use of org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel in project Orekit by CS-SI.
the class AttitudesSequenceTest method testOutOfSyncCalls.
@Test
public void testOutOfSyncCalls() throws OrekitException {
// Initial state definition : date, orbit
final AbsoluteDate initialDate = new AbsoluteDate(2004, 01, 01, 23, 30, 00.000, TimeScalesFactory.getUTC());
final Vector3D position = new Vector3D(-6142438.668, 3492467.560, -25767.25680);
final Vector3D velocity = new Vector3D(505.8479685, 942.7809215, 7435.922231);
final Orbit initialOrbit = new KeplerianOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), initialDate, Constants.EIGEN5C_EARTH_MU);
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final TopocentricFrame volgograd = new TopocentricFrame(earth, new GeodeticPoint(FastMath.toRadians(48.7), FastMath.toRadians(44.5), 24.0), "Волгоград");
final AttitudesSequence attitudesSequence = new AttitudesSequence();
final double transitionTime = 250.0;
final AttitudeProvider nadirPointing = new NadirPointing(initialOrbit.getFrame(), earth);
final AttitudeProvider targetPointing = new TargetPointing(initialOrbit.getFrame(), volgograd.getPoint(), earth);
final ElevationDetector eventDetector = new ElevationDetector(volgograd).withConstantElevation(FastMath.toRadians(5.0)).withHandler(new ContinueOnEvent<>());
final Handler nadirToTarget = new Handler(nadirPointing, targetPointing);
attitudesSequence.addSwitchingCondition(nadirPointing, targetPointing, eventDetector, true, false, transitionTime, AngularDerivativesFilter.USE_RR, nadirToTarget);
final Handler targetToNadir = new Handler(targetPointing, nadirPointing);
attitudesSequence.addSwitchingCondition(targetPointing, nadirPointing, eventDetector, false, true, transitionTime, AngularDerivativesFilter.USE_RR, targetToNadir);
final double[][] tolerance = NumericalPropagator.tolerances(10.0, initialOrbit, initialOrbit.getType());
final AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(0.001, 300.0, tolerance[0], tolerance[1]);
final NumericalPropagator propagator = new NumericalPropagator(integrator);
GravityFieldFactory.addPotentialCoefficientsReader(new ICGEMFormatReader("g007_eigen_05c_coef", false));
propagator.addForceModel(new HolmesFeatherstoneAttractionModel(earth.getBodyFrame(), GravityFieldFactory.getNormalizedProvider(8, 8)));
propagator.setInitialState(new SpacecraftState(initialOrbit, nadirPointing.getAttitude(initialOrbit, initialOrbit.getDate(), initialOrbit.getFrame())));
propagator.setAttitudeProvider(attitudesSequence);
attitudesSequence.registerSwitchEvents(propagator);
propagator.setMasterMode(10, (state, isLast) -> {
Attitude nadirAttitude = nadirPointing.getAttitude(state.getOrbit(), state.getDate(), state.getFrame());
Attitude targetAttitude = targetPointing.getAttitude(state.getOrbit(), state.getDate(), state.getFrame());
Attitude stateAttitude = state.getAttitude();
if (nadirToTarget.dates.isEmpty() || state.getDate().durationFrom(nadirToTarget.dates.get(0)) < 0) {
// we are stabilized in nadir pointing, before first switch
checkEqualAttitudes(nadirAttitude, stateAttitude);
} else if (state.getDate().durationFrom(nadirToTarget.dates.get(0)) <= transitionTime) {
// we are in transition from nadir to target
checkBetweenAttitudes(nadirAttitude, targetAttitude, stateAttitude);
} else if (targetToNadir.dates.isEmpty() || state.getDate().durationFrom(targetToNadir.dates.get(0)) < 0) {
// we are stabilized in target pointing between the two switches
checkEqualAttitudes(targetAttitude, stateAttitude);
} else if (state.getDate().durationFrom(targetToNadir.dates.get(0)) <= transitionTime) {
// we are in transition from target to nadir
checkBetweenAttitudes(targetAttitude, nadirAttitude, stateAttitude);
} else {
// we are stabilized back in nadir pointing, after second switch
checkEqualAttitudes(nadirAttitude, stateAttitude);
}
});
propagator.propagate(initialDate.shiftedBy(6000));
}
use of org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel in project SpriteOrbits by ProjectPersephone.
the class SpriteProp method createPropagator.
