use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class BatchLSEstimatorTest method testKeplerRange.
/**
* Perfect range measurements with a biased start
* @throws OrekitException
*/
@Test
public void testKeplerRange() throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 1.0);
// create perfect range measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// create orbit estimator
final BatchLSEstimator estimator = new BatchLSEstimator(new LevenbergMarquardtOptimizer(), propagatorBuilder);
for (final ObservedMeasurement<?> range : measurements) {
estimator.addMeasurement(range);
}
estimator.setParametersConvergenceThreshold(1.0e-2);
estimator.setMaxIterations(10);
estimator.setMaxEvaluations(20);
estimator.setObserver(new BatchLSObserver() {
int lastIter = 0;
int lastEval = 0;
/**
* {@inheritDoc}
*/
@Override
public void evaluationPerformed(int iterationsCount, int evaluationscount, Orbit[] orbits, ParameterDriversList estimatedOrbitalParameters, ParameterDriversList estimatedPropagatorParameters, ParameterDriversList estimatedMeasurementsParameters, EstimationsProvider evaluationsProvider, Evaluation lspEvaluation) throws OrekitException {
if (iterationsCount == lastIter) {
Assert.assertEquals(lastEval + 1, evaluationscount);
} else {
Assert.assertEquals(lastIter + 1, iterationsCount);
}
lastIter = iterationsCount;
lastEval = evaluationscount;
Assert.assertEquals(measurements.size(), evaluationsProvider.getNumber());
try {
evaluationsProvider.getEstimatedMeasurement(-1);
Assert.fail("an exception should have been thrown");
} catch (OrekitException oe) {
Assert.assertEquals(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE, oe.getSpecifier());
}
try {
evaluationsProvider.getEstimatedMeasurement(measurements.size());
Assert.fail("an exception should have been thrown");
} catch (OrekitException oe) {
Assert.assertEquals(LocalizedCoreFormats.OUT_OF_RANGE_SIMPLE, oe.getSpecifier());
}
AbsoluteDate previous = AbsoluteDate.PAST_INFINITY;
for (int i = 0; i < evaluationsProvider.getNumber(); ++i) {
AbsoluteDate current = evaluationsProvider.getEstimatedMeasurement(i).getDate();
Assert.assertTrue(current.compareTo(previous) >= 0);
previous = current;
}
}
});
ParameterDriver aDriver = estimator.getOrbitalParametersDrivers(true).getDrivers().get(0);
Assert.assertEquals("a", aDriver.getName());
aDriver.setValue(aDriver.getValue() + 1.2);
aDriver.setReferenceDate(AbsoluteDate.GALILEO_EPOCH);
EstimationTestUtils.checkFit(context, estimator, 2, 3, 0.0, 1.1e-6, 0.0, 2.8e-6, 0.0, 4.0e-7, 0.0, 2.2e-10);
// got a default one
for (final ParameterDriver driver : estimator.getOrbitalParametersDrivers(true).getDrivers()) {
if ("a".equals(driver.getName())) {
// user-specified reference date
Assert.assertEquals(0, driver.getReferenceDate().durationFrom(AbsoluteDate.GALILEO_EPOCH), 1.0e-15);
} else {
// default reference date
Assert.assertEquals(0, driver.getReferenceDate().durationFrom(propagatorBuilder.getInitialOrbitDate()), 1.0e-15);
}
}
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class ModelTest method testPerfectValue.
