use of org.jikesrvm.classloader.NormalMethod in project JikesRVM by JikesRVM.
the class TestingTools method getNoArgumentConstructor.
public static NormalMethod getNoArgumentConstructor(Class<?> declaringClass) throws Exception {
RVMType type = java.lang.JikesRVMSupport.getTypeForClass(declaringClass);
RVMClass clazz = type.asClass();
RVMMethod[] constructors = clazz.getConstructorMethods();
for (RVMMethod method : constructors) {
if (method.getParameterTypes().length == 0) {
return (NormalMethod) method;
}
}
throw new NoSuchMethodException("Did not find a no-argument constructor!");
}
use of org.jikesrvm.classloader.NormalMethod in project JikesRVM by JikesRVM.
the class DefaultInlineOracle method shouldInline.
@Override
public InlineDecision shouldInline(final CompilationState state) {
final OptOptions opts = state.getOptions();
final boolean verbose = opts.PRINT_DETAILED_INLINE_REPORT;
if (!opts.INLINE) {
return NO("inlining not enabled");
}
final RVMMethod staticCallee = state.obtainTarget();
final NormalMethod rootMethod = state.getRootMethod();
final RVMMethod caller = state.getMethod();
final int bcIndex = state.getRealBytecodeIndex();
if (verbose)
VM.sysWriteln("Begin inline decision for " + "<" + caller + "," + bcIndex + "," + staticCallee + ">");
// Stage 1: We definitely don't inline certain methods
if (!state.isInvokeInterface()) {
if (staticCallee.isNative()) {
reportUnguardedDecisionIfVerbose("NO: native method", verbose);
return NO("native method");
}
if (hasNoInlinePragma(staticCallee, state)) {
reportUnguardedDecisionIfVerbose("NO: pragmaNoInline", verbose);
return NO("pragmaNoInline");
}
// traces (see StackTrace).
if (staticCallee.isObjectInitializer() && staticCallee.getDeclaringClass().isAssignableToThrowable()) {
reportUnguardedDecisionIfVerbose("NO: constructor of class assignable to throwable", verbose);
return NO("constructor of class assignable to throwable");
}
}
// at worse replace one call instruction with another one).
if (!state.isInvokeInterface() && !staticCallee.isAbstract()) {
// above test passes
if (state.getHasPreciseTarget() || !needsGuard(staticCallee)) {
// call is guardless
int inlinedSizeEstimate = inlinedSizeEstimate((NormalMethod) staticCallee, state);
if (inlinedSizeEstimate < opts.INLINE_MAX_ALWAYS_INLINE_TARGET_SIZE) {
// inlining is desirable
if (!state.getSequence().containsMethod(staticCallee)) {
// not recursive
reportUnguardedDecisionIfVerbose("YES: trivial guardless inline", verbose);
return YES(staticCallee, "trivial inline");
}
}
if (hasInlinePragma(staticCallee, state)) {
// inlining is desirable
if (!state.getSequence().containsMethod(staticCallee)) {
// not recursive
reportUnguardedDecisionIfVerbose("YES: pragma inline", verbose);
return YES(staticCallee, "pragma inline");
}
}
}
}
if (opts.getOptLevel() == 0) {
// at opt level 0, trivial unguarded inlines are the only kind we consider
reportUnguardedDecisionIfVerbose("NO: only do trivial inlines at O0", verbose);
return NO("Only do trivial inlines at O0");
}
// than faster boot image compilation.
if (VM.runningVM && rootMethod.inlinedSizeEstimate() > opts.INLINE_MASSIVE_METHOD_SIZE) {
reportUnguardedDecisionIfVerbose("NO: only do trivial inlines into massive methods when the VM is running", verbose);
return NO("Root method is massive; no non-trivial inlines");
}
// Stage 3: Determine based on profile data and static information
// what are the possible targets of this call.
WeightedCallTargets targets = null;
boolean purelyStatic = true;
if (Controller.dcgAvailable() && Controller.options.ADAPTIVE_INLINING) {
targets = Controller.dcg.getCallTargets(caller, bcIndex);
if (targets != null) {
reportProfilingIfVerbose("Found profile data", verbose);
purelyStatic = false;
WeightedCallTargets filteredTargets = targets.filter(staticCallee, state.getHasPreciseTarget());
if (targets != filteredTargets) {
reportProfilingIfVerbose("Profiled callees filtered based on static information", verbose);
targets = filteredTargets;
if (targets == null) {
reportProfilingIfVerbose("After filterting no profile data...", verbose);
// After filtering, no matching profile data, fall back to
// static information to avoid degradations
targets = WeightedCallTargets.create(staticCallee, 0);
purelyStatic = true;
}
}
}
}
// we are inspecting it to determine how/whether to do the inline guard.
