Search in sources :

Example 1 with CreateDataSettingsHelper

use of uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper in project GDSC-SMLM by aherbert.

the class CreateData method showSummary.

private double showSummary(List<? extends FluorophoreSequenceModel> fluorophores, List<LocalisationModel> localisations) {
    IJ.showStatus("Calculating statistics ...");
    final Statistics[] stats = new Statistics[NAMES.length];
    for (int i = 0; i < stats.length; i++) {
        stats[i] = (settings.getShowHistograms() || alwaysRemoveOutliers[i]) ? new StoredDataStatistics() : new Statistics();
    }
    // Find the largest timepoint
    final ImagePlus outputImp = WindowManager.getImage(benchmarkImageId);
    int frameCount;
    if (outputImp == null) {
        sortLocalisationsByTime(localisations);
        frameCount = localisations.get(localisations.size() - 1).getTime();
    } else {
        frameCount = outputImp.getStackSize();
    }
    final int[] countHistogram = new int[frameCount + 1];
    // Use the localisations that were drawn to create the sampled on/off times
    rebuildNeighbours(localisations);
    // Assume that there is at least one localisation
    final LocalisationModel first = localisations.get(0);
    // The current localisation
    int currentId = first.getId();
    // The last time this localisation was on
    int lastT = first.getTime();
    // Number of blinks
    int blinks = 0;
    // On-time of current pulse
    int currentT = 0;
    double signal = 0;
    final double centreOffset = settings.getSize() * 0.5;
    // Used to convert the sampled times in frames into seconds
    final double framesPerSecond = 1000.0 / settings.getExposureTime();
    // final double gain = new CreateDataSettingsHelper(settings).getTotalGainSafe();
    for (final LocalisationModel l : localisations) {
        final double[] data = l.getData();
        if (data == null) {
            throw new IllegalStateException("No localisation data. This should not happen!");
        }
        final double noise = data[1];
        final double sx = data[2];
        final double sy = data[3];
        final double intensityInPhotons = data[4];
        // Q. What if the noise is zero, i.e. no background photon / read noise?
        // Just ignore it at current. This is only an approximation to the SNR estimate
        // if this is not a Gaussian spot.
        final double snr = Gaussian2DPeakResultHelper.getMeanSignalUsingP05(intensityInPhotons, sx, sy) / noise;
        stats[SIGNAL].add(intensityInPhotons);
        stats[NOISE].add(noise);
        if (noise != 0) {
            stats[SNR].add(snr);
        }
        // if (l.isContinuous())
        if (l.getNext() != null && l.getPrevious() != null) {
            stats[SIGNAL_CONTINUOUS].add(intensityInPhotons);
            if (noise != 0) {
                stats[SNR_CONTINUOUS].add(snr);
            }
        }
        final int id = l.getId();
        // Check if this a new fluorophore
        if (currentId != id) {
            // Add previous fluorophore
            stats[SAMPLED_BLINKS].add(blinks);
            stats[SAMPLED_T_ON].add(currentT / framesPerSecond);
            stats[TOTAL_SIGNAL].add(signal);
            // Reset
            blinks = 0;
            currentT = 1;
            currentId = id;
            signal = intensityInPhotons;
        } else {
            signal += intensityInPhotons;
            // Check if the current fluorophore pulse is broken (i.e. a blink)
            if (l.getTime() - 1 > lastT) {
                blinks++;
                stats[SAMPLED_T_ON].add(currentT / framesPerSecond);
                currentT = 1;
                stats[SAMPLED_T_OFF].add(((l.getTime() - 1) - lastT) / framesPerSecond);
            } else {
                // Continuous on-time
                currentT++;
            }
        }
        lastT = l.getTime();
        countHistogram[lastT]++;
        stats[X].add((l.getX() - centreOffset) * settings.getPixelPitch());
        stats[Y].add((l.getY() - centreOffset) * settings.getPixelPitch());
        stats[Z].add(l.getZ() * settings.getPixelPitch());
    }
    // Final fluorophore
    stats[SAMPLED_BLINKS].add(blinks);
    stats[SAMPLED_T_ON].add(currentT / framesPerSecond);
    stats[TOTAL_SIGNAL].add(signal);
    // Samples per frame
    for (int t = 1; t < countHistogram.length; t++) {
        stats[SAMPLES].add(countHistogram[t]);
    }
    if (fluorophores != null) {
        for (final FluorophoreSequenceModel f : fluorophores) {
            stats[BLINKS].add(f.getNumberOfBlinks());
            // On-time
            for (final double t : f.getOnTimes()) {
                stats[T_ON].add(t);
            }
            // Off-time
            for (final double t : f.getOffTimes()) {
                stats[T_OFF].add(t);
            }
        }
    } else {
        // show no blinks
        stats[BLINKS].add(0);
        stats[T_ON].add(1);
    }
    if (results != null) {
        // Convert depth-of-field to pixels
        final double depth = settings.getDepthOfField() / settings.getPixelPitch();
        try {
            // Get widths
            final WidthResultProcedure wp = new WidthResultProcedure(results, DistanceUnit.PIXEL);
            wp.getW();
            stats[WIDTH].add(wp.wx);
        } catch (final DataException ex) {
            ImageJUtils.log("Unable to compute width: " + ex.getMessage());
        }
        try {
            // Get z depth
            final StandardResultProcedure sp = new StandardResultProcedure(results, DistanceUnit.PIXEL);
            sp.getXyz();
            // Get precision
            final PrecisionResultProcedure pp = new PrecisionResultProcedure(results);
            pp.getPrecision();
            stats[PRECISION].add(pp.precisions);
            for (int i = 0; i < pp.size(); i++) {
                if (Math.abs(sp.z[i]) < depth) {
                    stats[PRECISION_IN_FOCUS].add(pp.precisions[i]);
                }
            }
        } catch (final DataException ex) {
            ImageJUtils.log("Unable to compute LSE precision: " + ex.getMessage());
        }
        // Compute density per frame. Multi-thread for speed
        if (settings.getDensityRadius() > 0) {
            final int threadCount = Prefs.getThreads();
