use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class DSConverter method getState.
/**
* Get the state with the number of parameters consistent with force model.
* @param forceModel force model
* @return state with the number of parameters consistent with force model
*/
public FieldSpacecraftState<DerivativeStructure> getState(final ForceModel forceModel) {
// count the required number of parameters
int nbParams = 0;
for (final ParameterDriver driver : forceModel.getParametersDrivers()) {
if (driver.isSelected()) {
++nbParams;
}
}
// fill in intermediate slots
while (dsStates.size() < nbParams + 1) {
dsStates.add(null);
}
if (dsStates.get(nbParams) == null) {
// it is the first time we need this number of parameters
// we need to create the state
final DSFactory factory = new DSFactory(freeStateParameters + nbParams, 1);
final FieldSpacecraftState<DerivativeStructure> s0 = dsStates.get(0);
// orbit
final FieldPVCoordinates<DerivativeStructure> pv0 = s0.getPVCoordinates();
final FieldOrbit<DerivativeStructure> dsOrbit = new FieldCartesianOrbit<>(new TimeStampedFieldPVCoordinates<>(s0.getDate().toAbsoluteDate(), extend(pv0.getPosition(), factory), extend(pv0.getVelocity(), factory), extend(pv0.getAcceleration(), factory)), s0.getFrame(), s0.getMu());
// attitude
final FieldAngularCoordinates<DerivativeStructure> ac0 = s0.getAttitude().getOrientation();
final FieldAttitude<DerivativeStructure> dsAttitude = new FieldAttitude<>(s0.getAttitude().getReferenceFrame(), new TimeStampedFieldAngularCoordinates<>(dsOrbit.getDate(), extend(ac0.getRotation(), factory), extend(ac0.getRotationRate(), factory), extend(ac0.getRotationAcceleration(), factory)));
// mass
final DerivativeStructure dsM = extend(s0.getMass(), factory);
dsStates.set(nbParams, new FieldSpacecraftState<>(dsOrbit, dsAttitude, dsM));
}
return dsStates.get(nbParams);
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class DSConverter method getParameters.
/**
* Get the force model parameters.
* @param state state as returned by {@link #getState(ForceModel)}
* @param forceModel force model associated with the parameters
* @return force model parameters
* @since 9.0
*/
public DerivativeStructure[] getParameters(final FieldSpacecraftState<DerivativeStructure> state, final ForceModel forceModel) {
final DSFactory factory = state.getMass().getFactory();
final ParameterDriver[] drivers = forceModel.getParametersDrivers();
final DerivativeStructure[] parameters = new DerivativeStructure[drivers.length];
int index = freeStateParameters;
for (int i = 0; i < drivers.length; ++i) {
parameters[i] = drivers[i].isSelected() ? factory.variable(index++, drivers[i].getValue()) : factory.constant(drivers[i].getValue());
}
return parameters;
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class PartialDerivativesEquations method computeDerivatives.
/**
* {@inheritDoc}
*/
public double[] computeDerivatives(final SpacecraftState s, final double[] pDot) throws OrekitException {
// initialize acceleration Jacobians to zero
final int paramDim = selected.getNbParams();
final int dim = 3;
final double[][] dAccdParam = new double[dim][paramDim];
final double[][] dAccdPos = new double[dim][dim];
final double[][] dAccdVel = new double[dim][dim];
final DSConverter fullConverter = new DSConverter(s, 6, propagator.getAttitudeProvider());
final DSConverter posOnlyConverter = new DSConverter(s, 3, propagator.getAttitudeProvider());
// compute acceleration Jacobians, finishing with the largest force: Newtonian attraction
for (final ForceModel forceModel : propagator.getAllForceModels()) {
final DSConverter converter = forceModel.dependsOnPositionOnly() ? posOnlyConverter : fullConverter;
final FieldSpacecraftState<DerivativeStructure> dsState = converter.getState(forceModel);
final DerivativeStructure[] parameters = converter.getParameters(dsState, forceModel);
final FieldVector3D<DerivativeStructure> acceleration = forceModel.acceleration(dsState, parameters);
final double[] derivativesX = acceleration.getX().getAllDerivatives();
final double[] derivativesY = acceleration.getY().getAllDerivatives();
final double[] derivativesZ = acceleration.getZ().getAllDerivatives();
// update Jacobians with respect to state
addToRow(derivativesX, 0, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
addToRow(derivativesY, 1, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
addToRow(derivativesZ, 2, converter.getFreeStateParameters(), dAccdPos, dAccdVel);
int index = converter.getFreeStateParameters();
for (ParameterDriver driver : forceModel.getParametersDrivers()) {
if (driver.isSelected()) {
final int parameterIndex = map.get(driver);
++index;
dAccdParam[0][parameterIndex] += derivativesX[index];
dAccdParam[1][parameterIndex] += derivativesY[index];
dAccdParam[2][parameterIndex] += derivativesZ[index];
}
}
}
// the variational equations of the complete state Jacobian matrix have the following form:
// [ | ] [ | ] [ | ]
// [ Adot | Bdot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ A | B ]
// [ | ] [ | ] [ | ]
// ---------+--------- ------------------+------------------- * ------+------
// [ | ] [ | ] [ | ]
// [ Cdot | Ddot ] = [ dAcc/dPos | dAcc/dVel ] [ C | D ]
// [ | ] [ | ] [ | ]
// The A, B, C and D sub-matrices and their derivatives (Adot ...) are 3x3 matrices
// The expanded multiplication above can be rewritten to take into account
// the fixed values found in the sub-matrices in the left factor. This leads to:
// [ Adot ] = [ C ]
// [ Bdot ] = [ D ]
// [ Cdot ] = [ dAcc/dPos ] * [ A ] + [ dAcc/dVel ] * [ C ]
// [ Ddot ] = [ dAcc/dPos ] * [ B ] + [ dAcc/dVel ] * [ D ]
// The following loops compute these expressions taking care of the mapping of the
// (A, B, C, D) matrices into the single dimension array p and of the mapping of the
// (Adot, Bdot, Cdot, Ddot) matrices into the single dimension array pDot.