synchronized (RVMClass.classLoadListener) {
boolean guardOverrideOnStaticCallee = false;
if (targets == null) {
reportUnguardedDecisionIfVerbose("no profile data", verbose);
// be able to share all the decision making logic.
if (state.isInvokeInterface()) {
if (opts.INLINE_GUARDED_INTERFACES) {
RVMMethod singleImpl = InterfaceHierarchy.getUniqueImplementation(staticCallee);
if (singleImpl != null && hasBody(singleImpl)) {
if (verbose) {
VM.sysWriteln("\tFound a single implementation " + singleImpl + " of an interface method " + staticCallee);
}
targets = WeightedCallTargets.create(singleImpl, 0);
guardOverrideOnStaticCallee = true;
}
}
} else {
// invokestatic, invokevirtual, invokespecial
if (staticCallee.isAbstract()) {
// look for single non-abstract implementation of the abstract method
RVMClass klass = staticCallee.getDeclaringClass();
while (true) {
RVMClass[] subClasses = klass.getSubClasses();
// multiple subclasses => multiple targets
if (subClasses.length != 1)
break;
RVMMethod singleImpl = subClasses[0].findDeclaredMethod(staticCallee.getName(), staticCallee.getDescriptor());
if (singleImpl != null && !singleImpl.isAbstract()) {
// found something
reportProfilingIfVerbose("single impl of abstract method", verbose);
targets = WeightedCallTargets.create(singleImpl, 0);
guardOverrideOnStaticCallee = true;
break;
}
// keep crawling down the hierarchy
klass = subClasses[0];
}
} else {
targets = WeightedCallTargets.create(staticCallee, 0);
}
}
}
// If there is a precise target, then targets contains exactly that target method.
if (targets == null)
return NO("No potential targets identified");
// Stage 4: We have one or more targets. Determine what if anything should be done with them.
final ArrayList<RVMMethod> methodsToInline = new ArrayList<RVMMethod>();
final ArrayList<Boolean> methodsNeedGuard = new ArrayList<Boolean>();
final double callSiteWeight = targets.totalWeight();
// real closures anyone?
final boolean goosc = guardOverrideOnStaticCallee;
// real closures anyone?
final boolean ps = purelyStatic;
targets.visitTargets(new WeightedCallTargets.Visitor() {
@Override
public void visit(RVMMethod callee, double weight) {
if (hasBody(callee)) {
reportInitialProfileState(verbose, callee, weight);
// Don't inline recursively and respect no inline pragmas
InlineSequence seq = state.getSequence();
if (seq.containsMethod(callee)) {
reportSelectionIfVerbose("Reject: recursive", verbose);
return;
}
if (hasNoInlinePragma(callee, state)) {
reportSelectionIfVerbose("Reject: noinline pragma", verbose);
return;
}
// more or less figure out the guard situation early -- impacts size estimate.
boolean needsGuard = !state.getHasPreciseTarget() && (staticCallee != callee || needsGuard(staticCallee));
if (needsGuard && isForbiddenSpeculation(state.getRootMethod(), callee)) {
reportSelectionIfVerbose("Reject: forbidden speculation", verbose);
return;
}
boolean currentlyFinal = (goosc || (staticCallee == callee)) && isCurrentlyFinal(callee, !opts.guardWithClassTest());
boolean preEx = needsGuard && state.getIsExtant() && opts.INLINE_PREEX && currentlyFinal;
if (needsGuard && !preEx) {
if (!opts.INLINE_GUARDED) {
reportSelectionIfVerbose("Reject: guarded inlining disabled", verbose);
return;
}
if (!currentlyFinal && ps) {
reportSelectionIfVerbose("Reject: multiple targets and no profile data", verbose);
return;
}
}
// Estimate cost of performing this inlining action.
// Includes cost of guard & off-branch call if they are going to be generated.
boolean decideYes = false;
if (hasInlinePragma(callee, state)) {
reportSelectionIfVerbose("Select: pragma inline", verbose);
decideYes = true;
} else {
// Preserve previous inlining decisions
// Not the best thing in the world due to phase shifts, but
// it does buy some degree of stability. So, it is probably the lesser
// of two evils.
