use of org.hipparchus.ode.ODEStateAndDerivative in project Orekit by CS-SI.
the class TimeStampedAngularCoordinatesTest method interpolationErrors.
private double[] interpolationErrors(final TimeStampedAngularCoordinates reference, double dt) throws OrekitException {
final OrdinaryDifferentialEquation ode = new OrdinaryDifferentialEquation() {
public int getDimension() {
return 4;
}
public double[] computeDerivatives(final double t, final double[] q) {
final double omegaX = reference.getRotationRate().getX() + t * reference.getRotationAcceleration().getX();
final double omegaY = reference.getRotationRate().getY() + t * reference.getRotationAcceleration().getY();
final double omegaZ = reference.getRotationRate().getZ() + t * reference.getRotationAcceleration().getZ();
return new double[] { 0.5 * MathArrays.linearCombination(-q[1], omegaX, -q[2], omegaY, -q[3], omegaZ), 0.5 * MathArrays.linearCombination(q[0], omegaX, -q[3], omegaY, q[2], omegaZ), 0.5 * MathArrays.linearCombination(q[3], omegaX, q[0], omegaY, -q[1], omegaZ), 0.5 * MathArrays.linearCombination(-q[2], omegaX, q[1], omegaY, q[0], omegaZ) };
}
};
final List<TimeStampedAngularCoordinates> complete = new ArrayList<TimeStampedAngularCoordinates>();
ODEIntegrator integrator = new DormandPrince853Integrator(1.0e-6, 1.0, 1.0e-12, 1.0e-12);
integrator.addStepHandler(new StepNormalizer(dt / 2000, new ODEFixedStepHandler() {
public void handleStep(ODEStateAndDerivative state, boolean isLast) {
final double t = state.getTime();
final double[] q = state.getPrimaryState();
complete.add(new TimeStampedAngularCoordinates(reference.getDate().shiftedBy(t), new Rotation(q[0], q[1], q[2], q[3], true), new Vector3D(1, reference.getRotationRate(), t, reference.getRotationAcceleration()), reference.getRotationAcceleration()));
}
}));
double[] y = new double[] { reference.getRotation().getQ0(), reference.getRotation().getQ1(), reference.getRotation().getQ2(), reference.getRotation().getQ3() };
integrator.integrate(ode, new ODEState(0, y), dt);
List<TimeStampedAngularCoordinates> sample = new ArrayList<TimeStampedAngularCoordinates>();
sample.add(complete.get(0));
sample.add(complete.get(complete.size() / 2));
sample.add(complete.get(complete.size() - 1));
double maxRotationError = 0;
double maxRateError = 0;
double maxAccelerationError = 0;
for (TimeStampedAngularCoordinates acRef : complete) {
TimeStampedAngularCoordinates interpolated = TimeStampedAngularCoordinates.interpolate(acRef.getDate(), AngularDerivativesFilter.USE_RRA, sample);
double rotationError = Rotation.distance(acRef.getRotation(), interpolated.getRotation());
double rateError = Vector3D.distance(acRef.getRotationRate(), interpolated.getRotationRate());
double accelerationError = Vector3D.distance(acRef.getRotationAcceleration(), interpolated.getRotationAcceleration());
maxRotationError = FastMath.max(maxRotationError, rotationError);
maxRateError = FastMath.max(maxRateError, rateError);
maxAccelerationError = FastMath.max(maxAccelerationError, accelerationError);
}
return new double[] { maxRotationError, maxRateError, maxAccelerationError };
}
use of org.hipparchus.ode.ODEStateAndDerivative in project Orekit by CS-SI.
the class IntegratedEphemeris method basicPropagate.
/**
* {@inheritDoc}
*/
@Override
protected SpacecraftState basicPropagate(final AbsoluteDate date) throws OrekitException {
try {
final ODEStateAndDerivative os = getInterpolatedState(date);
SpacecraftState state = mapper.mapArrayToState(mapper.mapDoubleToDate(os.getTime(), date), os.getPrimaryState(), os.getPrimaryDerivative(), meanOrbit);
for (Map.Entry<String, double[]> initial : unmanaged.entrySet()) {
state = state.addAdditionalState(initial.getKey(), initial.getValue());
}
return state;
} catch (OrekitExceptionWrapper oew) {
throw oew.getException();
}
}
use of org.hipparchus.ode.ODEStateAndDerivative in project Orekit by CS-SI.
the class AbstractIntegratedPropagator method propagate.
/**
* Propagation with or without event detection.