@Test
public void testPerfectValue() throws OrekitException {
final Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
final NumericalPropagatorBuilder[] builders = { propagatorBuilder };
// create perfect PV measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new PVMeasurementCreator(), 0.0, 1.0, 300.0);
final ParameterDriversList estimatedMeasurementsParameters = new ParameterDriversList();
for (ObservedMeasurement<?> measurement : measurements) {
for (final ParameterDriver driver : measurement.getParametersDrivers()) {
if (driver.isSelected()) {
estimatedMeasurementsParameters.add(driver);
}
}
}
// create model
final ModelObserver modelObserver = new ModelObserver() {
/**
* {@inheritDoc}
*/
@Override
public void modelCalled(final Orbit[] newOrbits, final Map<ObservedMeasurement<?>, EstimatedMeasurement<?>> newEvaluations) {
Assert.assertEquals(1, newOrbits.length);
Assert.assertEquals(0, context.initialOrbit.getDate().durationFrom(newOrbits[0].getDate()), 1.0e-15);
Assert.assertEquals(0, Vector3D.distance(context.initialOrbit.getPVCoordinates().getPosition(), newOrbits[0].getPVCoordinates().getPosition()), 1.0e-15);
Assert.assertEquals(measurements.size(), newEvaluations.size());
}
};
final Model model = new Model(builders, measurements, estimatedMeasurementsParameters, modelObserver);
model.setIterationsCounter(new Incrementor(100));
model.setEvaluationsCounter(new Incrementor(100));
// Test forward propagation flag to true
assertEquals(true, model.isForwardPropagation());
// evaluate model on perfect start point
final double[] normalizedProp = propagatorBuilder.getSelectedNormalizedParameters();
final double[] normalized = new double[normalizedProp.length + estimatedMeasurementsParameters.getNbParams()];
System.arraycopy(normalizedProp, 0, normalized, 0, normalizedProp.length);
int i = normalizedProp.length;
for (final ParameterDriver driver : estimatedMeasurementsParameters.getDrivers()) {
normalized[i++] = driver.getNormalizedValue();
}
Pair<RealVector, RealMatrix> value = model.value(new ArrayRealVector(normalized));
int index = 0;
for (ObservedMeasurement<?> measurement : measurements) {
for (int k = 0; k < measurement.getDimension(); ++k) {
// the value is already a weighted residual
Assert.assertEquals(0.0, value.getFirst().getEntry(index++), 1.6e-7);
}
}
Assert.assertEquals(index, value.getFirst().getDimension());
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class OrbitDeterminationTest method createPropagatorBuilder.
/**
* Create a propagator builder from input parameters
* @param parser input file parser
* @param conventions IERS conventions to use
* @param gravityField gravity field
* @param body central body
* @param orbit first orbit estimate
* @return propagator builder
* @throws NoSuchElementException if input parameters are missing
* @throws OrekitException if body frame cannot be created
*/
private NumericalPropagatorBuilder createPropagatorBuilder(final KeyValueFileParser<ParameterKey> parser, final IERSConventions conventions, final NormalizedSphericalHarmonicsProvider gravityField, final OneAxisEllipsoid body, final Orbit orbit) throws NoSuchElementException, OrekitException {
final double minStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MIN_STEP)) {
minStep = 0.001;
} else {
minStep = parser.getDouble(ParameterKey.PROPAGATOR_MIN_STEP);
}
final double maxStep;
if (!parser.containsKey(ParameterKey.PROPAGATOR_MAX_STEP)) {
maxStep = 300;
} else {
maxStep = parser.getDouble(ParameterKey.PROPAGATOR_MAX_STEP);
}
final double dP;
if (!parser.containsKey(ParameterKey.PROPAGATOR_POSITION_ERROR)) {
dP = 10.0;
} else {
dP = parser.getDouble(ParameterKey.PROPAGATOR_POSITION_ERROR);
}
final double positionScale;
if (!parser.containsKey(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE)) {
positionScale = dP;
} else {
positionScale = parser.getDouble(ParameterKey.ESTIMATOR_ORBITAL_PARAMETERS_POSITION_SCALE);
}
final NumericalPropagatorBuilder propagatorBuilder = new NumericalPropagatorBuilder(orbit, new DormandPrince853IntegratorBuilder(minStep, maxStep, dP), PositionAngle.MEAN, positionScale);
// initial mass
final double mass;
if (!parser.containsKey(ParameterKey.MASS)) {
mass = 1000.0;
} else {
mass = parser.getDouble(ParameterKey.MASS);
}
propagatorBuilder.setMass(mass);
// gravity field force model
propagatorBuilder.addForceModel(new HolmesFeatherstoneAttractionModel(body.getBodyFrame(), gravityField));
// ocean tides force model
if (parser.containsKey(ParameterKey.OCEAN_TIDES_DEGREE) && parser.containsKey(ParameterKey.OCEAN_TIDES_ORDER)) {
final int degree = parser.getInt(ParameterKey.OCEAN_TIDES_DEGREE);
