use of org.orekit.forces.drag.atmosphere.Atmosphere in project Orekit by CS-SI.
the class DSSTPropagatorTest method testIssue339WithAccelerations.
@Test
public void testIssue339WithAccelerations() throws OrekitException {
final SpacecraftState osculatingState = getLEOStatePropagatedBy30Minutes();
final CelestialBody sun = CelestialBodyFactory.getSun();
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final BoxAndSolarArraySpacecraft boxAndWing = new BoxAndSolarArraySpacecraft(5.0, 2.0, 2.0, sun, 50.0, Vector3D.PLUS_J, 2.0, 0.1, 0.2, 0.6);
final Atmosphere atmosphere = new HarrisPriester(CelestialBodyFactory.getSun(), earth, 6);
final AttitudeProvider attitudeProvider = new LofOffset(osculatingState.getFrame(), LOFType.VVLH, RotationOrder.XYZ, 0.0, 0.0, 0.0);
// Surface force models that require an attitude provider
final Collection<DSSTForceModel> forces = new ArrayList<DSSTForceModel>();
forces.add(new DSSTAtmosphericDrag(atmosphere, boxAndWing));
final SpacecraftState meanState = DSSTPropagator.computeMeanState(osculatingState, attitudeProvider, forces);
final SpacecraftState computedOsculatingState = DSSTPropagator.computeOsculatingState(meanState, attitudeProvider, forces);
Assert.assertEquals(0.0, Vector3D.distance(osculatingState.getPVCoordinates().getPosition(), computedOsculatingState.getPVCoordinates().getPosition()), 5.0e-6);
}
use of org.orekit.forces.drag.atmosphere.Atmosphere in project Orekit by CS-SI.
the class DSSTPropagatorTest method testIssue339.
@Test
public void testIssue339() throws OrekitException {
final SpacecraftState osculatingState = getLEOState();
final CelestialBody sun = CelestialBodyFactory.getSun();
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final BoxAndSolarArraySpacecraft boxAndWing = new BoxAndSolarArraySpacecraft(5.0, 2.0, 2.0, sun, 50.0, Vector3D.PLUS_J, 2.0, 0.1, 0.2, 0.6);
final Atmosphere atmosphere = new HarrisPriester(CelestialBodyFactory.getSun(), earth, 6);
final AttitudeProvider attitudeProvider = new LofOffset(osculatingState.getFrame(), LOFType.VVLH, RotationOrder.XYZ, 0.0, 0.0, 0.0);
// Surface force models that require an attitude provider
final Collection<DSSTForceModel> forces = new ArrayList<DSSTForceModel>();
forces.add(new DSSTSolarRadiationPressure(sun, Constants.WGS84_EARTH_EQUATORIAL_RADIUS, boxAndWing));
forces.add(new DSSTAtmosphericDrag(atmosphere, boxAndWing));
final SpacecraftState meanState = DSSTPropagator.computeMeanState(osculatingState, attitudeProvider, forces);
Assert.assertEquals(0.522, Vector3D.distance(osculatingState.getPVCoordinates().getPosition(), meanState.getPVCoordinates().getPosition()), 0.001);
final SpacecraftState computedOsculatingState = DSSTPropagator.computeOsculatingState(meanState, attitudeProvider, forces);
Assert.assertEquals(0.0, Vector3D.distance(osculatingState.getPVCoordinates().getPosition(), computedOsculatingState.getPVCoordinates().getPosition()), 5.0e-6);
}
use of org.orekit.forces.drag.atmosphere.Atmosphere in project Orekit by CS-SI.
the class DSSTPropagation method setForceModel.
/**
* Set DSST propagator force models
*
* @param parser input file parser
* @param unnormalized spherical harmonics provider
* @param earthFrame Earth rotating frame
* @param rotationRate central body rotation rate (rad/s)
* @param dsstProp DSST propagator
* @throws IOException
* @throws OrekitException
*/
private void setForceModel(final KeyValueFileParser<ParameterKey> parser, final UnnormalizedSphericalHarmonicsProvider unnormalized, final Frame earthFrame, final double rotationRate, final DSSTPropagator dsstProp) throws IOException, OrekitException {
final double ae = unnormalized.getAe();
final int degree = parser.getInt(ParameterKey.CENTRAL_BODY_DEGREE);
final int order = parser.getInt(ParameterKey.CENTRAL_BODY_ORDER);
if (order > degree) {
throw new IOException("Potential order cannot be higher than potential degree");
}
// Central Body Force Model with un-normalized coefficients
dsstProp.addForceModel(new DSSTZonal(unnormalized, parser.getInt(ParameterKey.MAX_DEGREE_ZONAL_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_ECCENTRICITY_POWER_ZONAL_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_FREQUENCY_TRUE_LONGITUDE_ZONAL_SHORT_PERIODS)));
dsstProp.addForceModel(new DSSTTesseral(earthFrame, rotationRate, unnormalized, parser.getInt(ParameterKey.MAX_DEGREE_TESSERAL_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_ORDER_TESSERAL_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_ECCENTRICITY_POWER_TESSERAL_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_FREQUENCY_MEAN_LONGITUDE_TESSERAL_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_DEGREE_TESSERAL_M_DAILIES_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_ORDER_TESSERAL_M_DAILIES_SHORT_PERIODS), parser.getInt(ParameterKey.MAX_ECCENTRICITY_POWER_TESSERAL_M_DAILIES_SHORT_PERIODS)));
// 3rd body (SUN)
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
dsstProp.addForceModel(new DSSTThirdBody(CelestialBodyFactory.getSun()));
}
// 3rd body (MOON)
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
dsstProp.addForceModel(new DSSTThirdBody(CelestialBodyFactory.getMoon()));
}
// Drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final OneAxisEllipsoid earth = new OneAxisEllipsoid(ae, Constants.WGS84_EARTH_FLATTENING, earthFrame);
final Atmosphere atm = new HarrisPriester(CelestialBodyFactory.getSun(), earth, 6);
dsstProp.addForceModel(new DSSTAtmosphericDrag(atm, parser.getDouble(ParameterKey.DRAG_CD), parser.getDouble(ParameterKey.DRAG_SF)));
}
// Solar Radiation Pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
dsstProp.addForceModel(new DSSTSolarRadiationPressure(parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR), parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_SF), CelestialBodyFactory.getSun(), ae));
}
}
use of org.orekit.forces.drag.atmosphere.Atmosphere in project Orekit by CS-SI.
the class KalmanOrbitDeterminationTest method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
use of org.orekit.forces.drag.atmosphere.Atmosphere in project Orekit by CS-SI.
the class OrbitDeterminationTest method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
Aggregations