CompiledMethod prev = state.getRootMethod().getCurrentCompiledMethod();
if (prev != null && prev.getCompilerType() == CompiledMethod.OPT) {
if (((OptCompiledMethod) prev).getMCMap().hasInlinedEdge(caller, bcIndex, callee)) {
reportSelectionIfVerbose("Select: Previously inlined", verbose);
decideYes = true;
}
}
if (!decideYes) {
int inlinedSizeEstimate = inlinedSizeEstimate((NormalMethod) callee, state);
int cost = inliningActionCost(inlinedSizeEstimate, needsGuard, preEx, opts);
int maxCost = opts.INLINE_MAX_TARGET_SIZE;
if (callSiteWeight > Controller.options.INLINE_AI_SEED_MULTIPLIER) {
// real profile data with enough samples for us to trust it.
// Use weight and shape of call site distribution to compute
// a higher maxCost.
double fractionOfSample = weight / callSiteWeight;
if (needsGuard && fractionOfSample < opts.INLINE_AI_MIN_CALLSITE_FRACTION) {
// This call accounts for less than INLINE_AI_MIN_CALLSITE_FRACTION
// of the profiled targets at this call site.
// It is highly unlikely to be profitable to inline it.
reportSelectionIfVerbose("Reject: less than INLINE_AI_MIN_CALLSITE_FRACTION of distribution", verbose);
maxCost = 0;
} else {
if (cost > maxCost) {
/* We're going to increase the maximum callee size (maxCost) we're willing
* to inline based on how "hot" (what % of the total weight in the
* dynamic call graph) the edge is.
*/
double adjustedWeight = AdaptiveInlining.adjustedWeight(weight);
if (adjustedWeight > Controller.options.INLINE_AI_HOT_CALLSITE_THRESHOLD) {
/* A truly hot edge; use the max allowable callee size */
maxCost = opts.INLINE_AI_MAX_TARGET_SIZE;
} else {
/* A warm edge, we will use a value between the static default and the max allowable.
* The code below simply does a linear interpolation between 2x static default
* and max allowable.
* Other alternatives would be to do a log interpolation or some other step function.
*/
int range = opts.INLINE_AI_MAX_TARGET_SIZE - 2 * opts.INLINE_MAX_TARGET_SIZE;
double slope = (range) / Controller.options.INLINE_AI_HOT_CALLSITE_THRESHOLD;
int scaledAdj = (int) (slope * adjustedWeight);
maxCost += opts.INLINE_MAX_TARGET_SIZE + scaledAdj;
}
}
}
}
// Somewhat bogus, but if we get really deeply inlined we start backing off.
int curDepth = state.getInlineDepth();
if (curDepth > opts.INLINE_MAX_INLINE_DEPTH) {
maxCost /= (curDepth - opts.INLINE_MAX_INLINE_DEPTH + 1);
}
decideYes = cost <= maxCost;
if (decideYes) {
reportSelectionIfVerbose("Accept: cost of " + cost + " was below threshold " + maxCost, verbose);
} else {
reportSelectionIfVerbose("Reject: cost of " + cost + " was above threshold " + maxCost, verbose);
}
}
}
if (decideYes) {
// Ok, we're going to inline it.
// Record that and also whether or not we think it needs a guard.
methodsToInline.add(callee);
if (preEx) {
ClassLoadingDependencyManager cldm = (ClassLoadingDependencyManager) RVMClass.classLoadListener;
if (ClassLoadingDependencyManager.TRACE || ClassLoadingDependencyManager.DEBUG) {
cldm.report("PREEX_INLINE: Inlined " + callee + " into " + caller);
}
cldm.addNotOverriddenDependency(callee, state.getCompiledMethod());
if (goosc) {
cldm.addNotOverriddenDependency(staticCallee, state.getCompiledMethod());
}
methodsNeedGuard.add(Boolean.FALSE);
} else {
methodsNeedGuard.add(needsGuard);
}
}
}
}
private void reportInitialProfileState(final boolean verbose, RVMMethod callee, double weight) {
double adjustedWeight = AdaptiveInlining.adjustedWeight(weight);
String sampleString = " samples (";
if (Double.isNaN(adjustedWeight)) {
sampleString += "no DCG available)";
} else {
sampleString += (100 * adjustedWeight) + "%)";
}
reportProfilingIfVerbose("Evaluating target " + callee + " with " + weight + sampleString, verbose);
}
});
// Stage 5: Choose guards and package up the results in an InlineDecision object
if (methodsToInline.isEmpty()) {
InlineDecision d = NO("No desirable targets");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
} else if (methodsToInline.size() == 1) {
RVMMethod target = methodsToInline.get(0);
boolean needsGuard = methodsNeedGuard.get(0);
if (needsGuard) {
if ((guardOverrideOnStaticCallee || target == staticCallee) && isCurrentlyFinal(target, !opts.guardWithClassTest())) {
InlineDecision d = guardedYES(target, chooseGuard(caller, target, staticCallee, state, true), "Guarded inline of single static target");
/*
* Determine if it is allowable to put an OSR point in the failed case of
* the guarded inline instead of generating a real call instruction.