final int order = parser.getInt(ParameterKey.OCEAN_TIDES_ORDER);
if (degree > 0 && order > 0) {
propagatorBuilder.addForceModel(new OceanTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), degree, order, conventions, TimeScalesFactory.getUT1(conventions, true)));
}
}
// solid tides force model
List<CelestialBody> solidTidesBodies = new ArrayList<CelestialBody>();
if (parser.containsKey(ParameterKey.SOLID_TIDES_SUN) && parser.getBoolean(ParameterKey.SOLID_TIDES_SUN)) {
solidTidesBodies.add(CelestialBodyFactory.getSun());
}
if (parser.containsKey(ParameterKey.SOLID_TIDES_MOON) && parser.getBoolean(ParameterKey.SOLID_TIDES_MOON)) {
solidTidesBodies.add(CelestialBodyFactory.getMoon());
}
if (!solidTidesBodies.isEmpty()) {
propagatorBuilder.addForceModel(new SolidTides(body.getBodyFrame(), gravityField.getAe(), gravityField.getMu(), gravityField.getTideSystem(), conventions, TimeScalesFactory.getUT1(conventions, true), solidTidesBodies.toArray(new CelestialBody[solidTidesBodies.size()])));
}
// third body attraction
if (parser.containsKey(ParameterKey.THIRD_BODY_SUN) && parser.getBoolean(ParameterKey.THIRD_BODY_SUN)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getSun()));
}
if (parser.containsKey(ParameterKey.THIRD_BODY_MOON) && parser.getBoolean(ParameterKey.THIRD_BODY_MOON)) {
propagatorBuilder.addForceModel(new ThirdBodyAttraction(CelestialBodyFactory.getMoon()));
}
// drag
if (parser.containsKey(ParameterKey.DRAG) && parser.getBoolean(ParameterKey.DRAG)) {
final double cd = parser.getDouble(ParameterKey.DRAG_CD);
final double area = parser.getDouble(ParameterKey.DRAG_AREA);
final boolean cdEstimated = parser.getBoolean(ParameterKey.DRAG_CD_ESTIMATED);
MarshallSolarActivityFutureEstimation msafe = new MarshallSolarActivityFutureEstimation("(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\\p{Digit}\\p{Digit}\\p{Digit}\\p{Digit}F10\\.(?:txt|TXT)", MarshallSolarActivityFutureEstimation.StrengthLevel.AVERAGE);
DataProvidersManager manager = DataProvidersManager.getInstance();
manager.feed(msafe.getSupportedNames(), msafe);
Atmosphere atmosphere = new DTM2000(msafe, CelestialBodyFactory.getSun(), body);
propagatorBuilder.addForceModel(new DragForce(atmosphere, new IsotropicDrag(area, cd)));
if (cdEstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(DragSensitive.DRAG_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// solar radiation pressure
if (parser.containsKey(ParameterKey.SOLAR_RADIATION_PRESSURE) && parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE)) {
final double cr = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_CR);
final double area = parser.getDouble(ParameterKey.SOLAR_RADIATION_PRESSURE_AREA);
final boolean cREstimated = parser.getBoolean(ParameterKey.SOLAR_RADIATION_PRESSURE_CR_ESTIMATED);
propagatorBuilder.addForceModel(new SolarRadiationPressure(CelestialBodyFactory.getSun(), body.getEquatorialRadius(), new IsotropicRadiationSingleCoefficient(area, cr)));
if (cREstimated) {
for (final ParameterDriver driver : propagatorBuilder.getPropagationParametersDrivers().getDrivers()) {
if (driver.getName().equals(RadiationSensitive.REFLECTION_COEFFICIENT)) {
driver.setSelected(true);
}
}
}
}
// post-Newtonian correction force due to general relativity
if (parser.containsKey(ParameterKey.GENERAL_RELATIVITY) && parser.getBoolean(ParameterKey.GENERAL_RELATIVITY)) {
propagatorBuilder.addForceModel(new Relativity(gravityField.getMu()));
}
// extra polynomial accelerations
if (parser.containsKey(ParameterKey.POLYNOMIAL_ACCELERATION_NAME)) {
final String[] names = parser.getStringArray(ParameterKey.POLYNOMIAL_ACCELERATION_NAME);
final Vector3D[] directions = parser.getVectorArray(ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_X, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Y, ParameterKey.POLYNOMIAL_ACCELERATION_DIRECTION_Z);
final List<String>[] coefficients = parser.getStringsListArray(ParameterKey.POLYNOMIAL_ACCELERATION_COEFFICIENTS, ',');
final boolean[] estimated = parser.getBooleanArray(ParameterKey.POLYNOMIAL_ACCELERATION_ESTIMATED);
for (int i = 0; i < names.length; ++i) {
final PolynomialParametricAcceleration ppa = new PolynomialParametricAcceleration(directions[i], true, names[i], null, coefficients[i].size() - 1);
for (int k = 0; k < coefficients[i].size(); ++k) {
final ParameterDriver driver = ppa.getParameterDriver(names[i] + "[" + k + "]");
driver.setValue(Double.parseDouble(coefficients[i].get(k)));
driver.setSelected(estimated[i]);
}
propagatorBuilder.addForceModel(ppa);
}
}
return propagatorBuilder;
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class AngularAzElTest method testParameterDerivatives.