            final Ticker ticker = ImageJUtils.createTicker(results.getLastFrame(), threadCount, "Calculating density ...");
            final ExecutorService threadPool = Executors.newFixedThreadPool(threadCount);
            final List<Future<?>> futures = new LinkedList<>();
            final TFloatArrayList coordsX = new TFloatArrayList();
            final TFloatArrayList coordsY = new TFloatArrayList();
            final Statistics densityStats = stats[DENSITY];
            final float radius = (float) (settings.getDensityRadius() * getHwhm());
            final Rectangle bounds = results.getBounds();
            final double area = (double) bounds.width * bounds.height;
            // Store the density for each result.
            final int[] allDensity = new int[results.size()];
            final FrameCounter counter = results.newFrameCounter();
            results.forEach((PeakResultProcedure) result -> {
                if (counter.advance(result.getFrame())) {
                    counter.increment(runDensityCalculation(threadPool, futures, coordsX, coordsY, densityStats, radius, area, allDensity, counter.getCount(), ticker));
                }
                coordsX.add(result.getXPosition());
                coordsY.add(result.getYPosition());
            });
            runDensityCalculation(threadPool, futures, coordsX, coordsY, densityStats, radius, area, allDensity, counter.getCount(), ticker);
            ConcurrencyUtils.waitForCompletionUnchecked(futures);
            threadPool.shutdown();
            ImageJUtils.finished();
            // Split results into singles (density = 0) and clustered (density > 0)
            final MemoryPeakResults singles = copyMemoryPeakResults("No Density");
            final MemoryPeakResults clustered = copyMemoryPeakResults("Density");
            counter.reset();
            results.forEach((PeakResultProcedure) result -> {
                final int density = allDensity[counter.getAndIncrement()];
                result.setOrigValue(density);
                if (density == 0) {
                    singles.add(result);
                } else {
                    clustered.add(result);
                }
            });
        }
    }
    final StringBuilder sb = new StringBuilder();
    sb.append(datasetNumber).append('\t');
    if (settings.getCameraType() == CameraType.SCMOS) {
        sb.append("sCMOS (").append(settings.getCameraModelName()).append(") ");
        final Rectangle bounds = cameraModel.getBounds();
        sb.append(" ").append(bounds.x).append(",").append(bounds.y);
        final int size = settings.getSize();
        sb.append(" ").append(size).append("x").append(size);
    } else if (CalibrationProtosHelper.isCcdCameraType(settings.getCameraType())) {
        sb.append(CalibrationProtosHelper.getName(settings.getCameraType()));
        final int size = settings.getSize();
        sb.append(" ").append(size).append("x").append(size);
        if (settings.getCameraType() == CameraType.EMCCD) {
            sb.append(" EM=").append(settings.getEmGain());
        }
        sb.append(" CG=").append(settings.getCameraGain());
        sb.append(" RN=").append(settings.getReadNoise());
        sb.append(" B=").append(settings.getBias());
    } else {
        throw new IllegalStateException();
    }
    sb.append(" QE=").append(settings.getQuantumEfficiency()).append('\t');
    sb.append(settings.getPsfModel());
    if (psfModelType == PSF_MODEL_IMAGE) {
        sb.append(" Image").append(settings.getPsfImageName());
    } else if (psfModelType == PSF_MODEL_ASTIGMATISM) {
        sb.append(" model=").append(settings.getAstigmatismModel());
    } else {
        sb.append(" DoF=").append(MathUtils.rounded(settings.getDepthOfFocus()));
        if (settings.getEnterWidth()) {
            sb.append(" SD=").append(MathUtils.rounded(settings.getPsfSd()));
        } else {
            sb.append(" λ=").append(MathUtils.rounded(settings.getWavelength()));
            sb.append(" NA=").append(MathUtils.rounded(settings.getNumericalAperture()));
        }
    }
    sb.append('\t');
    sb.append((fluorophores == null) ? localisations.size() : fluorophores.size()).append('\t');
    sb.append(stats[SAMPLED_BLINKS].getN() + (int) stats[SAMPLED_BLINKS].getSum()).append('\t');
    sb.append(localisations.size()).append('\t');
    sb.append(frameCount).append('\t');
    sb.append(MathUtils.rounded(areaInUm)).append('\t');
    sb.append(MathUtils.rounded(localisations.size() / (areaInUm * frameCount), 4)).append('\t');
    sb.append(MathUtils.rounded(getHwhm(), 4)).append('\t');
    double sd = getPsfSd();
    sb.append(MathUtils.rounded(sd, 4)).append('\t');
    sd *= settings.getPixelPitch();
    final double sa = PsfCalculator.squarePixelAdjustment(sd, settings.getPixelPitch()) / settings.getPixelPitch();
    sb.append(MathUtils.rounded(sa, 4)).append('\t');
    // Width not valid for the Image PSF.
    // Q. Is this true? We can approximate the FHWM for a spot-like image PSF.
    final int nStats = (psfModelType == PSF_MODEL_IMAGE) ? stats.length - 1 : stats.length;
    for (int i = 0; i < nStats; i++) {
        final double centre = (alwaysRemoveOutliers[i]) ? ((StoredDataStatistics) stats[i]).getStatistics().getPercentile(50) : stats[i].getMean();
        sb.append(MathUtils.rounded(centre, 4)).append('\t');
    }
    createSummaryTable().accept(sb.toString());
    // Show histograms
    if (settings.getShowHistograms() && !java.awt.GraphicsEnvironment.isHeadless()) {
        IJ.showStatus("Calculating histograms ...");
        final boolean[] chosenHistograms = getChoosenHistograms();
        final WindowOrganiser wo = new WindowOrganiser();
        final HistogramPlotBuilder builder = new HistogramPlotBuilder(TITLE);
        for (int i = 0; i < NAMES.length; i++) {
            if (chosenHistograms[i]) {
                builder.setData((StoredDataStatistics) stats[i]).setName(NAMES[i]).setIntegerBins(integerDisplay[i]).setRemoveOutliersOption((settings.getRemoveOutliers() || alwaysRemoveOutliers[i]) ? 2 : 0).setNumberOfBins(settings.getHistogramBins()).show(wo);
            }
        }
        wo.tile();
    }
    IJ.showStatus("");
    return stats[SIGNAL].getMean();
}
