
ForceModel moonAttraction = new ThirdBodyAttraction(CelestialBodyFactory.getMoon());
NumericalPropagator propagator = setUpPropagator(initialOrbit, dP, OrbitType.EQUINOCTIAL, PositionAngle.TRUE, sunAttraction, moonAttraction);
PartialDerivativesEquations partials = new PartialDerivativesEquations("partials", propagator);
try {
partials.setInitialJacobians(new SpacecraftState(initialOrbit), new double[6][6], new double[6][3]);
partials.computeDerivatives(new SpacecraftState(initialOrbit), new double[6]);
Assert.fail("an exception should have been thrown");
} catch (OrekitException oe) {
Assert.assertEquals(OrekitMessages.INITIAL_MATRIX_AND_PARAMETERS_NUMBER_MISMATCH, oe.getSpecifier());
}
}
use of org.orekit.forces.gravity.ThirdBodyAttraction in project Orekit by CS-SI.
the class SecularAndHarmonicTest method createPropagator.
private NumericalPropagator createPropagator(CircularOrbit orbit) throws OrekitException {
OrbitType type = OrbitType.CIRCULAR;
double[][] tolerances = NumericalPropagator.tolerances(0.1, orbit, type);
DormandPrince853Integrator integrator = new DormandPrince853Integrator(1.0, 600, tolerances[0], tolerances[1]);
integrator.setInitialStepSize(60.0);
NumericalPropagator propagator = new NumericalPropagator(integrator);
propagator.addForceModel(new HolmesFeatherstoneAttractionModel(earth.getBodyFrame(), gravityField));
propagator.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
propagator.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
propagator.setOrbitType(type);
propagator.resetInitialState(new SpacecraftState(orbit));
return propagator;
}
use of org.orekit.forces.gravity.ThirdBodyAttraction in project Orekit by CS-SI.
the class FieldPropagation method main.
/**
* Program entry point.
* @param args program arguments (unused here)
* @throws IOException
* @throws OrekitException
*/
public static void main(String[] args) throws IOException, OrekitException {
// the goal of this example is to make a Montecarlo simulation giving an error on the semiaxis,
// the inclination and the RAAN. The interest of doing it with Orekit based on the
// DerivativeStructure is that instead of doing a large number of propagation around the initial
// point we will do a single propagation of the initial state, and thanks to the Taylor expansion
// we will see the evolution of the std deviation of the position, which is divided in the
// CrossTrack, the LongTrack and the Radial error.
// configure Orekit
File home = new File(System.getProperty("user.home"));
File orekitData = new File(home, "orekit-data");
if (!orekitData.exists()) {
System.err.format(Locale.US, "Failed to find %s folder%n", orekitData.getAbsolutePath());
System.err.format(Locale.US, "You need to download %s from the %s page and unzip it in %s for this tutorial to work%n", "orekit-data.zip", "https://www.orekit.org/forge/projects/orekit/files", home.getAbsolutePath());
System.exit(1);
}
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.addProvider(new DirectoryCrawler(orekitData));
// output file in user's home directory
File workingDir = new File(System.getProperty("user.home"));
File errorFile = new File(workingDir, "error.txt");
System.out.println("Output file is in : " + errorFile.getAbsolutePath());
PrintWriter PW = new PrintWriter(errorFile, "UTF-8");
PW.printf("time \t\tCrossTrackErr \tLongTrackErr \tRadialErr \tTotalErr%n");
// setting the parameters of the simulation
// Order of derivation of the DerivativeStructures
int params = 3;
int order = 3;
DSFactory factory = new DSFactory(params, order);
// number of samples of the montecarlo simulation
int montecarlo_size = 100;
// nominal values of the Orbital parameters
double a_nominal = 7.278E6;
double e_nominal = 1e-3;
double i_nominal = FastMath.toRadians(98.3);
double pa_nominal = FastMath.PI / 2;
double raan_nominal = 0.0;
double ni_nominal = 0.0;