@Test
public void testParameterDerivatives() throws OrekitException {
Context context = EstimationTestUtils.geoStationnaryContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.EQUINOCTIAL, PositionAngle.TRUE, false, 1.0e-6, 60.0, 0.001);
// create perfect azimuth-elevation measurements
for (final GroundStation station : context.stations) {
station.getEastOffsetDriver().setSelected(true);
station.getNorthOffsetDriver().setSelected(true);
station.getZenithOffsetDriver().setSelected(true);
}
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new AngularAzElMeasurementCreator(context), 0.25, 3.0, 600.0);
propagator.setSlaveMode();
for (final ObservedMeasurement<?> measurement : measurements) {
// parameter corresponding to station position offset
final GroundStation stationParameter = ((AngularAzEl) measurement).getStation();
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// angular would have depended only on the current position but
// not on the current velocity.
final AbsoluteDate datemeas = measurement.getDate();
final SpacecraftState stateini = propagator.propagate(datemeas);
final Vector3D stationP = stationParameter.getOffsetToInertial(stateini.getFrame(), datemeas).transformPosition(Vector3D.ZERO);
final double meanDelay = AbstractMeasurement.signalTimeOfFlight(stateini.getPVCoordinates(), stationP, datemeas);
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = propagator.propagate(date);
final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
for (int i = 0; i < 3; ++i) {
final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
Assert.assertEquals(2, measurement.getDimension());
Assert.assertEquals(2, gradient.length);
for (final int k : new int[] { 0, 1 }) {
final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {
/**
* {@inheritDoc}
*/
@Override
public double value(final ParameterDriver parameterDriver) throws OrekitException {
return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[k];
}
}, drivers[i], 3, 50.0);
final double ref = dMkdP.value(drivers[i]);
if (ref > 1.e-12) {
Assert.assertEquals(ref, gradient[k], 3e-10 * FastMath.abs(ref));
}
}
}
}
}
use of org.orekit.utils.ParameterDriver in project Orekit by CS-SI.
the class GroundStationTest method doTestCartesianDerivatives.
private void doTestCartesianDerivatives(double latitude, double longitude, double altitude, double stepFactor, double relativeTolerancePositionValue, double relativeTolerancePositionDerivative, double relativeToleranceVelocityValue, double relativeToleranceVelocityDerivative, String... parameterPattern) throws OrekitException {
Utils.setDataRoot("regular-data");
final Frame eme2000 = FramesFactory.getEME2000();
final AbsoluteDate date = AbsoluteDate.J2000_EPOCH;
final AbsoluteDate date0 = date.shiftedBy(50000);
final OneAxisEllipsoid earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(IERSConventions.IERS_2010, true));
final GroundStation station = new GroundStation(new TopocentricFrame(earth, new GeodeticPoint(latitude, longitude, altitude), "dummy"));
final DSFactory factory = new DSFactory(parameterPattern.length, 1);
final FieldAbsoluteDate<DerivativeStructure> dateDS = new FieldAbsoluteDate<>(factory.getDerivativeField(), date);
ParameterDriver[] selectedDrivers = new ParameterDriver[parameterPattern.length];
UnivariateDifferentiableVectorFunction[] dFCartesian = new UnivariateDifferentiableVectorFunction[parameterPattern.length];
final ParameterDriver[] allDrivers = selectAllDrivers(station);
for (ParameterDriver driver : allDrivers) {
driver.setReferenceDate(date0);