Also used : RandomUtils(uk.ac.sussex.gdsc.core.utils.rng.RandomUtils) LoadLocalisations(uk.ac.sussex.gdsc.smlm.ij.plugins.LoadLocalisations) Arrays(java.util.Arrays) PoissonSamplerUtils(uk.ac.sussex.gdsc.core.utils.rng.PoissonSamplerUtils) Molecule(uk.ac.sussex.gdsc.smlm.data.config.MoleculeProtos.Molecule) IdPeakResult(uk.ac.sussex.gdsc.smlm.results.IdPeakResult) ImageProcessor(ij.process.ImageProcessor) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) ConfigurationException(uk.ac.sussex.gdsc.smlm.data.config.ConfigurationException) AiryPsfModel(uk.ac.sussex.gdsc.smlm.model.AiryPsfModel) GaussianPsfModel(uk.ac.sussex.gdsc.smlm.model.GaussianPsfModel) MemoryUtils(uk.ac.sussex.gdsc.core.utils.MemoryUtils) PSFType(uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.PSFType) HelpUrls(uk.ac.sussex.gdsc.smlm.ij.plugins.HelpUrls) ResultsManager(uk.ac.sussex.gdsc.smlm.ij.plugins.ResultsManager) GammaDistribution(org.apache.commons.math3.distribution.GammaDistribution) Future(java.util.concurrent.Future) Vector(java.util.Vector) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults) Map(java.util.Map) DensityManager(uk.ac.sussex.gdsc.core.clustering.DensityManager) UnicodeReader(uk.ac.sussex.gdsc.core.utils.UnicodeReader) RadialFalloffIllumination(uk.ac.sussex.gdsc.smlm.model.RadialFalloffIllumination) DistanceUnit(uk.ac.sussex.gdsc.smlm.data.config.UnitProtos.DistanceUnit) RawResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.RawResultProcedure) ConcurrencyUtils(uk.ac.sussex.gdsc.core.utils.concurrent.ConcurrencyUtils) TextUtils(uk.ac.sussex.gdsc.core.utils.TextUtils) Gaussian2DFunction(uk.ac.sussex.gdsc.smlm.function.gaussian.Gaussian2DFunction) Executors(java.util.concurrent.Executors) PeakFit(uk.ac.sussex.gdsc.smlm.ij.plugins.PeakFit) TIntHashSet(gnu.trove.set.hash.TIntHashSet) ImagePlus(ij.ImagePlus) LocalisationList(uk.ac.sussex.gdsc.smlm.ij.plugins.LoadLocalisations.LocalisationList) UniformDistribution(uk.ac.sussex.gdsc.smlm.model.UniformDistribution) ShortProcessor(ij.process.ShortProcessor) FileUtils(uk.ac.sussex.gdsc.core.utils.FileUtils) CameraModelFisherInformationAnalysis(uk.ac.sussex.gdsc.smlm.ij.plugins.CameraModelFisherInformationAnalysis) CalibrationProtosHelper(uk.ac.sussex.gdsc.smlm.data.config.CalibrationProtosHelper) PlugIn(ij.plugin.PlugIn) LocalisationModelSet(uk.ac.sussex.gdsc.smlm.model.LocalisationModelSet) AiryPattern(uk.ac.sussex.gdsc.smlm.model.AiryPattern) Prefs(ij.Prefs) FrameCounter(uk.ac.sussex.gdsc.smlm.results.count.FrameCounter) WindowManager(ij.WindowManager) PeakResult(uk.ac.sussex.gdsc.smlm.results.PeakResult) CreateDataSettings(uk.ac.sussex.gdsc.smlm.ij.settings.GUIProtos.CreateDataSettings) GridDistribution(uk.ac.sussex.gdsc.smlm.model.GridDistribution) ArrayList(java.util.ArrayList) Atom(uk.ac.sussex.gdsc.smlm.data.config.MoleculeProtos.Atom) AutoThreshold(uk.ac.sussex.gdsc.core.threshold.AutoThreshold) GenericDialog(ij.gui.GenericDialog) ImagePsfModel(uk.ac.sussex.gdsc.smlm.model.ImagePsfModel) PsfModel(uk.ac.sussex.gdsc.smlm.model.PsfModel) PeakResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.PeakResultProcedure) PoissonGaussianFisherInformation(uk.ac.sussex.gdsc.smlm.function.PoissonGaussianFisherInformation) ImagePsfHelper(uk.ac.sussex.gdsc.smlm.ij.settings.ImagePsfHelper) UnivariateLikelihoodFisherInformationCalculator(uk.ac.sussex.gdsc.smlm.fitting.UnivariateLikelihoodFisherInformationCalculator) SpatialIllumination(uk.ac.sussex.gdsc.smlm.model.SpatialIllumination) PeakResultsReader(uk.ac.sussex.gdsc.smlm.results.PeakResultsReader) PsfCombiner(uk.ac.sussex.gdsc.smlm.ij.plugins.PsfCombiner) DiffusionType(uk.ac.sussex.gdsc.smlm.model.DiffusionType) Files(java.nio.file.Files) BufferedWriter(java.io.BufferedWriter) FitWorker(uk.ac.sussex.gdsc.smlm.engine.FitWorker) RandomGeneratorAdapter(uk.ac.sussex.gdsc.core.utils.rng.RandomGeneratorAdapter) AtomOrBuilder(uk.ac.sussex.gdsc.smlm.data.config.MoleculeProtos.AtomOrBuilder) IOException(java.io.IOException) SamplerUtils(uk.ac.sussex.gdsc.core.utils.rng.SamplerUtils) DiscreteUniformSampler(org.apache.commons.rng.sampling.distribution.DiscreteUniformSampler) File(java.io.File) SummaryStatistics(org.apache.commons.math3.stat.descriptive.SummaryStatistics) FloatProcessor(ij.process.FloatProcessor) BasePoissonFisherInformation(uk.ac.sussex.gdsc.smlm.function.BasePoissonFisherInformation) Paths(java.nio.file.Paths) AstigmatismZModel(uk.ac.sussex.gdsc.smlm.function.gaussian.AstigmatismZModel) TextFilePeakResults(uk.ac.sussex.gdsc.smlm.results.TextFilePeakResults) EmCcdCameraModel(uk.ac.sussex.gdsc.smlm.model.camera.EmCcdCameraModel) ImageStack(ij.ImageStack) PoissonSampler(org.apache.commons.rng.sampling.distribution.PoissonSampler) CameraModel(uk.ac.sussex.gdsc.smlm.model.camera.CameraModel) ExtendedPeakResult(uk.ac.sussex.gdsc.smlm.results.ExtendedPeakResult) PsfHelper(uk.ac.sussex.gdsc.smlm.data.config.PsfHelper) BufferedReader(java.io.BufferedReader) ImmutableMemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.ImmutableMemoryPeakResults) DoubleEquality(uk.ac.sussex.gdsc.core.utils.DoubleEquality) StandardResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.StandardResultProcedure) SphericalDistribution(uk.ac.sussex.gdsc.smlm.model.SphericalDistribution) TIntArrayList(gnu.trove.list.array.TIntArrayList) GaussianFilter(uk.ac.sussex.gdsc.smlm.filters.GaussianFilter) TextWindow(ij.text.TextWindow) StandardValueProcedure(uk.ac.sussex.gdsc.smlm.function.StandardValueProcedure) ImagePSF(uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.ImagePSF) Formatter(java.util.Formatter) FixedLifetimeImageModel(uk.ac.sussex.gdsc.smlm.model.FixedLifetimeImageModel) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) AtomicInteger(java.util.concurrent.atomic.AtomicInteger) PeakResults(uk.ac.sussex.gdsc.smlm.results.PeakResults) DataException(uk.ac.sussex.gdsc.core.data.DataException) PsfCalculator(uk.ac.sussex.gdsc.smlm.ij.plugins.PsfCalculator) EmpiricalDistribution(org.apache.commons.math3.random.EmpiricalDistribution) MathUtils(uk.ac.sussex.gdsc.core.utils.MathUtils) BinomialDiscreteInverseCumulativeProbabilityFunction(uk.ac.sussex.gdsc.core.utils.rng.BinomialDiscreteInverseCumulativeProbabilityFunction) CalibrationWriter(uk.ac.sussex.gdsc.smlm.data.config.CalibrationWriter) Offset(uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.Offset) TextFormat(com.google.protobuf.TextFormat) PsfProtosHelper(uk.ac.sussex.gdsc.smlm.data.config.PsfProtosHelper) SettingsManager(uk.ac.sussex.gdsc