use of org.orekit.forces.radiation.IsotropicRadiationSingleCoefficient in project Orekit by CS-SI.
the class IntegratedEphemerisTest method testSerializationNumerical.
@Test
public void testSerializationNumerical() throws OrekitException, IOException, ClassNotFoundException {
AbsoluteDate finalDate = initialOrbit.getDate().shiftedBy(Constants.JULIAN_DAY);
numericalPropagator.setEphemerisMode();
numericalPropagator.setInitialState(new SpacecraftState(initialOrbit));
final Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
final NormalizedSphericalHarmonicsProvider gravity = GravityFieldFactory.getNormalizedProvider(8, 8);
final CelestialBody sun = CelestialBodyFactory.getSun();
final CelestialBody moon = CelestialBodyFactory.getMoon();
final RadiationSensitive spacecraft = new IsotropicRadiationSingleCoefficient(20.0, 2.0);
numericalPropagator.addForceModel(new HolmesFeatherstoneAttractionModel(itrf, gravity));
numericalPropagator.addForceModel(new ThirdBodyAttraction(sun));
numericalPropagator.addForceModel(new ThirdBodyAttraction(moon));
numericalPropagator.addForceModel(new SolarRadiationPressure(sun, Constants.WGS84_EARTH_EQUATORIAL_RADIUS, spacecraft));
numericalPropagator.propagate(finalDate);
IntegratedEphemeris ephemeris = (IntegratedEphemeris) numericalPropagator.getGeneratedEphemeris();
ByteArrayOutputStream bos = new ByteArrayOutputStream();
ObjectOutputStream oos = new ObjectOutputStream(bos);
oos.writeObject(ephemeris);
int expectedSize = 258223;
Assert.assertTrue("size = " + bos.size(), bos.size() > 9 * expectedSize / 10);
Assert.assertTrue("size = " + bos.size(), bos.size() < 11 * expectedSize / 10);
Assert.assertNotNull(ephemeris.getFrame());
Assert.assertSame(ephemeris.getFrame(), numericalPropagator.getFrame());
ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
ObjectInputStream ois = new ObjectInputStream(bis);
IntegratedEphemeris deserialized = (IntegratedEphemeris) ois.readObject();
Assert.assertEquals(deserialized.getMinDate(), deserialized.getMinDate());
Assert.assertEquals(deserialized.getMaxDate(), deserialized.getMaxDate());
}
use of org.orekit.forces.radiation.IsotropicRadiationSingleCoefficient in project Orekit by CS-SI.
the class OrbitDetermination method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
use of org.orekit.forces.radiation.IsotropicRadiationSingleCoefficient in project Orekit by CS-SI.
the class DSSTPropagation method setForceModel.
/**
* Set numerical propagator force models
*
* @param parser input file parser
* @param normalized spherical harmonics provider
* @param earthFrame Earth rotating frame
* @param numProp numerical propagator
* @throws IOException
* @throws OrekitException
*/
private void setForceModel(final KeyValueFileParser<ParameterKey> parser, final NormalizedSphericalHarmonicsProvider normalized, final Frame earthFrame, final NumericalPropagator numProp) throws IOException, OrekitException {
final double ae = normalized.getAe();
final int degree = parser.getInt(ParameterKey.CENTRAL_BODY_DEGREE);
final int order = parser.getInt(ParameterKey.CENTRAL_BODY_ORDER);
if (order > degree) {
throw new IOException("Potential order cannot be higher than potential degree");
}
// Central Body (normalized coefficients)
numProp.addForceModel(new HolmesFeatherstoneAttractionModel(earthFrame, normalized));
// 3rd body (SUN)
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
numProp.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
// 3rd body (MOON)
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
numProp.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// Drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final OneAxisEllipsoid earth = new OneAxisEllipsoid(ae, Constants.WGS84_EARTH_FLATTENING, earthFrame);
final Atmosphere atm = new HarrisPriester(CelestialBodyFactory.getSun(), earth, 6);
final DragSensitive ssc = new IsotropicDrag(parser.getDouble(ParameterKey.DRAG_SF), parser.getDouble(ParameterKey.DRAG_CD));
numProp.addForceModel(new DragForce(atm, ssc));
}
// Solar Radiation Pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cR = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final RadiationSensitive ssc = new IsotropicRadiationSingleCoefficient(parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_SF), cR);
numProp.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), ae, ssc));
}
}
Aggregations