// copy C and E into Adot and Bdot
final int stateDim = 6;
final double[] p = s.getAdditionalState(getName());
System.arraycopy(p, dim * stateDim, pDot, 0, dim * stateDim);
// compute Cdot and Ddot
for (int i = 0; i < dim; ++i) {
final double[] dAdPi = dAccdPos[i];
final double[] dAdVi = dAccdVel[i];
for (int j = 0; j < stateDim; ++j) {
pDot[(dim + i) * stateDim + j] = dAdPi[0] * p[j] + dAdPi[1] * p[j + stateDim] + dAdPi[2] * p[j + 2 * stateDim] + dAdVi[0] * p[j + 3 * stateDim] + dAdVi[1] * p[j + 4 * stateDim] + dAdVi[2] * p[j + 5 * stateDim];
}
}
for (int k = 0; k < paramDim; ++k) {
// the variational equations of the parameters Jacobian matrix are computed
// one column at a time, they have the following form:
// [ ] [ | ] [ ] [ ]
// [ Edot ] [ dVel/dPos = 0 | dVel/dVel = Id ] [ E ] [ dVel/dParam = 0 ]
// [ ] [ | ] [ ] [ ]
// -------- ------------------+------------------- * ----- + --------------------
// [ ] [ | ] [ ] [ ]
// [ Fdot ] = [ dAcc/dPos | dAcc/dVel ] [ F ] [ dAcc/dParam ]
// [ ] [ | ] [ ] [ ]
// The E and F sub-columns and their derivatives (Edot, Fdot) are 3 elements columns.
// The expanded multiplication and addition above can be rewritten to take into
// account the fixed values found in the sub-matrices in the left factor. This leads to:
// [ Edot ] = [ F ]
// [ Fdot ] = [ dAcc/dPos ] * [ E ] + [ dAcc/dVel ] * [ F ] + [ dAcc/dParam ]
// The following loops compute these expressions taking care of the mapping of the
// (E, F) columns into the single dimension array p and of the mapping of the
// (Edot, Fdot) columns into the single dimension array pDot.
// copy F into Edot
final int columnTop = stateDim * stateDim + k;
pDot[columnTop] = p[columnTop + 3 * paramDim];
pDot[columnTop + paramDim] = p[columnTop + 4 * paramDim];
pDot[columnTop + 2 * paramDim] = p[columnTop + 5 * paramDim];
// compute Fdot
for (int i = 0; i < dim; ++i) {
final double[] dAdPi = dAccdPos[i];
final double[] dAdVi = dAccdVel[i];
pDot[columnTop + (dim + i) * paramDim] = dAccdParam[i][k] + dAdPi[0] * p[columnTop] + dAdPi[1] * p[columnTop + paramDim] + dAdPi[2] * p[columnTop + 2 * paramDim] + dAdVi[0] * p[columnTop + 3 * paramDim] + dAdVi[1] * p[columnTop + 4 * paramDim] + dAdVi[2] * p[columnTop + 5 * paramDim];
}
}
// these equations have no effect on the main state itself
return null;
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class SolarRadiationPressureTest method testParameterDerivativeIsotropicSingle.
