use of org.orekit.bodies.GeodeticPoint in project Orekit by CS-SI.
the class KalmanOrbitDeterminationTest method createStationsData.
/**
* Set up stations.
* @param parser input file parser
* @param body central body
* @return name to station data map
* @exception OrekitException if some frame transforms cannot be computed
* @throws NoSuchElementException if input parameters are missing
*/
private Map<String, StationData> createStationsData(final KeyValueFileParser<ParameterKey> parser, final OneAxisEllipsoid body) throws OrekitException, NoSuchElementException {
final Map<String, StationData> stations = new HashMap<String, StationData>();
final String[] stationNames = parser.getStringArray(ParameterKey.GROUND_STATION_NAME);
final double[] stationLatitudes = parser.getAngleArray(ParameterKey.GROUND_STATION_LATITUDE);
final double[] stationLongitudes = parser.getAngleArray(ParameterKey.GROUND_STATION_LONGITUDE);
final double[] stationAltitudes = parser.getDoubleArray(ParameterKey.GROUND_STATION_ALTITUDE);
final boolean[] stationPositionEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_POSITION_ESTIMATED);
final double[] stationRangeSigma = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_SIGMA);
final double[] stationRangeBias = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS);
final double[] stationRangeBiasMin = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS_MIN);
final double[] stationRangeBiasMax = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS_MAX);
final boolean[] stationRangeBiasEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_BIAS_ESTIMATED);
final double[] stationRangeRateSigma = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_SIGMA);
final double[] stationRangeRateBias = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS);
final double[] stationRangeRateBiasMin = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_MIN);
final double[] stationRangeRateBiasMax = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_MAX);
final boolean[] stationRangeRateBiasEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_ESTIMATED);
final double[] stationAzimuthSigma = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_SIGMA);
final double[] stationAzimuthBias = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS);
final double[] stationAzimuthBiasMin = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS_MIN);
final double[] stationAzimuthBiasMax = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS_MAX);
final double[] stationElevationSigma = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_SIGMA);
final double[] stationElevationBias = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS);
final double[] stationElevationBiasMin = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS_MIN);
final double[] stationElevationBiasMax = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS_MAX);
final boolean[] stationAzElBiasesEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_AZ_EL_BIASES_ESTIMATED);
final boolean[] stationElevationRefraction = parser.getBooleanArray(ParameterKey.GROUND_STATION_ELEVATION_REFRACTION_CORRECTION);
final boolean[] stationRangeTropospheric = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_TROPOSPHERIC_CORRECTION);
for (int i = 0; i < stationNames.length; ++i) {
// the station itself
final GeodeticPoint position = new GeodeticPoint(stationLatitudes[i], stationLongitudes[i], stationAltitudes[i]);
final TopocentricFrame topo = new TopocentricFrame(body, position, stationNames[i]);
final GroundStation station = new GroundStation(topo);
station.getEastOffsetDriver().setSelected(stationPositionEstimated[i]);
station.getNorthOffsetDriver().setSelected(stationPositionEstimated[i]);
station.getZenithOffsetDriver().setSelected(stationPositionEstimated[i]);
// range
final double rangeSigma = stationRangeSigma[i];
final Bias<Range> rangeBias;
if (FastMath.abs(stationRangeBias[i]) >= Precision.SAFE_MIN || stationRangeBiasEstimated[i]) {
rangeBias = new Bias<Range>(new String[] { stationNames[i] + "/range bias" }, new double[] { stationRangeBias[i] }, new double[] { rangeSigma }, new double[] { stationRangeBiasMin[i] }, new double[] { stationRangeBiasMax[i] });
rangeBias.getParametersDrivers().get(0).setSelected(stationRangeBiasEstimated[i]);
} else {
// bias fixed to zero, we don't need to create a modifier for this
rangeBias = null;
}
// range rate
final double rangeRateSigma = stationRangeRateSigma[i];
final Bias<RangeRate> rangeRateBias;
if (FastMath.abs(stationRangeRateBias[i]) >= Precision.SAFE_MIN || stationRangeRateBiasEstimated[i]) {
rangeRateBias = new Bias<RangeRate>(new String[] { stationNames[i] + "/range rate bias" }, new double[] { stationRangeRateBias[i] }, new double[] { rangeRateSigma }, new double[] { stationRangeRateBiasMin[i] }, new double[] { stationRangeRateBiasMax[i] });
rangeRateBias.getParametersDrivers().get(0).setSelected(stationRangeRateBiasEstimated[i]);
} else {
// bias fixed to zero, we don't need to create a modifier for this
rangeRateBias = null;
}
// angular biases
final double[] azELSigma = new double[] { stationAzimuthSigma[i], stationElevationSigma[i] };
