use of org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider in project Orekit by CS-SI.
the class DSSTPropagatorTest method testOsculatingToMeanState.
@Test
public void testOsculatingToMeanState() throws IllegalArgumentException, OrekitException {
final SpacecraftState meanState = getGEOState();
final UnnormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getUnnormalizedProvider(2, 0);
final Frame earthFrame = CelestialBodyFactory.getEarth().getBodyOrientedFrame();
DSSTForceModel zonal = new DSSTZonal(provider, 2, 1, 5);
DSSTForceModel tesseral = new DSSTTesseral(earthFrame, Constants.WGS84_EARTH_ANGULAR_VELOCITY, provider, 2, 0, 0, 2, 2, 0, 0);
final Collection<DSSTForceModel> forces = new ArrayList<DSSTForceModel>();
forces.add(zonal);
forces.add(tesseral);
final SpacecraftState osculatingState = DSSTPropagator.computeOsculatingState(meanState, null, forces);
// there are no Gaussian force models, we don't need an attitude provider
final SpacecraftState computedMeanState = DSSTPropagator.computeMeanState(osculatingState, null, forces);
Assert.assertEquals(meanState.getA(), computedMeanState.getA(), 2.0e-8);
Assert.assertEquals(0.0, Vector3D.distance(meanState.getPVCoordinates().getPosition(), computedMeanState.getPVCoordinates().getPosition()), 2.0e-8);
}
use of org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider in project Orekit by CS-SI.
the class EcksteinHechlerPropagatorTest method almostSphericalBody.
@Test
public void almostSphericalBody() throws OrekitException {
// Definition of initial conditions
// ---------------------------------
// with e around e = 1.4e-4 and i = 1.7 rad
Vector3D position = new Vector3D(3220103., 69623., 6449822.);
Vector3D velocity = new Vector3D(6414.7, -2006., -3180.);
AbsoluteDate initDate = AbsoluteDate.J2000_EPOCH.shiftedBy(584.);
Orbit initialOrbit = new EquinoctialOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), initDate, provider.getMu());
// Initialisation to simulate a Keplerian extrapolation
// To be noticed: in order to simulate a Keplerian extrapolation with the
// analytical
// extrapolator, one should put the zonal coefficients to 0. But due to
// numerical pbs
// one must put a non 0 value.
UnnormalizedSphericalHarmonicsProvider kepProvider = GravityFieldFactory.getUnnormalizedProvider(6.378137e6, 3.9860047e14, TideSystem.UNKNOWN, new double[][] { { 0 }, { 0 }, { 0.1e-10 }, { 0.1e-13 }, { 0.1e-13 }, { 0.1e-14 }, { 0.1e-14 } }, new double[][] { { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 }, { 0 } });
// Extrapolators definitions
// -------------------------
EcksteinHechlerPropagator extrapolatorAna = new EcksteinHechlerPropagator(initialOrbit, 1000.0, kepProvider);
KeplerianPropagator extrapolatorKep = new KeplerianPropagator(initialOrbit);
// Extrapolation at a final date different from initial date
// ---------------------------------------------------------
// extrapolation duration in seconds
double delta_t = 100.0;
AbsoluteDate extrapDate = initDate.shiftedBy(delta_t);
SpacecraftState finalOrbitAna = extrapolatorAna.propagate(extrapDate);
SpacecraftState finalOrbitKep = extrapolatorKep.propagate(extrapDate);
Assert.assertEquals(finalOrbitAna.getDate().durationFrom(extrapDate), 0.0, Utils.epsilonTest);
// comparison of each orbital parameters
Assert.assertEquals(finalOrbitAna.getA(), finalOrbitKep.getA(), 10 * Utils.epsilonTest * finalOrbitKep.getA());
Assert.assertEquals(finalOrbitAna.getEquinoctialEx(), finalOrbitKep.getEquinoctialEx(), Utils.epsilonE * finalOrbitKep.getE());
Assert.assertEquals(finalOrbitAna.getEquinoctialEy(), finalOrbitKep.getEquinoctialEy(), Utils.epsilonE * finalOrbitKep.getE());
Assert.assertEquals(MathUtils.normalizeAngle(finalOrbitAna.getHx(), finalOrbitKep.getHx()), finalOrbitKep.getHx(), Utils.epsilonAngle * FastMath.abs(finalOrbitKep.getI()));
Assert.assertEquals(MathUtils.normalizeAngle(finalOrbitAna.getHy(), finalOrbitKep.getHy()), finalOrbitKep.getHy(), Utils.epsilonAngle * FastMath.abs(finalOrbitKep.getI()));
Assert.assertEquals(MathUtils.normalizeAngle(finalOrbitAna.getLv(), finalOrbitKep.getLv()), finalOrbitKep.getLv(), Utils.epsilonAngle * FastMath.abs(finalOrbitKep.getLv()));
Assert.assertEquals(MathUtils.normalizeAngle(finalOrbitAna.getLE(), finalOrbitKep.getLE()), finalOrbitKep.getLE(), Utils.epsilonAngle * FastMath.abs(finalOrbitKep.getLE()));
Assert.assertEquals(MathUtils.normalizeAngle(finalOrbitAna.getLM(), finalOrbitKep.getLM()), finalOrbitKep.getLM(), Utils.epsilonAngle * FastMath.abs(finalOrbitKep.getLM()));
}
use of org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider in project Orekit by CS-SI.
the class DSSTPropagatorTest method testIssue157.