.smlm.ij.settings.SettingsManager) ItemEvent(java.awt.event.ItemEvent) CameraType(uk.ac.sussex.gdsc.smlm.data.config.CalibrationProtos.CameraType) SpatialDistribution(uk.ac.sussex.gdsc.smlm.model.SpatialDistribution) ExtendedGenericDialog(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog) AstigmatismModelManager(uk.ac.sussex.gdsc.smlm.ij.plugins.AstigmatismModelManager) UniformRealDistribution(org.apache.commons.math3.distribution.UniformRealDistribution) MoleculeModel(uk.ac.sussex.gdsc.smlm.model.MoleculeModel) TIntIntHashMap(gnu.trove.map.hash.TIntIntHashMap) MarsagliaTsangGammaSampler(uk.ac.sussex.gdsc.core.utils.rng.MarsagliaTsangGammaSampler) WidthResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.WidthResultProcedure) Gaussian2DPeakResultHelper(uk.ac.sussex.gdsc.smlm.results.Gaussian2DPeakResultHelper) List(java.util.List) FluorophoreSequenceModel(uk.ac.sussex.gdsc.smlm.model.FluorophoreSequenceModel) BirResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.BirResultProcedure) Entry(java.util.Map.Entry) CompoundMoleculeModel(uk.ac.sussex.gdsc.smlm.model.CompoundMoleculeModel) RealDistribution(org.apache.commons.math3.distribution.RealDistribution) HoltzerAstigmatismZModel(uk.ac.sussex.gdsc.smlm.function.gaussian.HoltzerAstigmatismZModel) ImageModel(uk.ac.sussex.gdsc.smlm.model.ImageModel) MaskDistribution3D(uk.ac.sussex.gdsc.smlm.model.MaskDistribution3D) TypeConverter(uk.ac.sussex.gdsc.core.data.utils.TypeConverter) PrecisionResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.PrecisionResultProcedure) Rectangle(java.awt.Rectangle) AtomicBoolean(java.util.concurrent.atomic.AtomicBoolean) PSF(uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.PSF) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) IntensityUnit(uk.ac.sussex.gdsc.smlm.data.config.UnitProtos.IntensityUnit) Mixture(uk.ac.sussex.gdsc.smlm.data.config.MoleculeProtos.Mixture) AtomicReference(java.util.concurrent.atomic.AtomicReference) SobolSequenceGenerator(org.apache.commons.math3.random.SobolSequenceGenerator) MaskDistribution(uk.ac.sussex.gdsc.smlm.model.MaskDistribution) OptionListener(uk.ac.sussex.gdsc.core.ij.gui.ExtendedGenericDialog.OptionListener) OpenDialog(ij.io.OpenDialog) ParameterUtils(uk.ac.sussex.gdsc.smlm.ij.plugins.ParameterUtils) IJImageSource(uk.ac.sussex.gdsc.smlm.ij.IJImageSource) NoiseEstimatorMethod(uk.ac.sussex.gdsc.smlm.data.config.FitProtos.NoiseEstimatorMethod) ReadHint(uk.ac.sussex.gdsc.smlm.results.ImageSource.ReadHint) ExponentialDistribution(org.apache.commons.math3.distribution.ExponentialDistribution) FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) UnitHelper(uk.ac.sussex.gdsc.smlm.data.config.UnitHelper) LinkedList(java.util.LinkedList) CcdCameraModel(uk.ac.sussex.gdsc.smlm.model.camera.CcdCameraModel) FileSaver(ij.io.FileSaver) Statistics(uk.ac.sussex.gdsc.core.utils.Statistics) ExecutorService(java.util.concurrent.ExecutorService) CreateDataSettingsHelper(uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper) TFloatArrayList(gnu.trove.list.array.TFloatArrayList) FunctionHelper(uk.ac.sussex.gdsc.smlm.function.FunctionHelper) UniformRandomProvider(org.apache.commons.rng.UniformRandomProvider) PoissonSamplerCache(org.apache.commons.rng.sampling.distribution.PoissonSamplerCache) AstigmatismModel(uk.ac.sussex.gdsc.smlm.data.config.PSFProtos.AstigmatismModel) ConversionException(uk.ac.sussex.gdsc.core.data.utils.ConversionException) SplitMix64(org.apache.commons.rng.core.source64.SplitMix64) Checkbox(java.awt.Checkbox) ActivationEnergyImageModel(uk.ac.sussex.gdsc.smlm.model.ActivationEnergyImageModel) LoadLocalisationsSettings(uk.ac.sussex.gdsc.smlm.ij.settings.GUIProtos.LoadLocalisationsSettings) FileInputStream(java.io.FileInputStream) Ticker(uk.ac.sussex.gdsc.core.logging.Ticker) PsfModelGradient1Function(uk.ac.sussex.gdsc.smlm.model.PsfModelGradient1Function) InterpolatedPoissonFisherInformation(uk.ac.sussex.gdsc.smlm.function.InterpolatedPoissonFisherInformation) Consumer(java.util.function.Consumer) CameraModelManager(uk.ac.sussex.gdsc.smlm.ij.plugins.CameraModelManager) LocalisationModel(uk.ac.sussex.gdsc.smlm.model.LocalisationModel) ImageJUtils(uk.ac.sussex.gdsc.core.ij.ImageJUtils) UniformIllumination(uk.ac.sussex.gdsc.smlm.model.UniformIllumination) SynchronizedPeakResults(uk.ac.sussex.gdsc.smlm.results.SynchronizedPeakResults) IJ(ij.IJ) NullArgumentException(org.apache.commons.math3.exception.NullArgumentException) SmlmUsageTracker(uk.ac.sussex.gdsc.smlm.ij.plugins.SmlmUsageTracker) InverseTransformDiscreteSampler(org.apache.commons.rng.sampling.distribution.InverseTransformDiscreteSampler) Comparator(java.util.Comparator) Collections(java.util.Collections) NormalizedGaussianSampler(org.apache.commons.rng.sampling.distribution.NormalizedGaussianSampler) LocalList(uk.ac.sussex.gdsc.core.utils.LocalList) UniformRandomProviders(uk.ac.sussex.gdsc.core.utils.rng.UniformRandomProviders) Rectangle(java.awt.Rectangle) HistogramPlotBuilder(uk.ac.sussex.gdsc.core.ij.HistogramPlot.HistogramPlotBuilder) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults) ImmutableMemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.ImmutableMemoryPeakResults) Ticker(uk.ac.sussex.gdsc.core.logging.Ticker) FrameCounter(uk.ac.sussex.gdsc.smlm.results.count.FrameCounter) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) WidthResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.WidthResultProcedure) WindowOrganiser(uk.ac.sussex.gdsc.core.ij.plugin.WindowOrganiser) PrecisionResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.PrecisionResultProcedure) SummaryStatistics(org.apache.commons.math3.stat.descriptive.SummaryStatistics) StoredDataStatistics(uk.ac.sussex.gdsc.core.utils.StoredDataStatistics) Statistics(uk.ac.sussex.gdsc.core.utils.Statistics) ImagePlus(ij.ImagePlus) ReadHint(uk.ac.sussex.gdsc.smlm.results.ImageSource.ReadHint) LinkedList(java.util.LinkedList) TFloatArrayList(gnu.trove.list.array.TFloatArrayList) DataException(uk.ac.sussex.gdsc.core.data.DataException) LocalisationModel(uk.ac.sussex.gdsc.smlm.model.LocalisationModel) FluorophoreSequenceModel(uk.ac.sussex.gdsc.smlm.model.FluorophoreSequenceModel) ExecutorService(java.util.concurrent.ExecutorService) Future(java.util.concurrent.Future) StandardResultProcedure(uk.ac.sussex.gdsc.smlm.results.procedures.StandardResultProcedure)