final Bias<AngularAzEl> azELBias;
if (FastMath.abs(stationAzimuthBias[i]) >= Precision.SAFE_MIN || FastMath.abs(stationElevationBias[i]) >= Precision.SAFE_MIN || stationAzElBiasesEstimated[i]) {
azELBias = new Bias<AngularAzEl>(new String[] { stationNames[i] + "/az bias", stationNames[i] + "/el bias" }, new double[] { stationAzimuthBias[i], stationElevationBias[i] }, azELSigma, new double[] { stationAzimuthBiasMin[i], stationElevationBiasMin[i] }, new double[] { stationAzimuthBiasMax[i], stationElevationBiasMax[i] });
azELBias.getParametersDrivers().get(0).setSelected(stationAzElBiasesEstimated[i]);
azELBias.getParametersDrivers().get(1).setSelected(stationAzElBiasesEstimated[i]);
} else {
// bias fixed to zero, we don't need to create a modifier for this
azELBias = null;
}
// Refraction correction
final AngularRadioRefractionModifier refractionCorrection;
if (stationElevationRefraction[i]) {
final double altitude = station.getBaseFrame().getPoint().getAltitude();
final AtmosphericRefractionModel refractionModel = new EarthITU453AtmosphereRefraction(altitude);
refractionCorrection = new AngularRadioRefractionModifier(refractionModel);
} else {
refractionCorrection = null;
}
// Tropospheric correction
final RangeTroposphericDelayModifier rangeTroposphericCorrection;
if (stationRangeTropospheric[i]) {
final SaastamoinenModel troposphericModel = SaastamoinenModel.getStandardModel();
rangeTroposphericCorrection = new RangeTroposphericDelayModifier(troposphericModel);
} else {
rangeTroposphericCorrection = null;
}
stations.put(stationNames[i], new StationData(station, rangeSigma, rangeBias, rangeRateSigma, rangeRateBias, azELSigma, azELBias, refractionCorrection, rangeTroposphericCorrection));
}
return stations;
}
use of org.orekit.bodies.GeodeticPoint in project Orekit by CS-SI.
the class NRLMSISE00 method getDensity.
/**
* {@inheritDoc}
*/
@Override
public double getDensity(final AbsoluteDate date, final Vector3D position, final Frame frame) throws OrekitException {
// check if data are available :
if ((date.compareTo(inputParams.getMaxDate()) > 0) || (date.compareTo(inputParams.getMinDate()) < 0)) {
throw new OrekitException(OrekitMessages.NO_SOLAR_ACTIVITY_AT_DATE, date, inputParams.getMinDate(), inputParams.getMaxDate());
}
// compute day number in current year and the seconds within the day
final DateTimeComponents dtc = date.getComponents(TimeScalesFactory.getUT1(IERSConventions.IERS_2010, true));
final int doy = dtc.getDate().getDayOfYear();
final double sec = dtc.getTime().getSecondsInLocalDay();
// compute geodetic position (km and °)
final GeodeticPoint inBody = earth.transform(position, frame, date);
final double alt = inBody.getAltitude() / 1000.;
final double lon = FastMath.toDegrees(inBody.getLongitude());
final double lat = FastMath.toDegrees(inBody.getLatitude());
// compute local solar time
final double lst = localSolarTime(date, position, frame);
// get solar activity data and compute
final Output out = new Output(doy, sec, lat, lon, lst, inputParams.getAverageFlux(date), inputParams.getDailyFlux(date), inputParams.getAp(date));
out.gtd7d(alt);
// return the local density
return out.getDensity(TOTAL_MASS);
}
use of org.orekit.bodies.GeodeticPoint in project Orekit by CS-SI.
the class Phasing method printGridPoints.
/**
* Print ground track grid point
* @param out output stream
* @param latitude point latitude
* @param ascending indicator for latitude crossing direction
* @param orbit phased orbit
* @param propagator propagator for orbit
* @param nbOrbits number of orbits in the cycle
* @exception OrekitException if orbit cannot be propagated
*/
private void printGridPoints(final PrintStream out, final double latitude, final boolean ascending, final Orbit orbit, final Propagator propagator, int nbOrbits) throws OrekitException {
propagator.resetInitialState(new SpacecraftState(orbit));
AbsoluteDate start = orbit.getDate();
// find the first latitude crossing
double period = orbit.getKeplerianPeriod();
double stepSize = period / 100;
SpacecraftState crossing = findFirstCrossing(latitude, ascending, start, start.shiftedBy(2 * period), stepSize, propagator);
// find all other latitude crossings from regular schedule
DecimalFormat fTime = new DecimalFormat("0000000.000", new DecimalFormatSymbols(Locale.US));
DecimalFormat fAngle = new DecimalFormat("000.00000", new DecimalFormatSymbols(Locale.US));
while (nbOrbits-- > 0) {
GeodeticPoint gp = earth.transform(crossing.getPVCoordinates().getPosition(), crossing.getFrame(), crossing.getDate());
out.println(fTime.format(crossing.getDate().durationFrom(start)) + " " + fAngle.format(FastMath.toDegrees(gp.getLatitude())) + " " + fAngle.format(FastMath.toDegrees(gp.getLongitude())) + " " + ascending);
final AbsoluteDate previousDate = crossing.getDate();
crossing = findLatitudeCrossing(latitude, previousDate.shiftedBy(period), previousDate.shiftedBy(2 * period), stepSize, period / 8, propagator);
period = crossing.getDate().durationFrom(previousDate);
}
}
use of org.orekit.bodies.GeodeticPoint in project Orekit by CS-SI.
the class Phasing method improveEarthPhasing.
