Search in sources :

Example 6 with ParameterDriver

use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.

the class ModelTest method testBackwardPropagation.

@Test
public void testBackwardPropagation() throws OrekitException {
    final Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    final NumericalPropagatorBuilder[] builders = { propagatorBuilder };
    // create perfect PV measurements
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new PVMeasurementCreator(), 0.0, -1.0, 300.0);
    final ParameterDriversList estimatedMeasurementsParameters = new ParameterDriversList();
    for (ObservedMeasurement<?> measurement : measurements) {
        for (final ParameterDriver driver : measurement.getParametersDrivers()) {
            if (driver.isSelected()) {
                estimatedMeasurementsParameters.add(driver);
            }
        }
    }
    // create model
    final ModelObserver modelObserver = new ModelObserver() {

        /**
         * {@inheritDoc}
         */
        @Override
        public void modelCalled(final Orbit[] newOrbits, final Map<ObservedMeasurement<?>, EstimatedMeasurement<?>> newEvaluations) {
        // Do nothing here
        }
    };
    final Model model = new Model(builders, measurements, estimatedMeasurementsParameters, modelObserver);
    // Test forward propagation flag to false
    assertEquals(false, model.isForwardPropagation());
}
Also used : Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) ParameterDriversList(org.orekit.utils.ParameterDriversList) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) Propagator(org.orekit.propagation.Propagator) Map(java.util.Map) ObservedMeasurement(org.orekit.estimation.measurements.ObservedMeasurement) PVMeasurementCreator(org.orekit.estimation.measurements.PVMeasurementCreator) Test(org.junit.Test)

Example 7 with ParameterDriver

use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.

the class AngularRaDecTest method testParameterDerivatives.

@Test
public void testParameterDerivatives() throws OrekitException {
    Context context = EstimationTestUtils.geoStationnaryContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.EQUINOCTIAL, PositionAngle.TRUE, false, 1.0e-6, 60.0, 0.001);
    // create perfect azimuth-elevation measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new AngularRaDecMeasurementCreator(context), 0.25, 3.0, 600.0);
    propagator.setSlaveMode();
    for (final ObservedMeasurement<?> measurement : measurements) {
        // parameter corresponding to station position offset
        final GroundStation stationParameter = ((AngularRaDec) measurement).getStation();
        // We intentionally propagate to a date which is close to the
        // real spacecraft state but is *not* the accurate date, by
        // compensating only part of the downlink delay. This is done
        // in order to validate the partial derivatives with respect
        // to velocity. If we had chosen the proper state date, the
        // angular would have depended only on the current position but
        // not on the current velocity.
        final AbsoluteDate datemeas = measurement.getDate();
        final SpacecraftState stateini = propagator.propagate(datemeas);
        final Vector3D stationP = stationParameter.getOffsetToInertial(stateini.getFrame(), datemeas).transformPosition(Vector3D.ZERO);
        final double meanDelay = AbstractMeasurement.signalTimeOfFlight(stateini.getPVCoordinates(), stationP, datemeas);
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
        for (int i = 0; i < 3; ++i) {
            final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
            Assert.assertEquals(2, measurement.getDimension());
            Assert.assertEquals(2, gradient.length);
            for (final int k : new int[] { 0, 1 }) {
                final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                    /**
                     * {@inheritDoc}
                     */
                    @Override
                    public double value(final ParameterDriver parameterDriver) throws OrekitException {
                        return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[k];
                    }
                }, drivers[i], 3, 50.0);
                final double ref = dMkdP.value(drivers[i]);
                if (ref > 1.e-12) {
                    Assert.assertEquals(ref, gradient[k], 3e-9 * FastMath.abs(ref));
                }
            }
        }
    }
}
Also used : Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Test(org.junit.Test)

Example 8 with ParameterDriver

use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.

the class KalmanEstimatorTest method testKeplerianRangeWithOnBoardAntennaOffset.