@Test
public void testIssue157() throws OrekitException {
Utils.setDataRoot("regular-data:potential/icgem-format");
GravityFieldFactory.addPotentialCoefficientsReader(new ICGEMFormatReader("^eigen-6s-truncated$", false));
UnnormalizedSphericalHarmonicsProvider nshp = GravityFieldFactory.getUnnormalizedProvider(8, 8);
Orbit orbit = new KeplerianOrbit(13378000, 0.05, 0, 0, FastMath.PI, 0, PositionAngle.MEAN, FramesFactory.getTOD(false), new AbsoluteDate(2003, 5, 6, TimeScalesFactory.getUTC()), nshp.getMu());
double period = orbit.getKeplerianPeriod();
double[][] tolerance = DSSTPropagator.tolerances(1.0, orbit);
AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(period / 100, period * 100, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(10 * period);
DSSTPropagator propagator = new DSSTPropagator(integrator, true);
OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getGTOD(false));
CelestialBody sun = CelestialBodyFactory.getSun();
CelestialBody moon = CelestialBodyFactory.getMoon();
propagator.addForceModel(new DSSTZonal(nshp, 8, 7, 17));
propagator.addForceModel(new DSSTTesseral(earth.getBodyFrame(), Constants.WGS84_EARTH_ANGULAR_VELOCITY, nshp, 8, 8, 4, 12, 8, 8, 4));
propagator.addForceModel(new DSSTThirdBody(sun));
propagator.addForceModel(new DSSTThirdBody(moon));
propagator.addForceModel(new DSSTAtmosphericDrag(new HarrisPriester(sun, earth), 2.1, 180));
propagator.addForceModel(new DSSTSolarRadiationPressure(1.2, 180, sun, earth.getEquatorialRadius()));
propagator.setInitialState(new SpacecraftState(orbit, 45.0), true);
SpacecraftState finalState = propagator.propagate(orbit.getDate().shiftedBy(30 * Constants.JULIAN_DAY));
// the following comparison is in fact meaningless
// the initial orbit is osculating the final orbit is a mean orbit
// and they are not considered at the same epoch
// we keep it only as is was an historical test
Assert.assertEquals(2189.4, orbit.getA() - finalState.getA(), 1.0);
propagator.setInitialState(new SpacecraftState(orbit, 45.0), false);
finalState = propagator.propagate(orbit.getDate().shiftedBy(30 * Constants.JULIAN_DAY));
// the following comparison is realistic
// both the initial orbit and final orbit are mean orbits
Assert.assertEquals(1478.05, orbit.getA() - finalState.getA(), 1.0);
}
use of org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider in project Orekit by CS-SI.
the class DSSTPropagatorTest method testShortPeriodCoefficients.
@Test
public void testShortPeriodCoefficients() throws OrekitException {
Utils.setDataRoot("regular-data:potential/icgem-format");
GravityFieldFactory.addPotentialCoefficientsReader(new ICGEMFormatReader("^eigen-6s-truncated$", false));
UnnormalizedSphericalHarmonicsProvider nshp = GravityFieldFactory.getUnnormalizedProvider(4, 4);
Orbit orbit = new KeplerianOrbit(13378000, 0.05, 0, 0, FastMath.PI, 0, PositionAngle.MEAN, FramesFactory.getTOD(false), new AbsoluteDate(2003, 5, 6, TimeScalesFactory.getUTC()), nshp.getMu());
double period = orbit.getKeplerianPeriod();
double[][] tolerance = DSSTPropagator.tolerances(1.0, orbit);
AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(period / 100, period * 100, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(10 * period);
DSSTPropagator propagator = new DSSTPropagator(integrator, false);
OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getGTOD(false));
CelestialBody sun = CelestialBodyFactory.getSun();
CelestialBody moon = CelestialBodyFactory.getMoon();
propagator.addForceModel(new DSSTZonal(nshp, 4, 3, 9));
propagator.addForceModel(new DSSTTesseral(earth.getBodyFrame(), Constants.WGS84_EARTH_ANGULAR_VELOCITY, nshp, 4, 4, 4, 8, 4, 4, 2));
propagator.addForceModel(new DSSTThirdBody(sun));
propagator.addForceModel(new DSSTThirdBody(moon));
propagator.addForceModel(new DSSTAtmosphericDrag(new HarrisPriester(sun, earth), 2.1, 180));
propagator.addForceModel(new DSSTSolarRadiationPressure(1.2, 180, sun, earth.getEquatorialRadius()));
final AbsoluteDate finalDate = orbit.getDate().shiftedBy(30 * Constants.JULIAN_DAY);
propagator.resetInitialState(new SpacecraftState(orbit, 45.0));
final SpacecraftState stateNoConfig = propagator.propagate(finalDate);
Assert.assertEquals(0, stateNoConfig.getAdditionalStates().size());
propagator.setSelectedCoefficients(new HashSet<String>());
propagator.resetInitialState(new SpacecraftState(orbit, 45.0));
final SpacecraftState stateConfigEmpty = propagator.propagate(finalDate);
Assert.assertEquals(234, stateConfigEmpty.getAdditionalStates().size());
final Set<String> selected = new HashSet<String>();
selected.add("DSST-3rd-body-Moon-s[7]");
selected.add("DSST-central-body-tesseral-c[-2][3]");
propagator.setSelectedCoefficients(selected);
propagator.resetInitialState(new SpacecraftState(orbit, 45.0));
final SpacecraftState stateConfigeSelected = propagator.propagate(finalDate);
Assert.assertEquals(selected.size(), stateConfigeSelected.getAdditionalStates().size());
propagator.setSelectedCoefficients(null);
propagator.resetInitialState(new SpacecraftState(orbit, 45.0));
final SpacecraftState stateConfigNull = propagator.propagate(finalDate);
Assert.assertEquals(0, stateConfigNull.getAdditionalStates().size());
}
use of org.orekit.forces.gravity.potential.UnnormalizedSphericalHarmonicsProvider in project Orekit by CS-SI.