/**
* Improve orbit to better match Earth phasing parameters.
* @param previous previous orbit
* @param nbOrbits number of orbits in the phasing cycle
* @param nbDays number of days in the phasing cycle
* @param propagator propagator to use
* @return an improved Earth phased orbit
* @exception OrekitException if orbit cannot be propagated
*/
private CircularOrbit improveEarthPhasing(CircularOrbit previous, int nbOrbits, int nbDays, Propagator propagator) throws OrekitException {
propagator.resetInitialState(new SpacecraftState(previous));
// find first ascending node
double period = previous.getKeplerianPeriod();
SpacecraftState firstState = findFirstCrossing(0.0, true, previous.getDate(), previous.getDate().shiftedBy(2 * period), 0.01 * period, propagator);
// go to next cycle, one orbit at a time
SpacecraftState state = firstState;
for (int i = 0; i < nbOrbits; ++i) {
final AbsoluteDate previousDate = state.getDate();
state = findLatitudeCrossing(0.0, previousDate.shiftedBy(period), previousDate.shiftedBy(2 * period), 0.01 * period, period, propagator);
period = state.getDate().durationFrom(previousDate);
}
double cycleDuration = state.getDate().durationFrom(firstState.getDate());
double deltaT;
if (((int) FastMath.rint(cycleDuration / Constants.JULIAN_DAY)) != nbDays) {
// we are very far from expected duration
deltaT = nbDays * Constants.JULIAN_DAY - cycleDuration;
} else {
// we are close to expected duration
GeodeticPoint startPoint = earth.transform(firstState.getPVCoordinates().getPosition(), firstState.getFrame(), firstState.getDate());
GeodeticPoint endPoint = earth.transform(state.getPVCoordinates().getPosition(), state.getFrame(), state.getDate());
double deltaL = MathUtils.normalizeAngle(endPoint.getLongitude() - startPoint.getLongitude(), 0.0);
deltaT = deltaL * Constants.JULIAN_DAY / (2 * FastMath.PI);
}
double deltaA = 2 * previous.getA() * deltaT / (3 * nbOrbits * previous.getKeplerianPeriod());
return new CircularOrbit(previous.getA() + deltaA, previous.getCircularEx(), previous.getCircularEy(), previous.getI(), previous.getRightAscensionOfAscendingNode(), previous.getAlphaV(), PositionAngle.TRUE, previous.getFrame(), previous.getDate(), previous.getMu());
}
use of org.orekit.bodies.GeodeticPoint in project Orekit by CS-SI.
the class Phasing method findLatitudeCrossing.
/**
* Find the state at which the reference latitude is crossed.
* @param latitude latitude to search for
* @param guessDate guess date for the crossing
* @param endDate maximal date not to overtake
* @param shift shift value used to evaluate the latitude function bracketing around the guess date
* @param maxShift maximum value that the shift value can take
* @param propagator propagator used
* @return state at latitude crossing time
* @throws OrekitException if state cannot be propagated
* @throws MathRuntimeException if latitude cannot be bracketed in the search interval
*/
private SpacecraftState findLatitudeCrossing(final double latitude, final AbsoluteDate guessDate, final AbsoluteDate endDate, final double shift, final double maxShift, final Propagator propagator) throws OrekitException, MathRuntimeException {
// function evaluating to 0 at latitude crossings
final UnivariateFunction latitudeFunction = new UnivariateFunction() {
/**
* {@inheritDoc}
*/
public double value(double x) {
try {
final SpacecraftState state = propagator.propagate(guessDate.shiftedBy(x));
final Vector3D position = state.getPVCoordinates(earth.getBodyFrame()).getPosition();
final GeodeticPoint point = earth.transform(position, earth.getBodyFrame(), state.getDate());
return point.getLatitude() - latitude;
} catch (OrekitException oe) {
throw new RuntimeException(oe);
}
}
};
// try to bracket the encounter
double span;
if (guessDate.shiftedBy(shift).compareTo(endDate) > 0) {
// Take a 1e-3 security margin
span = endDate.durationFrom(guessDate) - 1e-3;
} else {
span = shift;
}
while (!UnivariateSolverUtils.isBracketing(latitudeFunction, -span, span)) {
if (2 * span > maxShift) {
// let the Hipparchus exception be thrown
UnivariateSolverUtils.verifyBracketing(latitudeFunction, -span, span);
} else if (guessDate.shiftedBy(2 * span).compareTo(endDate) > 0) {
// Out of range :
return null;
}
// expand the search interval
span *= 2;
}
// find the encounter in the bracketed interval
final BaseUnivariateSolver<UnivariateFunction> solver = new BracketingNthOrderBrentSolver(0.1, 5);
final double dt = solver.solve(1000, latitudeFunction, -span, span);
return propagator.propagate(guessDate.shiftedBy(dt));
}
Aggregations