* @param tEnd target date to which orbit should be propagated
* @param activateHandlers if true, step and event handlers should be activated
* @return state at end of propagation
* @exception OrekitException if orbit cannot be propagated
*/
protected SpacecraftState propagate(final AbsoluteDate tEnd, final boolean activateHandlers) throws OrekitException {
try {
if (getInitialState().getDate().equals(tEnd)) {
// don't extrapolate
return getInitialState();
}
// space dynamics view
stateMapper = createMapper(getInitialState().getDate(), stateMapper.getMu(), stateMapper.getOrbitType(), stateMapper.getPositionAngleType(), stateMapper.getAttitudeProvider(), getInitialState().getFrame());
// set propagation orbit type
final Orbit initialOrbit = stateMapper.getOrbitType().convertType(getInitialState().getOrbit());
if (Double.isNaN(getMu())) {
setMu(initialOrbit.getMu());
}
if (getInitialState().getMass() <= 0.0) {
throw new OrekitException(OrekitMessages.SPACECRAFT_MASS_BECOMES_NEGATIVE, getInitialState().getMass());
}
integrator.clearEventHandlers();
// set up events added by user
setUpUserEventDetectors();
// convert space flight dynamics API to math API
final ODEState mathInitialState = createInitialState(getInitialIntegrationState());
final ExpandableODE mathODE = createODE(integrator, mathInitialState);
equationsMapper = mathODE.getMapper();
// initialize mode handler
if (modeHandler != null) {
modeHandler.initialize(activateHandlers, tEnd);
}
// mathematical integration
final ODEStateAndDerivative mathFinalState;
try {
beforeIntegration(getInitialState(), tEnd);
mathFinalState = integrator.integrate(mathODE, mathInitialState, tEnd.durationFrom(getInitialState().getDate()));
afterIntegration();
} catch (OrekitExceptionWrapper oew) {
throw oew.getException();
}
// get final state
SpacecraftState finalState = stateMapper.mapArrayToState(stateMapper.mapDoubleToDate(mathFinalState.getTime(), tEnd), mathFinalState.getPrimaryState(), mathFinalState.getPrimaryDerivative(), meanOrbit);
finalState = updateAdditionalStates(finalState);
for (int i = 0; i < additionalEquations.size(); ++i) {
final double[] secondary = mathFinalState.getSecondaryState(i + 1);
finalState = finalState.addAdditionalState(additionalEquations.get(i).getName(), secondary);
}
if (resetAtEnd) {
resetInitialState(finalState);
setStartDate(finalState.getDate());
}
return finalState;
} catch (MathRuntimeException mre) {
throw OrekitException.unwrap(mre);
}
}
use of org.hipparchus.ode.ODEStateAndDerivative in project Orekit by CS-SI.
the class AngularCoordinatesTest method testShiftWithAcceleration.
@Test
public void testShiftWithAcceleration() throws OrekitException {
double rate = 2 * FastMath.PI / (12 * 60);
double acc = 0.001;
double dt = 1.0;
int n = 2000;
final AngularCoordinates quadratic = new AngularCoordinates(Rotation.IDENTITY, new Vector3D(rate, Vector3D.PLUS_K), new Vector3D(acc, Vector3D.PLUS_J));
final AngularCoordinates linear = new AngularCoordinates(quadratic.getRotation(), quadratic.getRotationRate(), Vector3D.ZERO);
final OrdinaryDifferentialEquation ode = new OrdinaryDifferentialEquation() {
public int getDimension() {
return 4;
}
public double[] computeDerivatives(final double t, final double[] q) {
final double omegaX = quadratic.getRotationRate().getX() + t * quadratic.getRotationAcceleration().getX();
final double omegaY = quadratic.getRotationRate().getY() + t * quadratic.getRotationAcceleration().getY();
final double omegaZ = quadratic.getRotationRate().getZ() + t * quadratic.getRotationAcceleration().getZ();
return new double[] { 0.5 * MathArrays.linearCombination(-q[1], omegaX, -q[2], omegaY, -q[3], omegaZ), 0.5 * MathArrays.linearCombination(q[0], omegaX, -q[3], omegaY, q[2], omegaZ), 0.5 * MathArrays.linearCombination(q[3], omegaX, q[0], omegaY, -q[1], omegaZ), 0.5 * MathArrays.linearCombination(-q[2], omegaX, q[1], omegaY, q[0], omegaZ) };
}
};
ODEIntegrator integrator = new DormandPrince853Integrator(1.0e-6, 1.0, 1.0e-12, 1.0e-12);
integrator.addStepHandler(new StepNormalizer(dt / n, new ODEFixedStepHandler() {
public void handleStep(ODEStateAndDerivative s, boolean isLast) {
final double t = s.getTime();
final double[] y = s.getPrimaryState();
Rotation reference = new Rotation(y[0], y[1], y[2], y[3], true);
// the error in shiftedBy taking acceleration into account is cubic
double expectedCubicError = 1.4544e-6 * t * t * t;
Assert.assertEquals(expectedCubicError, Rotation.distance(reference, quadratic.shiftedBy(t).getRotation()), 0.0001 * expectedCubicError);
// the error in shiftedBy not taking acceleration into account is quadratic
double expectedQuadraticError = 5.0e-4 * t * t;
Assert.assertEquals(expectedQuadraticError, Rotation.distance(reference, linear.shiftedBy(t).getRotation()), 0.00001 * expectedQuadraticError);
}
}));
double[] y = new double[] { quadratic.getRotation().getQ0(), quadratic.getRotation().getQ1(), quadratic.getRotation().getQ2(), quadratic.getRotation().getQ3() };
integrator.integrate(ode, new ODEState(0, y), dt);
}
Aggregations