use of org.orekit.utils.PVCoordinates in project Orekit by CS-SI.
the class CircularOrbitTest method testCircularToEquinoctialCirc.
@Test
public void testCircularToEquinoctialCirc() {
double ix = 1.200e-04;
double iy = -1.16e-04;
double i = 2 * FastMath.asin(FastMath.sqrt((ix * ix + iy * iy) / 4));
double raan = FastMath.atan2(iy, ix);
// circular orbit
EquinoctialOrbit circCir = new EquinoctialOrbit(42166.712, 0.1e-10, -0.1e-10, i, raan, 5.300 - raan, PositionAngle.MEAN, FramesFactory.getEME2000(), date, mu);
Vector3D posCir = circCir.getPVCoordinates().getPosition();
Vector3D vitCir = circCir.getPVCoordinates().getVelocity();
PVCoordinates pvCoordinates = new PVCoordinates(posCir, vitCir);
EquinoctialOrbit paramCir = new EquinoctialOrbit(pvCoordinates, FramesFactory.getEME2000(), date, mu);
Assert.assertEquals(paramCir.getA(), circCir.getA(), Utils.epsilonTest * circCir.getA());
Assert.assertEquals(paramCir.getEquinoctialEx(), circCir.getEquinoctialEx(), Utils.epsilonEcir * FastMath.abs(circCir.getE()));
Assert.assertEquals(paramCir.getEquinoctialEy(), circCir.getEquinoctialEy(), Utils.epsilonEcir * FastMath.abs(circCir.getE()));
Assert.assertEquals(paramCir.getHx(), circCir.getHx(), Utils.epsilonAngle * FastMath.abs(circCir.getI()));
Assert.assertEquals(paramCir.getHy(), circCir.getHy(), Utils.epsilonAngle * FastMath.abs(circCir.getI()));
Assert.assertEquals(MathUtils.normalizeAngle(paramCir.getLv(), circCir.getLv()), circCir.getLv(), Utils.epsilonAngle * FastMath.abs(circCir.getLv()));
}
use of org.orekit.utils.PVCoordinates in project Orekit by CS-SI.
the class CircularOrbitTest method testSymmetryCir.
@Test
public void testSymmetryCir() {
// circular and equatorial orbit
Vector3D position = new Vector3D(33051.2, 26184.9, -1.3E-5);
Vector3D velocity = new Vector3D(-60376.2, 76208., 2.7E-4);
PVCoordinates pvCoordinates = new PVCoordinates(position, velocity);
CircularOrbit p = new CircularOrbit(pvCoordinates, FramesFactory.getEME2000(), date, mu);
Vector3D positionOffset = p.getPVCoordinates().getPosition().subtract(position);
Vector3D velocityOffset = p.getPVCoordinates().getVelocity().subtract(velocity);
Assert.assertEquals(0.0, positionOffset.getNorm(), position.getNorm() * Utils.epsilonTest);
Assert.assertEquals(0.0, velocityOffset.getNorm(), velocity.getNorm() * Utils.epsilonTest);
}
use of org.orekit.utils.PVCoordinates in project Orekit by CS-SI.
the class CircularOrbitTest method testEquatorialRetrograde.
@Test
public void testEquatorialRetrograde() {
Vector3D position = new Vector3D(10000000.0, 0.0, 0.0);
Vector3D velocity = new Vector3D(0.0, -6500.0, 0.0);
double r2 = position.getNormSq();
double r = FastMath.sqrt(r2);
Vector3D acceleration = new Vector3D(-mu / (r * r2), position, 1, new Vector3D(-0.1, 0.2, 0.3));
PVCoordinates pvCoordinates = new PVCoordinates(position, velocity, acceleration);
CircularOrbit orbit = new CircularOrbit(pvCoordinates, FramesFactory.getEME2000(), date, mu);
Assert.assertEquals(10637829.465, orbit.getA(), 1.0e-3);
Assert.assertEquals(-738.145, orbit.getADot(), 1.0e-3);
Assert.assertEquals(0.05995861, orbit.getE(), 1.0e-8);
Assert.assertEquals(-6.523e-5, orbit.getEDot(), 1.0e-8);
Assert.assertEquals(FastMath.PI, orbit.getI(), 1.0e-15);
Assert.assertEquals(-4.615e-5, orbit.getIDot(), 1.0e-8);
Assert.assertTrue(Double.isNaN(orbit.getHx()));
Assert.assertTrue(Double.isNaN(orbit.getHxDot()));
Assert.assertTrue(Double.isNaN(orbit.getHy()));
Assert.assertTrue(Double.isNaN(orbit.getHyDot()));
}
use of org.orekit.utils.PVCoordinates in project Orekit by CS-SI.
the class CircularOrbitTest method testSymmetryEll.