/**
 * Perfect range measurements with a biased start and an on-board antenna range offset
 * Keplerian formalism
 * @throws OrekitException
 */
@Test
public void testKeplerianRangeWithOnBoardAntennaOffset() throws OrekitException {
    // Create context
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    // Create initial orbit and propagator builder
    final OrbitType orbitType = OrbitType.KEPLERIAN;
    final PositionAngle positionAngle = PositionAngle.TRUE;
    final boolean perfectStart = true;
    final double minStep = 1.e-6;
    final double maxStep = 60.;
    final double dP = 1.;
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(orbitType, positionAngle, perfectStart, minStep, maxStep, dP);
    propagatorBuilder.setAttitudeProvider(new LofOffset(propagatorBuilder.getFrame(), LOFType.LVLH));
    // Antenna phase center definition
    final Vector3D antennaPhaseCenter = new Vector3D(-1.2, 2.3, -0.7);
    // Create perfect range measurements with antenna offset
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context, antennaPhaseCenter), 1.0, 3.0, 300.0);
    // Add antenna offset to the measurements
    final OnBoardAntennaRangeModifier obaModifier = new OnBoardAntennaRangeModifier(antennaPhaseCenter);
    for (final ObservedMeasurement<?> range : measurements) {
        ((Range) range).addModifier(obaModifier);
    }
    // Reference propagator for estimation performances
    final NumericalPropagator referencePropagator = propagatorBuilder.buildPropagator(propagatorBuilder.getSelectedNormalizedParameters());
    // Reference position/velocity at last measurement date
    final Orbit refOrbit = referencePropagator.propagate(measurements.get(measurements.size() - 1).getDate()).getOrbit();
    // Change semi-major axis of 1.2m as in the batch test
    ParameterDriver aDriver = propagatorBuilder.getOrbitalParametersDrivers().getDrivers().get(0);
    aDriver.setValue(aDriver.getValue() + 1.2);
    aDriver.setReferenceDate(AbsoluteDate.GALILEO_EPOCH);
    // Cartesian covariance matrix initialization
    // 100m on position / 1e-2m/s on velocity
    final RealMatrix cartesianP = MatrixUtils.createRealDiagonalMatrix(new double[] { 10., 10., 10., 1e-3, 1e-3, 1e-3 });
    // Jacobian of the orbital parameters w/r to Cartesian
    final Orbit initialOrbit = OrbitType.KEPLERIAN.convertType(context.initialOrbit);
    final double[][] dYdC = new double[6][6];
    initialOrbit.getJacobianWrtCartesian(PositionAngle.TRUE, dYdC);
    final RealMatrix Jac = MatrixUtils.createRealMatrix(dYdC);
    // Keplerian initial covariance matrix
    final RealMatrix initialP = Jac.multiply(cartesianP.multiply(Jac.transpose()));
    // Process noise matrix is set to 0 here
    RealMatrix Q = MatrixUtils.createRealMatrix(6, 6);
    // Build the Kalman filter
    final KalmanEstimatorBuilder kalmanBuilder = new KalmanEstimatorBuilder();
    kalmanBuilder.builder(propagatorBuilder);
    kalmanBuilder.estimatedMeasurementsParameters(new ParameterDriversList());
    kalmanBuilder.initialCovarianceMatrix(initialP);
    kalmanBuilder.processNoiseMatrixProvider(new ConstantProcessNoise(Q));
    final KalmanEstimator kalman = kalmanBuilder.build();
    // Filter the measurements and check the results
    final double expectedDeltaPos = 0.;
    final double posEps = 4.57e-3;
    final double expectedDeltaVel = 0.;
    final double velEps = 7.29e-6;
    final double[] expectedSigmasPos = { 1.105194, 0.930785, 1.254579 };
    final double sigmaPosEps = 1e-6;
    final double[] expectedSigmasVel = { 6.193718e-4, 4.088774e-4, 3.299135e-4 };
    final double sigmaVelEps = 1e-10;
    EstimationTestUtils.checkKalmanFit(context, kalman, measurements, refOrbit, positionAngle, expectedDeltaPos, posEps, expectedDeltaVel, velEps, expectedSigmasPos, sigmaPosEps, expectedSigmasVel, sigmaVelEps);
}
Also used : PositionAngle(org.orekit.orbits.PositionAngle) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) NumericalPropagator(org.orekit.propagation.numerical.NumericalPropagator) ParameterDriversList(org.orekit.utils.ParameterDriversList) Propagator(org.orekit.propagation.Propagator) NumericalPropagator(org.orekit.propagation.numerical.NumericalPropagator) LofOffset(org.orekit.attitudes.LofOffset) ObservedMeasurement(org.orekit.estimation.measurements.ObservedMeasurement) Context(org.orekit.estimation.Context) Orbit(org.orekit.orbits.Orbit) Range(org.orekit.estimation.measurements.Range) ParameterDriver(org.orekit.utils.ParameterDriver) OnBoardAntennaRangeModifier(org.orekit.estimation.measurements.modifiers.OnBoardAntennaRangeModifier) RealMatrix(org.hipparchus.linear.RealMatrix) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) OrbitType(org.orekit.orbits.OrbitType) RangeMeasurementCreator(org.orekit.estimation.measurements.RangeMeasurementCreator) Test(org.junit.Test)