the class DSSTPropagatorTest method testPropagationWithDrag.
@Test
public void testPropagationWithDrag() throws OrekitException {
// Central Body geopotential 2x0
final UnnormalizedSphericalHarmonicsProvider provider = GravityFieldFactory.getUnnormalizedProvider(2, 0);
final Frame earthFrame = CelestialBodyFactory.getEarth().getBodyOrientedFrame();
DSSTForceModel zonal = new DSSTZonal(provider, 2, 0, 5);
DSSTForceModel tesseral = new DSSTTesseral(earthFrame, Constants.WGS84_EARTH_ANGULAR_VELOCITY, provider, 2, 0, 0, 2, 2, 0, 0);
// Drag Force Model
final OneAxisEllipsoid earth = new OneAxisEllipsoid(provider.getAe(), Constants.WGS84_EARTH_FLATTENING, earthFrame);
final Atmosphere atm = new HarrisPriester(CelestialBodyFactory.getSun(), earth, 6);
final double cd = 2.0;
final double area = 25.0;
DSSTForceModel drag = new DSSTAtmosphericDrag(atm, cd, area);
// LEO Orbit
final AbsoluteDate initDate = new AbsoluteDate(2003, 7, 1, 0, 0, 00.000, TimeScalesFactory.getUTC());
final Orbit orbit = new KeplerianOrbit(7204535.848109440, 0.0012402238462686, FastMath.toRadians(98.74341600466740), FastMath.toRadians(111.1990175076630), FastMath.toRadians(43.32990110790340), FastMath.toRadians(68.66852509725620), PositionAngle.MEAN, FramesFactory.getEME2000(), initDate, provider.getMu());
// Set propagator with state and force model
setDSSTProp(new SpacecraftState(orbit));
dsstProp.addForceModel(zonal);
dsstProp.addForceModel(tesseral);
dsstProp.addForceModel(drag);
// 5 days propagation
final SpacecraftState state = dsstProp.propagate(initDate.shiftedBy(5. * 86400.));
// Ref Standalone_DSST:
// a = 7204521.657141485 m
// h/ey = 0.0007093755541595772
// k/ex = -0.001016800430994036
// p/hy = 0.8698955648709271
// q/hx = 0.7757573478894775
// lM = 193°0939742953394
Assert.assertEquals(7204521.657141485, state.getA(), 6.e-1);
Assert.assertEquals(-0.001016800430994036, state.getEquinoctialEx(), 5.e-8);
Assert.assertEquals(0.0007093755541595772, state.getEquinoctialEy(), 2.e-8);
Assert.assertEquals(0.7757573478894775, state.getHx(), 5.e-8);
Assert.assertEquals(0.8698955648709271, state.getHy(), 5.e-8);
Assert.assertEquals(193.0939742953394, FastMath.toDegrees(MathUtils.normalizeAngle(state.getLM(), FastMath.PI)), 2.e-3);
// Assert.assertEquals(((DSSTAtmosphericDrag)drag).getCd(), cd, 1e-9);
// Assert.assertEquals(((DSSTAtmosphericDrag)drag).getArea(), area, 1e-9);
Assert.assertEquals(((DSSTAtmosphericDrag) drag).getAtmosphere(), atm);
// DSSTAtmosphericDrag.ATMOSPHERE_ALTITUDE_MAX
final double atmosphericMaxConstant = 1000000.0;
Assert.assertEquals(((DSSTAtmosphericDrag) drag).getRbar(), atmosphericMaxConstant + Constants.WGS84_EARTH_EQUATORIAL_RADIUS, 1e-9);
}
Aggregations