@Test
public void testSymmetryEll() {
// elliptic and non equatorail orbit
Vector3D position = new Vector3D(4512.9, 18260., -5127.);
Vector3D velocity = new Vector3D(134664.6, 90066.8, 72047.6);
PVCoordinates pvCoordinates = new PVCoordinates(position, velocity);
CircularOrbit p = new CircularOrbit(pvCoordinates, FramesFactory.getEME2000(), date, mu);
Vector3D positionOffset = p.getPVCoordinates().getPosition();
Vector3D velocityOffset = p.getPVCoordinates().getVelocity();
positionOffset = positionOffset.subtract(position);
velocityOffset = velocityOffset.subtract(velocity);
Assert.assertEquals(0.0, positionOffset.getNorm(), position.getNorm() * Utils.epsilonTest);
Assert.assertEquals(0.0, velocityOffset.getNorm(), velocity.getNorm() * Utils.epsilonTest);
}
use of org.orekit.utils.PVCoordinates in project Orekit by CS-SI.
the class ConstantThrustManeuverTest method RealFieldTest.
/**
*Testing if the propagation between the FieldPropagation and the propagation
* is equivalent.
* Also testing if propagating X+dX with the propagation is equivalent to
* propagation X with the FieldPropagation and then applying the taylor
* expansion of dX to the result.
*/
@Test
public void RealFieldTest() throws OrekitException {
DSFactory factory = new DSFactory(6, 5);
DerivativeStructure a_0 = factory.variable(0, 7e7);
DerivativeStructure e_0 = factory.variable(1, 0.4);
DerivativeStructure i_0 = factory.variable(2, 85 * FastMath.PI / 180);
DerivativeStructure R_0 = factory.variable(3, 0.7);
DerivativeStructure O_0 = factory.variable(4, 0.5);
DerivativeStructure n_0 = factory.variable(5, 0.1);
Field<DerivativeStructure> field = a_0.getField();
DerivativeStructure zero = field.getZero();
FieldAbsoluteDate<DerivativeStructure> J2000 = new FieldAbsoluteDate<>(field);
Frame EME = FramesFactory.getEME2000();
FieldKeplerianOrbit<DerivativeStructure> FKO = new FieldKeplerianOrbit<>(a_0, e_0, i_0, R_0, O_0, n_0, PositionAngle.MEAN, EME, J2000, Constants.EIGEN5C_EARTH_MU);
FieldSpacecraftState<DerivativeStructure> initialState = new FieldSpacecraftState<>(FKO);
SpacecraftState iSR = initialState.toSpacecraftState();
final OrbitType type = OrbitType.KEPLERIAN;
double[][] tolerance = NumericalPropagator.tolerances(10.0, FKO.toOrbit(), type);
AdaptiveStepsizeFieldIntegrator<DerivativeStructure> integrator = new DormandPrince853FieldIntegrator<>(field, 0.001, 200, tolerance[0], tolerance[1]);
integrator.setInitialStepSize(zero.add(60));
AdaptiveStepsizeIntegrator RIntegrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
RIntegrator.setInitialStepSize(60);
FieldNumericalPropagator<DerivativeStructure> FNP = new FieldNumericalPropagator<>(field, integrator);
FNP.setOrbitType(type);
FNP.setInitialState(initialState);
NumericalPropagator NP = new NumericalPropagator(RIntegrator);
NP.setOrbitType(type);
NP.setInitialState(iSR);
final ConstantThrustManeuver forceModel = new ConstantThrustManeuver(J2000.toAbsoluteDate().shiftedBy(100), 100.0, 400.0, 300.0, Vector3D.PLUS_K);
FNP.addForceModel(forceModel);
NP.addForceModel(forceModel);
FieldAbsoluteDate<DerivativeStructure> target = J2000.shiftedBy(1000.);
FieldSpacecraftState<DerivativeStructure> finalState_DS = FNP.propagate(target);
SpacecraftState finalState_R = NP.propagate(target.toAbsoluteDate());
FieldPVCoordinates<DerivativeStructure> finPVC_DS = finalState_DS.getPVCoordinates();
PVCoordinates finPVC_R = finalState_R.getPVCoordinates();
Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getX(), finPVC_R.getPosition().getX(), FastMath.abs(finPVC_R.getPosition().getX()) * 1e-11);
Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getY(), finPVC_R.getPosition().getY(), FastMath.abs(finPVC_R.getPosition().getY()) * 1e-11);
Assert.assertEquals(finPVC_DS.toPVCoordinates().getPosition().getZ(), finPVC_R.getPosition().getZ(), FastMath.abs(finPVC_R.getPosition().getZ()) * 1e-11);
long number = 23091991;
RandomGenerator RG = new Well19937a(number);
GaussianRandomGenerator NGG = new GaussianRandomGenerator(RG);
UncorrelatedRandomVectorGenerator URVG = new UncorrelatedRandomVectorGenerator(new double[] { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }, new double[] { 1e3, 0.01, 0.01, 0.01, 0.01, 0.01 }, NGG);
double a_R = a_0.getReal();
double e_R = e_0.getReal();
double i_R = i_0.getReal();
double R_R = R_0.getReal();
double O_R = O_0.getReal();
double n_R = n_0.getReal();
for (int ii = 0; ii < 1; ii++) {
double[] rand_next = URVG.nextVector();
double a_shift = a_R + rand_next[0];
double e_shift = e_R + rand_next[1];
double i_shift = i_R + rand_next[2];
double R_shift = R_R + rand_next[3];
double O_shift = O_R + rand_next[4];
double n_shift = n_R + rand_next[5];
KeplerianOrbit shiftedOrb = new KeplerianOrbit(a_shift, e_shift, i_shift, R_shift, O_shift, n_shift, PositionAngle.MEAN, EME, J2000.toAbsoluteDate(), Constants.EIGEN5C_EARTH_MU);
SpacecraftState shift_iSR = new SpacecraftState(shiftedOrb);
NumericalPropagator shift_NP = new NumericalPropagator(RIntegrator);
shift_NP.setInitialState(shift_iSR);
shift_NP.addForceModel(forceModel);
SpacecraftState finalState_shift = shift_NP.propagate(target.toAbsoluteDate());
PVCoordinates finPVC_shift = finalState_shift.getPVCoordinates();
// position check
FieldVector3D<DerivativeStructure> pos_DS = finPVC_DS.getPosition();
double x_DS = pos_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double y_DS = pos_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double z_DS = pos_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
// System.out.println(pos_DS.getX().getPartialDerivative(1));
double x = finPVC_shift.getPosition().getX();
double y = finPVC_shift.getPosition().getY();
double z = finPVC_shift.getPosition().getZ();
Assert.assertEquals(x_DS, x, FastMath.abs(x - pos_DS.getX().getReal()) * 1e-8);
Assert.assertEquals(y_DS, y, FastMath.abs(y - pos_DS.getY().getReal()) * 1e-8);
Assert.assertEquals(z_DS, z, FastMath.abs(z - pos_DS.getZ().getReal()) * 1e-8);
// velocity check
FieldVector3D<DerivativeStructure> vel_DS = finPVC_DS.getVelocity();
double vx_DS = vel_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vy_DS = vel_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vz_DS = vel_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double vx = finPVC_shift.getVelocity().getX();
double vy = finPVC_shift.getVelocity().getY();
double vz = finPVC_shift.getVelocity().getZ();
Assert.assertEquals(vx_DS, vx, FastMath.abs(vx) * 1e-9);
Assert.assertEquals(vy_DS, vy, FastMath.abs(vy) * 1e-9);
Assert.assertEquals(vz_DS, vz, FastMath.abs(vz) * 1e-9);
// acceleration check
FieldVector3D<DerivativeStructure> acc_DS = finPVC_DS.getAcceleration();
double ax_DS = acc_DS.getX().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ay_DS = acc_DS.getY().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double az_DS = acc_DS.getZ().taylor(rand_next[0], rand_next[1], rand_next[2], rand_next[3], rand_next[4], rand_next[5]);
double ax = finPVC_shift.getAcceleration().getX();
double ay = finPVC_shift.getAcceleration().getY();
double az = finPVC_shift.getAcceleration().getZ();
Assert.assertEquals(ax_DS, ax, FastMath.abs(ax) * 1e-8);
Assert.assertEquals(ay_DS, ay, FastMath.abs(ay) * 1e-8);
Assert.assertEquals(az_DS, az, FastMath.abs(az) * 1e-8);
}
}
Aggregations