}
Map<String, Integer> indices = new HashMap<>();
for (int k = 0; k < dFCartesian.length; ++k) {
for (int i = 0; i < allDrivers.length; ++i) {
if (allDrivers[i].getName().matches(parameterPattern[k])) {
selectedDrivers[k] = allDrivers[i];
dFCartesian[k] = differentiatedStationPV(station, eme2000, date, selectedDrivers[k], stepFactor);
indices.put(selectedDrivers[k].getName(), k);
}
}
}
;
DSFactory factory11 = new DSFactory(1, 1);
RandomGenerator generator = new Well19937a(0x084d58a19c498a54l);
double maxPositionValueRelativeError = 0;
double maxPositionDerivativeRelativeError = 0;
double maxVelocityValueRelativeError = 0;
double maxVelocityDerivativeRelativeError = 0;
for (int i = 0; i < 1000; ++i) {
// randomly change one parameter
ParameterDriver changed = allDrivers[generator.nextInt(allDrivers.length)];
changed.setNormalizedValue(2 * generator.nextDouble() - 1);
// transform to check
FieldTransform<DerivativeStructure> t = station.getOffsetToInertial(eme2000, dateDS, factory, indices);
FieldPVCoordinates<DerivativeStructure> pv = t.transformPVCoordinates(FieldPVCoordinates.getZero(factory.getDerivativeField()));
for (int k = 0; k < dFCartesian.length; ++k) {
// reference values and derivatives computed using finite differences
DerivativeStructure[] refCartesian = dFCartesian[k].value(factory11.variable(0, selectedDrivers[k].getValue()));
// position
final Vector3D refP = new Vector3D(refCartesian[0].getValue(), refCartesian[1].getValue(), refCartesian[2].getValue());
final Vector3D resP = new Vector3D(pv.getPosition().getX().getValue(), pv.getPosition().getY().getValue(), pv.getPosition().getZ().getValue());
maxPositionValueRelativeError = FastMath.max(maxPositionValueRelativeError, Vector3D.distance(refP, resP) / refP.getNorm());
final Vector3D refPD = new Vector3D(refCartesian[0].getPartialDerivative(1), refCartesian[1].getPartialDerivative(1), refCartesian[2].getPartialDerivative(1));
final Vector3D resPD = new Vector3D(pv.getPosition().getX().getAllDerivatives()[k + 1], pv.getPosition().getY().getAllDerivatives()[k + 1], pv.getPosition().getZ().getAllDerivatives()[k + 1]);
maxPositionDerivativeRelativeError = FastMath.max(maxPositionDerivativeRelativeError, Vector3D.distance(refPD, resPD) / refPD.getNorm());
// velocity
final Vector3D refV = new Vector3D(refCartesian[3].getValue(), refCartesian[4].getValue(), refCartesian[5].getValue());
final Vector3D resV = new Vector3D(pv.getVelocity().getX().getValue(), pv.getVelocity().getY().getValue(), pv.getVelocity().getZ().getValue());
maxVelocityValueRelativeError = FastMath.max(maxVelocityValueRelativeError, Vector3D.distance(refV, resV) / refV.getNorm());
final Vector3D refVD = new Vector3D(refCartesian[3].getPartialDerivative(1), refCartesian[4].getPartialDerivative(1), refCartesian[5].getPartialDerivative(1));
final Vector3D resVD = new Vector3D(pv.getVelocity().getX().getAllDerivatives()[k + 1], pv.getVelocity().getY().getAllDerivatives()[k + 1], pv.getVelocity().getZ().getAllDerivatives()[k + 1]);
maxVelocityDerivativeRelativeError = FastMath.max(maxVelocityDerivativeRelativeError, Vector3D.distance(refVD, resVD) / refVD.getNorm());
}
}
Assert.assertEquals(0.0, maxPositionValueRelativeError, relativeTolerancePositionValue);
Assert.assertEquals(0.0, maxPositionDerivativeRelativeError, relativeTolerancePositionDerivative);
Assert.assertEquals(0.0, maxVelocityValueRelativeError, relativeToleranceVelocityValue);
Assert.assertEquals(0.0, maxVelocityDerivativeRelativeError, relativeToleranceVelocityDerivative);
}
Aggregations