Example 9 with ParameterDriver

use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.

the class BatchLSEstimatorTest method testMultiSatWithParameters.

/**
 * A modified version of the previous test with a selection of propagation drivers to estimate
 *  One common (µ)
 *  Some specifics for each satellite (Cr and Ca)
 *
 * @throws OrekitException
 */
@Test
public void testMultiSatWithParameters() throws OrekitException {
    // Test: Set the propagator drivers to estimate for each satellite
    final boolean muEstimated = true;
    final boolean crEstimated1 = true;
    final boolean caEstimated1 = true;
    final boolean crEstimated2 = true;
    final boolean caEstimated2 = false;
    // Builder sat 1
    final Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder1 = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 1.0, Force.POTENTIAL, Force.SOLAR_RADIATION_PRESSURE);
    // Adding selection of parameters
    String satName = "sat 1";
    for (DelegatingDriver driver : propagatorBuilder1.getPropagationParametersDrivers().getDrivers()) {
        if (driver.getName().equals("central attraction coefficient")) {
            driver.setSelected(muEstimated);
        }
        if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
            driver.setName(driver.getName() + " " + satName);
            driver.setSelected(crEstimated1);
        }
        if (driver.getName().equals(RadiationSensitive.ABSORPTION_COEFFICIENT)) {
            driver.setName(driver.getName() + " " + satName);
            driver.setSelected(caEstimated1);
        }
    }
    // Builder for sat 2
    final Context context2 = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder2 = context2.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 1.0, Force.POTENTIAL, Force.SOLAR_RADIATION_PRESSURE);
    // Adding selection of parameters
    satName = "sat 2";
    for (ParameterDriver driver : propagatorBuilder2.getPropagationParametersDrivers().getDrivers()) {
        if (driver.getName().equals("central attraction coefficient")) {
            driver.setSelected(muEstimated);
        }
        if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
            driver.setName(driver.getName() + " " + satName);
            driver.setSelected(crEstimated2);
        }
        if (driver.getName().equals(RadiationSensitive.ABSORPTION_COEFFICIENT)) {
            driver.setName(driver.getName() + " " + satName);
            driver.setSelected(caEstimated2);
        }
    }
    // Create perfect inter-satellites range measurements
    final TimeStampedPVCoordinates original = context.initialOrbit.getPVCoordinates();
    final Orbit closeOrbit = new CartesianOrbit(new TimeStampedPVCoordinates(context.initialOrbit.getDate(), original.getPosition().add(new Vector3D(1000, 2000, 3000)), original.getVelocity().add(new Vector3D(-0.03, 0.01, 0.02))), context.initialOrbit.getFrame(), context.initialOrbit.getMu());
    final Propagator closePropagator = EstimationTestUtils.createPropagator(closeOrbit, propagatorBuilder2);
    closePropagator.setEphemerisMode();
    closePropagator.propagate(context.initialOrbit.getDate().shiftedBy(3.5 * closeOrbit.getKeplerianPeriod()));
    final BoundedPropagator ephemeris = closePropagator.getGeneratedEphemeris();
    Propagator propagator1 = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder1);
    final List<ObservedMeasurement<?>> r12 = EstimationTestUtils.createMeasurements(propagator1, new InterSatellitesRangeMeasurementCreator(ephemeris), 1.0, 3.0, 300.0);
    // create perfect range measurements for first satellite
    propagator1 = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder1);
    final List<ObservedMeasurement<?>> r1 = EstimationTestUtils.createMeasurements(propagator1, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    // create orbit estimator
    final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), propagatorBuilder1, propagatorBuilder2);
    for (final ObservedMeasurement<?> interSat : r12) {
        estimator.addMeasurement(interSat);
    }
    for (final ObservedMeasurement<?> range : r1) {
        estimator.addMeasurement(range);
    }
    estimator.setParametersConvergenceThreshold(1.0e-2);
    estimator.setMaxIterations(10);
    estimator.setMaxEvaluations(20);
    estimator.setObserver(new BatchLSObserver() {