Example 2 with CreateDataSettingsHelper

use of uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper in project GDSC-SMLM by aherbert.

the class CreateData method drawImage.

// StoredDataStatistics rawPhotons = new StoredDataStatistics();
// StoredDataStatistics drawPhotons = new StoredDataStatistics();
// private synchronized void addRaw(double d)
// {
// //rawPhotons.add(d);
// }
// 
// private synchronized void addDraw(double d)
// {
// //drawPhotons.add(d);
// }
/**
 * Create an image from the localisations using the configured PSF width. Draws a new stack image.
 *
 * <p>Note that the localisations are filtered using the signal. The input list of localisations
 * will be updated.
 *
 * @param localisationSets the localisation sets
 * @return The localisations
 */
private List<LocalisationModel> drawImage(final List<LocalisationModelSet> localisationSets) {
    if (localisationSets.isEmpty()) {
        return null;
    }
    // Create a new list for all localisation that are drawn (i.e. pass the signal filters)
    List<LocalisationModelSet> newLocalisations = Collections.synchronizedList(new ArrayList<LocalisationModelSet>(localisationSets.size()));
    photonsRemoved = new AtomicInteger();
    removedT1 = new AtomicInteger();
    removedTn = new AtomicInteger();
    photonStats = new SummaryStatistics();
    // Add drawn spots to memory
    results = new MemoryPeakResults();
    final CalibrationWriter c = new CalibrationWriter();
    c.setDistanceUnit(DistanceUnit.PIXEL);
    c.setIntensityUnit(IntensityUnit.PHOTON);
    c.setNmPerPixel(settings.getPixelPitch());
    c.setExposureTime(settings.getExposureTime());
    c.setCameraType(settings.getCameraType());
    if (settings.getCameraType() == CameraType.SCMOS) {
        c.setCameraModelName(settings.getCameraModelName());
    } else {
        final CreateDataSettingsHelper helper = new CreateDataSettingsHelper(settings);
        c.setCountPerPhoton(helper.getTotalGainSafe());
        c.setBias(settings.getBias());
        c.setReadNoise(helper.getReadNoiseInCounts());
        c.setQuantumEfficiency(helper.getQuantumEfficiency());
    }
    results.setCalibration(c.getCalibration());
    results.setSortAfterEnd(true);
    results.begin();
    maxT = localisationSets.get(localisationSets.size() - 1).getTime();
    // Display image
    final ImageStack stack = new ImageStack(settings.getSize(), settings.getSize(), maxT);
    final double psfSd = getPsfSd();
    if (psfSd <= 0) {
        return null;
    }
    final PsfModel psfModel = createPsfModel(localisationSets);
    if (psfModel == null) {
        return null;
    }
    // Create the camera noise model
    createPerPixelCameraModelData(cameraModel);
    createBackgroundPixels();
    final int threadCount = Prefs.getThreads();
    IJ.showStatus("Drawing image ...");
    // Multi-thread for speed
    final PeakResults syncResults = SynchronizedPeakResults.create(results, threadCount);
    final ExecutorService threadPool = Executors.newFixedThreadPool(threadCount);
    final List<Future<?>> futures = new LinkedList<>();
    // Count all the frames to process
    final Ticker ticker = ImageJUtils.createTicker(maxT, threadCount);
    // Collect statistics on the number of photons actually simulated
    // Process all frames
    int index = 0;
    int lastT = -1;
    for (final LocalisationModelSet l : localisationSets) {
        if (ImageJUtils.isInterrupted()) {
            break;
        }
        if (l.getTime() != lastT) {
            lastT = l.getTime();
            futures.add(threadPool.submit(new ImageGenerator(localisationSets, newLocalisations, index, lastT, psfModel.copy(), syncResults, stack, poissonNoise, createRandomGenerator(), ticker)));
        }
        index++;
    }
    // Finish processing data
    ConcurrencyUtils.waitForCompletionUnchecked(futures);
    futures.clear();
    if (ImageJUtils.isInterrupted()) {
        IJ.showProgress(1);
        return null;
    }
    // Do all the frames that had no localisations
    float[] limits = null;
    for (int t = 1; t <= maxT; t++) {
        if (ImageJUtils.isInterrupted()) {
            break;
        }
        final Object pixels = stack.getPixels(t);
        if (pixels == null) {
            futures.add(threadPool.submit(new ImageGenerator(localisationSets, newLocalisations, maxT, t, null, syncResults, stack, poissonNoise, createRandomGenerator(), ticker)));
        } else if (limits == null) {
            limits = MathUtils.limits((float[]) pixels);
        }
    }
    // Finish
    ConcurrencyUtils.waitForCompletionUnchecked(futures);
    futures.clear();
    threadPool.shutdown();
    IJ.showProgress(1);
    if (ImageJUtils.isInterrupted() || limits == null) {
        return null;
    }
    results.end();
    if (photonsRemoved.get() > 0) {
        ImageJUtils.log("Removed %d localisations with less than %.1f rendered photons", photonsRemoved.get(), settings.getMinPhotons());
    }
    if (removedT1.get() > 0) {
        ImageJUtils.log("Removed %d localisations with no neighbours @ SNR %.2f", removedT1.get(), settings.getMinSnrT1());
    }
    if (removedTn.get() > 0) {
        ImageJUtils.log("Removed %d localisations with valid neighbours @ SNR %.2f", removedTn.get(), settings.getMinSnrTN());
    }
    if (photonStats.getN() > 0) {
        ImageJUtils.log("Average photons rendered = %s +/- %s", MathUtils.rounded(photonStats.getMean()), MathUtils.rounded(photonStats.getStandardDeviation()));
    }
    // System.out.printf("rawPhotons = %f\n", rawPhotons.getMean());
    // System.out.printf("drawPhotons = %f\n", drawPhotons.getMean());