* There are several conditions that must be met for this to be allowable:
* (1) OSR guarded inlining and recompilation must both be enabled
* (2) The current context must be an interruptible method
* (3) The application must be started. This is a rough proxy for the VM
* being fully booted so we can actually get through the OSR process.
* Note: One implication of this requirement is that we will
* never put an OSR on an off-branch of a guarded inline in bootimage
* code.
*/
if (opts.OSR_GUARDED_INLINING && Controller.options.ENABLE_RECOMPILATION && caller.isInterruptible() && OptimizingCompiler.getAppStarted()) {
if (VM.VerifyAssertions)
VM._assert(VM.runningVM);
d.setOSRTestFailed();
}
if (verbose)
VM.sysWriteln("\tDecide: " + d);
return d;
} else {
InlineDecision d = guardedYES(target, chooseGuard(caller, target, staticCallee, state, false), "Guarded inlining of one potential target");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
}
} else {
InlineDecision d = YES(target, "Unique and desirable target");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
}
} else {
RVMMethod[] methods = new RVMMethod[methodsNeedGuard.size()];
byte[] guards = new byte[methods.length];
int idx = 0;
Iterator<RVMMethod> methodIterator = methodsToInline.iterator();
Iterator<Boolean> guardIterator = methodsNeedGuard.iterator();
while (methodIterator.hasNext()) {
RVMMethod target = methodIterator.next();
boolean needsGuard = guardIterator.next();
if (VM.VerifyAssertions) {
if (!needsGuard) {
VM.sysWriteln("Error, inlining for " + methodsToInline.size() + " targets");
VM.sysWriteln("Inlining into " + rootMethod + " at bytecode index " + bcIndex);
VM.sysWriteln("Method: " + target + " doesn't need a guard");
for (int i = 0; i < methodsToInline.size(); i++) {
VM.sysWriteln(" Method " + i + ": " + methodsToInline.get(i));
VM.sysWriteln(" NeedsGuard: " + methodsNeedGuard.get(i));
}
VM._assert(VM.NOT_REACHED);
}
}
methods[idx] = target;
guards[idx] = chooseGuard(caller, target, staticCallee, state, false);
idx++;
}
InlineDecision d = guardedYES(methods, guards, "Inline multiple targets");
reportGuardedDecisionIfVerbose(d, verbose);
return d;
}
}
}
use of org.jikesrvm.classloader.NormalMethod in project JikesRVM by JikesRVM.
the class BaselineExecutionStateExtractor method extractState.
/**
* Implements ExecutionStateExtractor.extractState.
*
* @param thread : the suspended thread, the registers and stack frames are used.
* @param osrFPoff : the osr method's stack frame offset
* @param methFPoff : the real method's stack frame offset
* @param cmid : the top application method ( system calls are unwounded ).
*
* return a ExecutionStateExtractor object.
*/
@Override
public ExecutionState extractState(RVMThread thread, Offset osrFPoff, Offset methFPoff, int cmid) {
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("BASE execStateExtractor starting ...");
}
byte[] stack = thread.getStack();
if (VM.VerifyAssertions) {
int fooCmid = Magic.getIntAtOffset(stack, methFPoff.plus(STACKFRAME_METHOD_ID_OFFSET));
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("fooCmid = " + fooCmid);
VM.sysWriteln(" cmid = " + cmid);
}
VM._assert(fooCmid == cmid);
}
ArchBaselineCompiledMethod fooCM = (ArchBaselineCompiledMethod) CompiledMethods.getCompiledMethod(cmid);
NormalMethod fooM = (NormalMethod) fooCM.getMethod();
VM.disableGC();
Address rowIP = Magic.objectAsAddress(stack).loadAddress(osrFPoff.plus(STACKFRAME_RETURN_ADDRESS_OFFSET));
Offset ipOffset = fooCM.getInstructionOffset(rowIP);
VM.enableGC();
// CAUTION: IP Offset should point to next instruction
int bcIndex = fooCM.findBytecodeIndexForInstruction(ipOffset.plus(INSTRUCTION_WIDTH));
// assertions
if (VM.VerifyAssertions) {
if (bcIndex == -1) {
VM.sysWriteln("osrFPoff = ", osrFPoff);
VM.sysWriteln("instr_beg = ", Magic.objectAsAddress(fooCM.getEntryCodeArray()));
for (int i = (osrFPoff.toInt()) - 10; i < (osrFPoff.toInt()) + 10; i++) {
VM.sysWriteln(" stack[" + i + "] = " + stack[i]);
}
Offset ipIndex = ipOffset.toWord().rsha(LG_INSTRUCTION_WIDTH).toOffset();
VM.sysWriteln("ipIndex : ", ipIndex);
VM.sysWriteln("bcIndex : " + bcIndex);
}
VM._assert(bcIndex != -1);
}
// create execution state object
ExecutionState state = new ExecutionState(thread, methFPoff, cmid, bcIndex, osrFPoff);
/* extract values for local and stack, but first of all
* we need to get type information for current PC.