@Test
public void testParameterDerivativeIsotropicSingle() throws OrekitException {
final Vector3D pos = new Vector3D(6.46885878304673824e+06, -1.88050918456274318e+06, -1.32931592294715829e+04);
final Vector3D vel = new Vector3D(2.14718074509906819e+03, 7.38239351251748485e+03, -1.14097953925384523e+01);
final SpacecraftState state = new SpacecraftState(new CartesianOrbit(new PVCoordinates(pos, vel), FramesFactory.getGCRF(), new AbsoluteDate(2003, 3, 5, 0, 24, 0.0, TimeScalesFactory.getTAI()), Constants.EIGEN5C_EARTH_MU));
RadiationSensitive rs = new IsotropicRadiationSingleCoefficient(2.5, 0.7);
SolarRadiationPressure forceModel = new SolarRadiationPressure(CelestialBodyFactory.getSun(), Constants.WGS84_EARTH_EQUATORIAL_RADIUS, rs);
checkParameterDerivative(state, forceModel, RadiationSensitive.REFLECTION_COEFFICIENT, 1.0, 2.0e-15);
try {
rs.radiationPressureAcceleration(state.getDate(), state.getFrame(), state.getPVCoordinates().getPosition(), state.getAttitude().getRotation(), state.getMass(), Vector3D.ZERO, new double[2], RadiationSensitive.ABSORPTION_COEFFICIENT);
Assert.fail("an exception should have been thrown");
} catch (OrekitException oe) {
Assert.assertEquals(OrekitMessages.UNSUPPORTED_PARAMETER_NAME, oe.getSpecifier());
}
for (ParameterDriver driver : rs.getRadiationParametersDrivers()) {
Assert.assertEquals(RadiationSensitive.REFLECTION_COEFFICIENT, driver.getName());
}
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class Range method theoreticalEvaluation.
/**
* {@inheritDoc}
*/
@Override
protected EstimatedMeasurement<Range> theoreticalEvaluation(final int iteration, final int evaluation, final SpacecraftState[] states) throws OrekitException {
final SpacecraftState state = states[getPropagatorsIndices().get(0)];
// Range derivatives are computed with respect to spacecraft state in inertial frame
// and station parameters
// ----------------------
//
// Parameters:
// - 0..2 - Position of the spacecraft in inertial frame
// - 3..5 - Velocity of the spacecraft in inertial frame
// - 6..n - station parameters (station offsets, pole, prime meridian...)
int nbParams = 6;
final Map<String, Integer> indices = new HashMap<>();
for (ParameterDriver driver : getParametersDrivers()) {
if (driver.isSelected()) {
indices.put(driver.getName(), nbParams++);
}
}
final DSFactory factory = new DSFactory(nbParams, 1);
final Field<DerivativeStructure> field = factory.getDerivativeField();
final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
// Coordinates of the spacecraft expressed as a derivative structure
final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, factory);
// transform between station and inertial frame, expressed as a derivative structure
// The components of station's position in offset frame are the 3 last derivative parameters
final AbsoluteDate downlinkDate = getDate();
final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS = new FieldAbsoluteDate<>(field, downlinkDate);
final FieldTransform<DerivativeStructure> offsetToInertialDownlink = station.getOffsetToInertial(state.getFrame(), downlinkDateDS, factory, indices);
// Station position in inertial frame at end of the downlink leg
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink = offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS, zero, zero, zero));
// Compute propagation times
// (if state has already been set up to pre-compensate propagation delay,
// we will have delta == tauD and transitState will be the same as state)
// Downlink delay
final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
// Transit state
final double delta = downlinkDate.durationFrom(state.getDate());
final DerivativeStructure deltaMTauD = tauD.negate().add(delta);
final SpacecraftState transitState = state.shiftedBy(deltaMTauD.getValue());
// Transit state (re)computed with derivative structures
final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(deltaMTauD);
// Station at transit state date (derivatives of tauD taken into account)
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate = stationDownlink.shiftedBy(tauD.negate());
// Uplink delay
final DerivativeStructure tauU = signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationUplink = stationDownlink.shiftedBy(-tauD.getValue() - tauU.getValue());
// Prepare the evaluation
final EstimatedMeasurement<Range> estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation, new SpacecraftState[] { transitState }, new TimeStampedPVCoordinates[] { stationUplink.toTimeStampedPVCoordinates(), transitStateDS.toTimeStampedPVCoordinates(), stationDownlink.toTimeStampedPVCoordinates() });
// Range value
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final DerivativeStructure tau = tauD.add(tauU);
final DerivativeStructure range = tau.multiply(cOver2);
estimated.setEstimatedValue(range.getValue());
// Range partial derivatives with respect to state
final double[] derivatives = range.getAllDerivatives();
estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
// (beware element at index 0 is the value, not a derivative)
for (final ParameterDriver driver : getParametersDrivers()) {
final Integer index = indices.get(driver.getName());
if (index != null) {
estimated.setParameterDerivatives(driver, derivatives[index + 1]);
}
}
return estimated;
}
Aggregations