    // new HistogramPlotBuilder("draw photons", drawPhotons, "photons", true, 0, 1000);
    // Update with all those localisation that have been drawn
    localisationSets.clear();
    localisationSets.addAll(newLocalisations);
    newLocalisations = null;
    IJ.showStatus("Displaying image ...");
    ImageStack newStack = stack;
    if (!settings.getRawImage()) {
        // Get the global limits and ensure all values can be represented
        final Object[] imageArray = stack.getImageArray();
        limits = MathUtils.limits((float[]) imageArray[0]);
        for (int j = 1; j < imageArray.length; j++) {
            limits = MathUtils.limits(limits, (float[]) imageArray[j]);
        }
        // float limits0 = limits[0];
        // Leave bias in place
        final float limits0 = 0;
        // Check if the image will fit in a 16-bit range
        if ((limits[1] - limits0) < 65535) {
            // Convert to 16-bit
            newStack = new ImageStack(stack.getWidth(), stack.getHeight(), stack.getSize());
            // Account for rounding
            final float min = (float) (limits0 - 0.5);
            for (int j = 0; j < imageArray.length; j++) {
                final float[] image = (float[]) imageArray[j];
                final short[] pixels = new short[image.length];
                for (int k = 0; k < pixels.length; k++) {
                    pixels[k] = (short) (image[k] - min);
                }
                newStack.setPixels(pixels, j + 1);
                // Free memory
                imageArray[j] = null;
                // Attempt to stay within memory (check vs 32MB)
                if (MemoryUtils.getFreeMemory() < 33554432L) {
                    MemoryUtils.runGarbageCollectorOnce();
                }
            }
            for (int k = 2; k-- > 0; ) {
                limits[k] = (float) Math.floor(limits[k] - min);
            }
        } else {
            // Keep as 32-bit but round to whole numbers
            for (int j = 0; j < imageArray.length; j++) {
                final float[] pixels = (float[]) imageArray[j];
                for (int k = 0; k < pixels.length; k++) {
                    pixels[k] = Math.round(pixels[k]);
                }
            }
            for (int k = 2; k-- > 0; ) {
                limits[k] = Math.round(limits[k]);
            }
        }
    }
    // Show image
    final ImagePlus imp = ImageJUtils.display(CREATE_DATA_IMAGE_TITLE, newStack);
    final ij.measure.Calibration cal = new ij.measure.Calibration();
    String unit = "nm";
    double unitPerPixel = settings.getPixelPitch();
    if (unitPerPixel > 100) {
        unit = "um";
        unitPerPixel /= 1000.0;
    }
    cal.setUnit(unit);
    cal.pixelHeight = cal.pixelWidth = unitPerPixel;
    final Rectangle bounds = cameraModel.getBounds();
    if (bounds != null) {
        cal.xOrigin = -bounds.x;
        cal.yOrigin = -bounds.y;
    }
    imp.setCalibration(cal);
    imp.setDimensions(1, 1, newStack.getSize());
    imp.setDisplayRange(limits[0], limits[1]);
    imp.updateAndDraw();
    saveImage(imp);
    final IJImageSource imageSource = new IJImageSource(imp);
    // Shift simulation image source to correct location
    results.setSource(imageSource);
    results.setName(CREATE_DATA_IMAGE_TITLE + " (" + TITLE + ")");
    // Bounds are relative to the image source
    results.setBounds(new Rectangle(settings.getSize(), settings.getSize()));
    results.setPsf(createPsf(psfSd));
    MemoryPeakResults.addResults(results);
    setBenchmarkResults(imp, results);
    if (benchmarkMode && benchmarkParameters != null) {
        benchmarkParameters.setPhotons(results);
    }
    final List<LocalisationModel> localisations = toLocalisations(localisationSets);
    savePulses(localisations, results);
    // Saved the fixed and moving localisations into different datasets
    saveFixedAndMoving(results);
    saveCompoundMolecules(results);
    return localisations;
}
Also used : Rectangle(java.awt.Rectangle) AiryPsfModel(uk.ac.sussex.gdsc.smlm.model.AiryPsfModel) GaussianPsfModel(uk.ac.sussex.gdsc.smlm.model.GaussianPsfModel) ImagePsfModel(uk.ac.sussex.gdsc.smlm.model.ImagePsfModel) PsfModel(uk.ac.sussex.gdsc.smlm.model.PsfModel) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults) TextFilePeakResults(uk.ac.sussex.gdsc.smlm.results.TextFilePeakResults) ImmutableMemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.ImmutableMemoryPeakResults) PeakResults(uk.ac.sussex.gdsc.smlm.results.PeakResults) SynchronizedPeakResults(uk.ac.sussex.gdsc.smlm.results.SynchronizedPeakResults) CalibrationWriter(uk.ac.sussex.gdsc.smlm.data.config.CalibrationWriter) MemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults) ImmutableMemoryPeakResults(uk.ac.sussex.gdsc.smlm.results.ImmutableMemoryPeakResults) ImageStack(ij.ImageStack) Ticker(uk.ac.sussex.gdsc.core.logging.Ticker) SummaryStatistics(org.apache.commons.math3.stat.descriptive.SummaryStatistics) ImagePlus(ij.ImagePlus) ReadHint(uk.ac.sussex.gdsc.smlm.results.ImageSource.ReadHint) LinkedList(java.util.LinkedList) IJImageSource(uk.ac.sussex.gdsc.smlm.ij.IJImageSource) LocalisationModel(uk.ac.sussex.gdsc.smlm.model.LocalisationModel) AtomicInteger(java.util.concurrent.atomic.AtomicInteger) CreateDataSettingsHelper(uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper) ExecutorService(java.util.concurrent.ExecutorService) Future(java.util.concurrent.Future) LocalisationModelSet(uk.ac.sussex.gdsc.smlm.model.LocalisationModelSet)

Example 3 with CreateDataSettingsHelper

use of uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper in project GDSC-SMLM by aherbert.

the class CreateData method reportAndSaveFittingLimits.