        int lastIter = 0;

        int lastEval = 0;

        /**
         * {@inheritDoc}
         */
        @Override
        public void evaluationPerformed(int iterationsCount, int evaluationscount, Orbit[] orbits, ParameterDriversList estimatedOrbitalParameters, ParameterDriversList estimatedPropagatorParameters, ParameterDriversList estimatedMeasurementsParameters, EstimationsProvider evaluationsProvider, Evaluation lspEvaluation) throws OrekitException {
            if (iterationsCount == lastIter) {
                Assert.assertEquals(lastEval + 1, evaluationscount);
            } else {
                Assert.assertEquals(lastIter + 1, iterationsCount);
            }
            lastIter = iterationsCount;
            lastEval = evaluationscount;
            AbsoluteDate previous = AbsoluteDate.PAST_INFINITY;
            for (int i = 0; i < evaluationsProvider.getNumber(); ++i) {
                AbsoluteDate current = evaluationsProvider.getEstimatedMeasurement(i).getDate();
                Assert.assertTrue(current.compareTo(previous) >= 0);
                previous = current;
            }
        }
    });
    List<DelegatingDriver> parameters = estimator.getOrbitalParametersDrivers(true).getDrivers();
    ParameterDriver a0Driver = parameters.get(0);
    Assert.assertEquals("a[0]", a0Driver.getName());
    a0Driver.setValue(a0Driver.getValue() + 1.2);
    a0Driver.setReferenceDate(AbsoluteDate.GALILEO_EPOCH);
    ParameterDriver a1Driver = parameters.get(6);
    Assert.assertEquals("a[1]", a1Driver.getName());
    a1Driver.setValue(a1Driver.getValue() - 5.4);
    a1Driver.setReferenceDate(AbsoluteDate.GALILEO_EPOCH);
    final Orbit before = new KeplerianOrbit(parameters.get(6).getValue(), parameters.get(7).getValue(), parameters.get(8).getValue(), parameters.get(9).getValue(), parameters.get(10).getValue(), parameters.get(11).getValue(), PositionAngle.TRUE, closeOrbit.getFrame(), closeOrbit.getDate(), closeOrbit.getMu());
    Assert.assertEquals(4.7246, Vector3D.distance(closeOrbit.getPVCoordinates().getPosition(), before.getPVCoordinates().getPosition()), 1.0e-3);
    Assert.assertEquals(0.0010514, Vector3D.distance(closeOrbit.getPVCoordinates().getVelocity(), before.getPVCoordinates().getVelocity()), 1.0e-6);
    EstimationTestUtils.checkFit(context, estimator, 4, 5, 0.0, 6.0e-06, 0.0, 1.7e-05, 0.0, 4.4e-07, 0.0, 1.7e-10);
    final Orbit determined = new KeplerianOrbit(parameters.get(6).getValue(), parameters.get(7).getValue(), parameters.get(8).getValue(), parameters.get(9).getValue(), parameters.get(10).getValue(), parameters.get(11).getValue(), PositionAngle.TRUE, closeOrbit.getFrame(), closeOrbit.getDate(), closeOrbit.getMu());
    Assert.assertEquals(0.0, Vector3D.distance(closeOrbit.getPVCoordinates().getPosition(), determined.getPVCoordinates().getPosition()), 5.8e-6);
    Assert.assertEquals(0.0, Vector3D.distance(closeOrbit.getPVCoordinates().getVelocity(), determined.getPVCoordinates().getVelocity()), 3.5e-9);
    // got a default one
    for (final ParameterDriver driver : estimator.getOrbitalParametersDrivers(true).getDrivers()) {
        if (driver.getName().startsWith("a[")) {
            // user-specified reference date
            Assert.assertEquals(0, driver.getReferenceDate().durationFrom(AbsoluteDate.GALILEO_EPOCH), 1.0e-15);
        } else {
            // default reference date
            Assert.assertEquals(0, driver.getReferenceDate().durationFrom(propagatorBuilder1.getInitialOrbitDate()), 1.0e-15);
        }
    }
}
Also used : CartesianOrbit(org.orekit.orbits.CartesianOrbit) TimeStampedPVCoordinates(org.orekit.utils.TimeStampedPVCoordinates) AbsoluteDate(org.orekit.time.AbsoluteDate) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) ParameterDriversList(org.orekit.utils.ParameterDriversList) BoundedPropagator(org.orekit.propagation.BoundedPropagator) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) KeplerianOrbit(org.orekit.orbits.KeplerianOrbit) DelegatingDriver(org.orekit.utils.ParameterDriversList.DelegatingDriver) BoundedPropagator(org.orekit.propagation.BoundedPropagator) ObservedMeasurement(org.orekit.estimation.measurements.ObservedMeasurement) EstimationsProvider(org.orekit.estimation.measurements.EstimationsProvider) Context(org.orekit.estimation.Context) Evaluation(org.hipparchus.optim.nonlinear.vector.leastsquares.LeastSquaresProblem.Evaluation) Orbit(org.orekit.orbits.Orbit) CartesianOrbit(org.orekit.orbits.CartesianOrbit) KeplerianOrbit(org.orekit.orbits.KeplerianOrbit) ParameterDriver(org.orekit.utils.ParameterDriver) LevenbergMarquardtOptimizer(org.hipparchus.optim.nonlinear.vector.leastsquares.LevenbergMarquardtOptimizer) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) InterSatellitesRangeMeasurementCreator(org.orekit.estimation.measurements.InterSatellitesRangeMeasurementCreator) RangeMeasurementCreator(org.orekit.estimation.measurements.RangeMeasurementCreator) InterSatellitesRangeMeasurementCreator(org.orekit.estimation.measurements.InterSatellitesRangeMeasurementCreator) Test(org.junit.Test)