/**
* Create a numerical propagator for a state.
* @param state state to propagate
* @param attitudeProvider provider for the attitude
* @param crossSection cross section of the object
* @param dragCoeff drag coefficient
*/
private Propagator createPropagator(final SpacecraftState state, final AttitudeProvider attitudeProvider, final double crossSection, final double dragCoeff) throws OrekitException {
// see https://www.orekit.org/static/architecture/propagation.html
// steps limits
final double minStep = 0.001;
final double maxStep = 1000;
final double initStep = 60;
// error control parameters (absolute and relative)
final double positionError = 10.0;
// we will propagate in Cartesian coordinates
final OrbitType orbitType = OrbitType.CARTESIAN;
final double[][] tolerances = NumericalPropagator.tolerances(positionError, state.getOrbit(), orbitType);
// set up mathematical integrator
AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tolerances[0], tolerances[1]);
integrator.setInitialStepSize(initStep);
// set up space dynamics propagator
NumericalPropagator propagator = new NumericalPropagator(integrator);
propagator.setOrbitType(orbitType);
// add gravity field force model
final NormalizedSphericalHarmonicsProvider gravityProvider = GravityFieldFactory.getNormalizedProvider(8, 8);
propagator.addForceModel(new HolmesFeatherstoneAttractionModel(earth.getBodyFrame(), gravityProvider));
// add atmospheric drag force model
propagator.addForceModel(new DragForce(new HarrisPriester(sun, earth), new SphericalSpacecraft(crossSection, dragCoeff, 0.0, 0.0)));
// set attitude mode
propagator.setAttitudeProvider(attitudeProvider);
propagator.setInitialState(state);
return propagator;
}
use of org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel in project Orekit by CS-SI.
the class KalmanOrbitDeterminationTest method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
use of org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel in project Orekit by CS-SI.
the class OrbitDeterminationTest method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
use of org.orekit.forces.gravity.HolmesFeatherstoneAttractionModel in project Orekit by CS-SI.
the class NumericalPropagatorTest method createPropagator.
private static synchronized NumericalPropagator createPropagator(SpacecraftState spacecraftState, OrbitType orbitType, PositionAngle angleType) throws OrekitException {
final double minStep = 0.001;
final double maxStep = 120.0;
final double positionTolerance = 0.1;
final int degree = 20;
final int order = 20;
final double spacecraftArea = 1.0;
final double spacecraftDragCoefficient = 2.0;
final double spacecraftReflectionCoefficient = 2.0;
// propagator main configuration
final double[][] tol = NumericalPropagator.tolerances(positionTolerance, spacecraftState.getOrbit(), orbitType);
final ODEIntegrator integrator = new DormandPrince853Integrator(minStep, maxStep, tol[0], tol[1]);
final NumericalPropagator np = new NumericalPropagator(integrator);
np.setOrbitType(orbitType);
np.setPositionAngleType(angleType);
np.setInitialState(spacecraftState);
// Earth gravity field
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final NormalizedSphericalHarmonicsProvider harmonicsGravityProvider = GravityFieldFactory.getNormalizedProvider(degree, order);
np.addForceModel(new HolmesFeatherstoneAttractionModel(earth.getBodyFrame(), harmonicsGravityProvider));
// Sun and Moon attraction
np.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
np.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
// atmospheric drag
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("Jan2000F10-edited-data\\.txt", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager.getInstance().feed(msafe.getSupportedNames(), msafe);
DTM2000 atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), earth);
np.addForceModel(new DragForce(atmosphere, new IsotropicDrag(spacecraftArea, spacecraftDragCoefficient)));
// solar radiation pressure
np.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), earth.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(spacecraftArea, spacecraftReflectionCoefficient)));
return np;
}
Aggregations