/**
 * Output the theoretical limits for fitting a Gaussian and store the benchmark settings.
 *
 * @param dist The distribution
 */
private void reportAndSaveFittingLimits(SpatialDistribution dist) {
    ImageJUtils.log(TITLE + " Benchmark");
    final double a = settings.getPixelPitch();
    final double[] xyz = dist.next().clone();
    final int size = settings.getSize();
    final double offset = size * 0.5;
    for (int i = 0; i < 2; i++) {
        xyz[i] += offset;
    }
    // Get the width for the z-depth by using the PSF Model
    final PsfModel psf = createPsfModel(xyz);
    psfModelCache = psf;
    double sd0;
    double sd1;
    if (psf instanceof GaussianPsfModel) {
        sd0 = ((GaussianPsfModel) psf).getS0(xyz[2]);
        sd1 = ((GaussianPsfModel) psf).getS1(xyz[2]);
    } else if (psf instanceof AiryPsfModel) {
        psf.create3D((double[]) null, size, size, 1, xyz[0], xyz[1], xyz[2], null);
        sd0 = ((AiryPsfModel) psf).getW0() * AiryPattern.FACTOR;
        sd1 = ((AiryPsfModel) psf).getW1() * AiryPattern.FACTOR;
    } else if (psf instanceof ImagePsfModel) {
        psf.create3D((double[]) null, size, size, 1, xyz[0], xyz[1], xyz[2], null);
        sd0 = ((ImagePsfModel) psf).getHwhm0() / Gaussian2DFunction.SD_TO_HWHM_FACTOR;
        sd1 = ((ImagePsfModel) psf).getHwhm1() / Gaussian2DFunction.SD_TO_HWHM_FACTOR;
    } else {
        throw new IllegalStateException("Unknown PSF: " + psf.getClass().getSimpleName());
    }
    final double sd = Gaussian2DPeakResultHelper.getStandardDeviation(sd0, sd1) * a;
    ImageJUtils.log("X = %s nm : %s px", MathUtils.rounded(xyz[0] * a), MathUtils.rounded(xyz[0], 6));
    ImageJUtils.log("Y = %s nm : %s px", MathUtils.rounded(xyz[1] * a), MathUtils.rounded(xyz[1], 6));
    ImageJUtils.log("Z = %s nm : %s px", MathUtils.rounded(xyz[2] * a), MathUtils.rounded(xyz[2], 6));
    ImageJUtils.log("Width (s) = %s nm : %s px", MathUtils.rounded(sd), MathUtils.rounded(sd / a));
    final double sa = PsfCalculator.squarePixelAdjustment(sd, a);
    ImageJUtils.log("Adjusted Width (sa) = %s nm : %s px", MathUtils.rounded(sa), MathUtils.rounded(sa / a));
    ImageJUtils.log("Signal (N) = %s - %s photons", MathUtils.rounded(settings.getPhotonsPerSecond()), MathUtils.rounded(settings.getPhotonsPerSecondMaximum()));
    boolean emCcd;
    double totalGain;
    final double qe = getQuantumEfficiency();
    final double noise = getNoiseEstimateInPhotoelectrons(qe);
    double readNoise;
    if (CalibrationProtosHelper.isCcdCameraType(settings.getCameraType())) {
        final CreateDataSettingsHelper helper = new CreateDataSettingsHelper(settings);
        emCcd = helper.isEmCcd;
        totalGain = helper.getTotalGainSafe();
        // Store read noise in ADUs
        readNoise = settings.getReadNoise() * ((settings.getCameraGain() > 0) ? settings.getCameraGain() : 1);
    } else if (settings.getCameraType() == CameraType.SCMOS) {
        // Assume sCMOS amplification is like a CCD for the precision computation.
        emCcd = false;
        // Not required for sCMOS
        totalGain = 0;
        readNoise = 0;
    } else {
        throw new IllegalStateException("Unknown camera type: " + settings.getCameraType());
    }
    // The precision calculation is dependent on the model. The classic Mortensen formula
    // is for a Gaussian Mask Estimator. Use other equation for MLE. The formula provided
    // for WLSE requires an offset to the background used to stabilise the fitting. This is
    // not implemented (i.e. we used an offset of zero) and in this case the WLSE precision
    // is the same as MLE with the caveat of numerical instability.
    // Apply QE directly to simulated photons to allow computation of bounds
    // with the captured photons...
    final double min = settings.getPhotonsPerSecond() * qe;
    final double max = settings.getPhotonsPerSecondMaximum() * qe;
    final double lowerP = Gaussian2DPeakResultHelper.getPrecision(a, sd, max, noise, emCcd);
    final double upperP = Gaussian2DPeakResultHelper.getPrecision(a, sd, min, noise, emCcd);
    final double lowerMlP = Gaussian2DPeakResultHelper.getMLPrecision(a, sd, max, noise, emCcd);
    final double upperMlP = Gaussian2DPeakResultHelper.getMLPrecision(a, sd, min, noise, emCcd);
    final double lowerN = getPrecisionN(a, sd, min, MathUtils.pow2(noise), emCcd);
    final double upperN = getPrecisionN(a, sd, max, MathUtils.pow2(noise), emCcd);
    if (settings.getCameraType() == CameraType.SCMOS) {
        ImageJUtils.log("sCMOS camera background estimate uses an average read noise");
    }
    ImageJUtils.log("Effective background noise = %s photo-electron " + "[includes read noise and background photons]", MathUtils.rounded(noise));
    ImageJUtils.log("Localisation precision (LSE): %s - %s nm : %s - %s px", MathUtils.rounded(lowerP), MathUtils.rounded(upperP), MathUtils.rounded(lowerP / a), MathUtils.rounded(upperP / a));
    ImageJUtils.log("Localisation precision (MLE): %s - %s nm : %s - %s px", MathUtils.rounded(lowerMlP), MathUtils.rounded(upperMlP), MathUtils.rounded(lowerMlP / a), MathUtils.rounded(upperMlP / a));
    ImageJUtils.log("Signal precision: %s - %s photo-electrons", MathUtils.rounded(lowerN), MathUtils.rounded(upperN));
    // Wrap to a function
    final PsfModelGradient1Function f = new PsfModelGradient1Function(psf, size, size);
    // Set parameters
    final double[] params = new double[5];
    // No background when computing the SNR
    // params[0] = settings.getBackground() * qe;
    params[1] = min;
    System.arraycopy(xyz, 0, params, 2, 3);
    // Compute SNR using mean signal at 50%. Assume the region covers the entire PSF.
    final double[] v = new StandardValueProcedure().getValues(f, params);
    final double u = FunctionHelper.getMeanValue(v, 0.5);
    final double u0 = MathUtils.max(v);
    // Store the benchmark settings when not using variable photons
    if (Double.compare(min, max) == 0) {
        ImageJUtils.log("50%% PSF SNR : %s : Peak SNR : %s", MathUtils.rounded(u / noise), MathUtils.rounded(u0 / noise));
        // Compute the true CRLB using the fisher information
        createLikelihoodFunction();
        // Compute Fisher information
        final UnivariateLikelihoodFisherInformationCalculator c = new UnivariateLikelihoodFisherInformationCalculator(f, fiFunction);
        // Get limits: Include background in the params
        params[0] = settings.getBackground() * qe;
        final FisherInformationMatrix m = c.compute(params);
        // Report and store the limits
        final double[] crlb = m.crlbSqrt();
        if (crlb != null) {
            ImageJUtils.log("Localisation precision (CRLB): B=%s, I=%s photons", MathUtils.rounded(crlb[0]), MathUtils.rounded(crlb[1]));
            ImageJUtils.log("Localisation precision (CRLB): X=%s, Y=%s, Z=%s nm : %s,%s,%s px", MathUtils.rounded(crlb[2] * a), MathUtils.rounded(crlb[3] * a), MathUtils.rounded(crlb[4] * a), MathUtils.rounded(crlb[2]), MathUtils.rounded(crlb[3]), MathUtils.rounded(crlb[4]));
        }
        benchmarkParameters = new BenchmarkParameters(settings.getParticles(), sd, a, settings.getPhotonsPerSecond(), xyz[0], xyz[1], xyz[2], settings.getBias(), totalGain, qe, readNoise, settings.getCameraType(), settings.getCameraModelName(), cameraModel.getBounds(), settings.getBackground(), noise, lowerN, lowerP, lowerMlP, createPsf(sd / a), crlb);
    } else {
        // SNR will just scale
        final double scale = max / min;
        ImageJUtils.log("50%% PSF SNR : %s - %s : Peak SNR : %s - %s", MathUtils.rounded(u / noise), MathUtils.rounded(scale * u / noise), MathUtils.rounded(u0 / noise), MathUtils.rounded(scale * u0 / noise));
        ImageJUtils.log("Warning: Benchmark settings are only stored in memory when the number of photons is " + "fixed. Min %s != Max %s", MathUtils.rounded(settings.getPhotonsPerSecond()), MathUtils.rounded(settings.getPhotonsPerSecondMaximum()));
    }
}
Also used : PsfModelGradient1Function(uk.ac.sussex.gdsc.smlm.model.PsfModelGradient1Function) UnivariateLikelihoodFisherInformationCalculator(uk.ac.sussex.gdsc.smlm.fitting.UnivariateLikelihoodFisherInformationCalculator) StandardValueProcedure(uk.ac.sussex.gdsc.smlm.function.StandardValueProcedure) FisherInformationMatrix(uk.ac.sussex.gdsc.smlm.fitting.FisherInformationMatrix) AiryPsfModel(uk.ac.sussex.gdsc.smlm.model.AiryPsfModel) ReadHint(uk.ac.sussex.gdsc.smlm.results.ImageSource.ReadHint) AiryPsfModel(uk.ac.sussex.gdsc.smlm.model.AiryPsfModel) GaussianPsfModel(uk.ac.sussex.gdsc.smlm.model.GaussianPsfModel) ImagePsfModel(uk.ac.sussex.gdsc.smlm.model.ImagePsfModel) PsfModel(uk.ac.sussex.gdsc.smlm.model.PsfModel) GaussianPsfModel(uk.ac.sussex.gdsc.smlm.model.GaussianPsfModel) CreateDataSettingsHelper(uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper) ImagePsfModel(uk.ac.sussex.gdsc.smlm.model.ImagePsfModel)