Example 10 with ParameterDriver

use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.

the class RangeAnalyticTest method genericTestParameterDerivatives.

/**
 * Generic test function for derivatives with respect to parameters (station's position in station's topocentric frame)
 * @param isModifier Use of atmospheric modifiers
 * @param isFiniteDifferences Finite differences reference calculation if true, Range class otherwise
 * @param printResults Print the results ?
 * @throws OrekitException
 */
void genericTestParameterDerivatives(final boolean isModifier, final boolean isFiniteDifferences, final boolean printResults) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect range measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    // List to store the results
    final List<Double> relErrorList = new ArrayList<Double>();
    // Set master mode
    // Use a lambda function to implement "handleStep" function
    propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
        for (final ObservedMeasurement<?> measurement : measurements) {
            // Play test if the measurement date is between interpolator previous and current date
            if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
                // Add modifiers if test implies it
                final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
                if (isModifier) {
                    ((Range) measurement).addModifier(modifier);
                }
                // Parameter corresponding to station position offset
                final GroundStation stationParameter = ((Range) measurement).getStation();
                // We intentionally propagate to a date which is close to the
                // real spacecraft state but is *not* the accurate date, by
                // compensating only part of the downlink delay. This is done
                // in order to validate the partial derivatives with respect
                // to velocity. If we had chosen the proper state date, the
                // range would have depended only on the current position but
                // not on the current velocity.
                final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
                final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
                final SpacecraftState state = interpolator.getInterpolatedState(date);
                final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
                if (printResults) {
                    String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
                    System.out.format(Locale.US, "%-15s  %-23s  %-23s  ", stationName, measurement.getDate(), date);
                }
                for (int i = 0; i < 3; ++i) {
                    final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
                    Assert.assertEquals(1, measurement.getDimension());
                    Assert.assertEquals(1, gradient.length);
                    // Compute a reference value using analytical formulas
                    final EstimatedMeasurement<Range> rangeAnalytic = new RangeAnalytic((Range) measurement).theoreticalEvaluationAnalytic(0, 0, state);
                    if (isModifier) {
                        modifier.modify(rangeAnalytic);
                    }
                    final double ref = rangeAnalytic.getParameterDerivatives(drivers[i])[0];
                    if (printResults) {
                        System.out.format(Locale.US, "%10.3e  %10.3e  ", gradient[0] - ref, FastMath.abs((gradient[0] - ref) / ref));