// mean of the gaussian curve for each of the errors around the nominal values
// {a, i, RAAN}
double[] mean = { 0, 0, 0 };
// standard deviation of the gaussian curve for each of the errors around the nominal values
// {dA, dI, dRaan}
double[] dAdIdRaan = { 5, FastMath.toRadians(1e-3), FastMath.toRadians(1e-3) };
// time of integration
double final_Dt = 1 * 60 * 60;
// number of steps per orbit
double num_step_orbit = 10;
DerivativeStructure a_0 = factory.variable(0, a_nominal);
DerivativeStructure e_0 = factory.constant(e_nominal);
DerivativeStructure i_0 = factory.variable(1, i_nominal);
DerivativeStructure pa_0 = factory.constant(pa_nominal);
DerivativeStructure raan_0 = factory.variable(2, raan_nominal);
DerivativeStructure ni_0 = factory.constant(ni_nominal);
// sometimes we will need the field of the DerivativeStructure to build new instances
Field<DerivativeStructure> field = a_0.getField();
// sometimes we will need the zero of the DerivativeStructure to build new instances
DerivativeStructure zero = field.getZero();
// initializing the FieldAbsoluteDate with only the field it will generate the day J2000
FieldAbsoluteDate<DerivativeStructure> date_0 = new FieldAbsoluteDate<>(field);
// initialize a basic frame
Frame frame = FramesFactory.getEME2000();
// initialize the orbit
double mu = 3.9860047e14;
FieldKeplerianOrbit<DerivativeStructure> KO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, pa_0, raan_0, ni_0, PositionAngle.ECCENTRIC, frame, date_0, mu);
// step of integration (how many times per orbit we take the mesures)
double int_step = KO.getKeplerianPeriod().getReal() / num_step_orbit;
// random generator to conduct an
long number = 23091991;
RandomGenerator RG = new Well19937a(number);
GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(mean, dAdIdRaan, NGG);
double[][] rand_gen = new double[montecarlo_size][3];
for (int jj = 0; jj < montecarlo_size; jj++) {
rand_gen[jj] = URVG.nextVector();
}
//
FieldSpacecraftState<DerivativeStructure> SS_0 = new FieldSpacecraftState<>(KO);
// adding force models
ForceModel fModel_Sun = new ThirdBodyAttraction(CelestialBodyFactory.getSun());
ForceModel fModel_Moon = new ThirdBodyAttraction(CelestialBodyFactory.getMoon());
ForceModel fModel_HFAM = new HolmesFeatherstoneAttractionModel(FramesFactory.getITRF(IERSConventions.IERS_2010, true), GravityFieldFactory.getNormalizedProvider(18, 18));
// setting an hipparchus field integrator
OrbitType type = OrbitType.CARTESIAN;
double[][] tolerance = NumericalPropagator.tolerances(0.001, KO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
// setting of the field propagator, we used the numerical one in order to add the third body attraction
// and the holmes featherstone force models
FieldNumericalPropagator<DerivativeStructure> numProp = new FieldNumericalPropagator<>(field, integrator);
numProp.setOrbitType(type);
numProp.setInitialState(SS_0);
numProp.addForceModel(fModel_Sun);
numProp.addForceModel(fModel_Moon);
numProp.addForceModel(fModel_HFAM);
// with the master mode we will calulcate and print the error on every fixed step on the file error.txt
// we defined the StepHandler to do that giving him the random number generator,
// the size of the montecarlo simulation and the initial date
numProp.setMasterMode(zero.add(int_step), new MyStepHandler<DerivativeStructure>(rand_gen, montecarlo_size, date_0, PW));
//
long START = System.nanoTime();
FieldSpacecraftState<DerivativeStructure> finalState = numProp.propagate(date_0.shiftedBy(final_Dt));
long STOP = System.nanoTime();
System.out.println((STOP - START) / 1E6 + " ms");
System.out.println(finalState.getDate());
PW.close();
}
use of org.orekit.forces.gravity.ThirdBodyAttraction in project Orekit by CS-SI.
the class KalmanOrbitDeterminationTest method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
Aggregations