*/
BytecodeTraverser typer = new BytecodeTraverser();
typer.computeLocalStackTypes(fooM, bcIndex);
byte[] localTypes = typer.getLocalTypes();
byte[] stackTypes = typer.getStackTypes();
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("BC Index : " + bcIndex);
VM.sysWrite("Local Types :");
for (byte localType : localTypes) {
VM.sysWrite(" " + (char) localType);
}
VM.sysWriteln();
VM.sysWrite("Stack Types :");
for (byte stackType : stackTypes) {
VM.sysWrite(" " + (char) stackType);
}
VM.sysWriteln();
}
// type. We should remove non-reference type
for (int i = 0, n = localTypes.length; i < n; i++) {
// then set the localType to uninitialized, see VM spec, bytecode verifier
if (localTypes[i] == ClassTypeCode) {
if (!fooCM.referenceMaps.isLocalRefType(fooM, ipOffset.plus(1 << LG_INSTRUCTION_WIDTH), i)) {
localTypes[i] = VoidTypeCode;
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("GC maps disagrees with type matcher at " + i + "th local");
VM.sysWriteln();
}
}
}
}
// go through the stack frame and extract values
// In the variable value list, we keep the order as follows:
// L0, L1, ..., S0, S1, ....
// adjust local offset and stack offset
// NOTE: do not call BaselineCompilerImpl.getFirstLocalOffset(method)
Offset startLocalOffset = methFPoff.plus(BaselineCompilerImpl.locationToOffset(fooCM.getGeneralLocalLocation(0)));
Offset stackOffset = methFPoff.plus(fooCM.getEmptyStackOffset());
// for locals
getVariableValue(stack, startLocalOffset, localTypes, fooCM, LOCAL, state);
// for stacks
getVariableValue(stack, stackOffset, stackTypes, fooCM, STACK, state);
if (VM.TraceOnStackReplacement) {
state.printState();
}
if (VM.TraceOnStackReplacement) {
VM.sysWriteln("BASE executionStateExtractor done ");
}
return state;
}
use of org.jikesrvm.classloader.NormalMethod in project JikesRVM by JikesRVM.
the class EntrypointHelper method getMethod.
/**
* Get description of virtual machine method.
* @param klass class containing method
* @param member member name - something like "invokestatic"
* @param descriptor member descriptor - something like "()V"
* @return corresponding RVMMethod
*/
public static NormalMethod getMethod(Class<?> klass, String member, String descriptor) {
if (!VM.runningVM) {
// avoid compiling this code into the boot image
try {
TypeReference klassTRef = TypeReference.findOrCreate(klass);
RVMClass cls = klassTRef.resolve().asClass();
cls.resolve();
Atom memName = Atom.findOrCreateAsciiAtom(member);
Atom memDescriptor = Atom.findOrCreateAsciiAtom(descriptor);
NormalMethod m = (NormalMethod) cls.findDeclaredMethod(memName, memDescriptor);
if (m != null) {
verifyPresenceOfEntrypointAnnotation(m);
m.setRuntimeServiceMethod(true);
return m;
}
} catch (Throwable t) {
throw new Error("Entrypoints.getField: can't resolve class=" + klass + " member=" + member + " desc=" + descriptor, t);
}
}
throw new Error("Entrypoints.getMethod: can't resolve class=" + klass + " method=" + member + " desc=" + descriptor);
}
use of org.jikesrvm.classloader.NormalMethod in project JikesRVM by JikesRVM.
the class EntrypointHelper method getMethod.
public static NormalMethod getMethod(String klass, String member, String descriptor, final boolean runtimeServiceMethod) {
NormalMethod m = (NormalMethod) getMember(klass, member, descriptor);
m.setRuntimeServiceMethod(runtimeServiceMethod);
return m;
}
Aggregations