                    }
                    final double relError = FastMath.abs((ref - gradient[0]) / ref);
                    relErrorList.add(relError);
                // Assert.assertEquals(ref, gradient[0], 6.1e-5 * FastMath.abs(ref));
                }
                if (printResults) {
                    System.out.format(Locale.US, "%n");
                }
            }
        // End if measurement date between previous and current interpolator step
        }
    // End for loop on the measurements
    });
    // Rewind the propagator to initial date
    propagator.propagate(context.initialOrbit.getDate());
    // Sort measurements chronologically
    measurements.sort(new ChronologicalComparator());
    // Print results ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s  %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Station", "Measurement Date", "State Date", "ΔdQx", "rel ΔdQx", "ΔdQy", "rel ΔdQy", "ΔdQz", "rel ΔdQz");
    }
    // Propagate to final measurement's date
    propagator.propagate(measurements.get(measurements.size() - 1).getDate());
    // Convert error list to double[]
    final double[] relErrors = relErrorList.stream().mapToDouble(Double::doubleValue).toArray();
    // Compute statistics
    final double relErrorsMedian = new Median().evaluate(relErrors);
    final double relErrorsMean = new Mean().evaluate(relErrors);
    final double relErrorsMax = new Max().evaluate(relErrors);
    // Print the results on console ?
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dQ -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsMedian, relErrorsMean, relErrorsMax);
    }
    // Assert the results / max values depend on the test
    double refErrorsMedian, refErrorsMean, refErrorsMax;
    // Analytic references
    refErrorsMedian = 1.55e-06;
    refErrorsMean = 3.64e-06;
    refErrorsMax = 6.1e-05;
    Assert.assertEquals(0.0, relErrorsMedian, refErrorsMedian);
    Assert.assertEquals(0.0, relErrorsMean, refErrorsMean);
    Assert.assertEquals(0.0, relErrorsMax, refErrorsMax);
}
Also used : Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Propagator(org.orekit.propagation.Propagator) Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) RangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier) OrekitStepInterpolator(org.orekit.propagation.sampling.OrekitStepInterpolator) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ChronologicalComparator(org.orekit.time.ChronologicalComparator)

Aggregations

ParameterDriver (org.orekit.utils.ParameterDriver)80 AbsoluteDate (org.orekit.time.AbsoluteDate)33 SpacecraftState (org.orekit.propagation.SpacecraftState)32 NumericalPropagatorBuilder (org.orekit.propagation.conversion.NumericalPropagatorBuilder)27 Test (org.junit.Test)23 Propagator (org.orekit.propagation.Propagator)23 Context (org.orekit.estimation.Context)21 ParameterDriversList (org.orekit.utils.ParameterDriversList)20 OrekitException (org.orekit.errors.OrekitException)19 Vector3D (org.hipparchus.geometry.euclidean.threed.Vector3D)16 FieldAbsoluteDate (org.orekit.time.FieldAbsoluteDate)16 ObservedMeasurement (org.orekit.estimation.measurements.ObservedMeasurement)15 Orbit (org.orekit.orbits.Orbit)15 ArrayList (java.util.ArrayList)14 DerivativeStructure (org.hipparchus.analysis.differentiation.DerivativeStructure)14 ParameterFunction (org.orekit.utils.ParameterFunction)14 DSFactory (org.hipparchus.analysis.differentiation.DSFactory)13 HashMap (java.util.HashMap)11 KeplerianOrbit (org.orekit.orbits.KeplerianOrbit)11 RealMatrix (org.hipparchus.linear.RealMatrix)10