Example 4 with CreateDataSettingsHelper

use of uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper in project GDSC-SMLM by aherbert.

the class CreateData method createLikelihoodFunction.

/**
 * Creates the likelihood function. This is used for CRLB computation.
 */
private void createLikelihoodFunction() {
    final CameraType cameraType = settings.getCameraType();
    final boolean isCcd = CalibrationProtosHelper.isCcdCameraType(cameraType);
    fiFunction = new BasePoissonFisherInformation[settings.getSize() * settings.getSize()];
    if (isCcd) {
        BasePoissonFisherInformation fi;
        final CreateDataSettingsHelper helper = new CreateDataSettingsHelper(settings);
        final double readNoise = helper.getReadNoiseInCounts();
        if (cameraType == CameraType.EMCCD) {
            // We only want the amplification (without QE applied)
            final double amp = helper.getAmplification();
            // This should be interpolated from a stored curve
            final InterpolatedPoissonFisherInformation i = CameraModelFisherInformationAnalysis.loadFunction(CameraModelFisherInformationAnalysis.CameraType.EM_CCD, amp, readNoise);
            if (i == null) {
                throw new IllegalStateException("No stored Fisher information for EM-CCD camera with gain " + amp + " and noise " + readNoise + "\n \nPlease generate using the " + CameraModelFisherInformationAnalysis.TITLE);
            }
            fi = i;
        } else {
            // This is fast enough to compute dynamically.
            // Read noise is in electrons so use directly.
            fi = new PoissonGaussianFisherInformation(settings.getReadNoise());
        }
        Arrays.fill(fiFunction, fi);
    } else if (cameraType == CameraType.SCMOS) {
        // Build per-pixel likelihood function.
        // Get the normalised variance per pixel.
        final float[] v = cameraModel.getNormalisedVariance(cameraModel.getBounds());
        // Build the function
        for (int i = 0; i < fiFunction.length; i++) {
            fiFunction[i] = new PoissonGaussianFisherInformation(Math.sqrt(v[i]));
        }
    } else {
        throw new IllegalArgumentException("Unsupported camera type: " + CalibrationProtosHelper.getName(cameraType));
    }
}
Also used : CreateDataSettingsHelper(uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper) BasePoissonFisherInformation(uk.ac.sussex.gdsc.smlm.function.BasePoissonFisherInformation) PoissonGaussianFisherInformation(uk.ac.sussex.gdsc.smlm.function.PoissonGaussianFisherInformation) CameraType(uk.ac.sussex.gdsc.smlm.data.config.CalibrationProtos.CameraType) InterpolatedPoissonFisherInformation(uk.ac.sussex.gdsc.smlm.function.InterpolatedPoissonFisherInformation)

Example 5 with CreateDataSettingsHelper

use of uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper in project GDSC-SMLM by aherbert.

the class CreateData method saveSimulationParameters.

/**
 * Store the simulation settings.
 *
 * @param particles the particles
 * @param fullSimulation the full simulation
 * @param signalPerFrame the signal per frame
 */
private void saveSimulationParameters(int particles, boolean fullSimulation, double signalPerFrame) {
    double totalGain;
    final double noise = getNoiseEstimateInPhotoelectrons(getQuantumEfficiency());
    double readNoise;
    if (CalibrationProtosHelper.isCcdCameraType(settings.getCameraType())) {
        final CreateDataSettingsHelper helper = new CreateDataSettingsHelper(settings);
        totalGain = helper.getTotalGainSafe();
        // Store read noise in ADUs
        readNoise = helper.getReadNoiseInCounts();
    } else if (settings.getCameraType() == CameraType.SCMOS) {
        // Not required for sCMOS
        totalGain = 0;
        readNoise = 0;
    } else {
        throw new IllegalStateException("Unknown camera type: " + settings.getCameraType());
    }
    final double sd = getPsfSd() * settings.getPixelPitch();
    final double qe = getQuantumEfficiency();
    simulationParameters = new SimulationParameters(particles, fullSimulation, sd, settings.getPixelPitch(), settings.getPhotonsPerSecond(), settings.getPhotonsPerSecondMaximum(), signalPerFrame, settings.getDepth(), settings.getFixedDepth(), settings.getBias(), totalGain, qe, readNoise, settings.getCameraType(), settings.getCameraModelName(), cameraModel.getBounds(), settings.getBackground(), noise, createPsf(sd / settings.getPixelPitch()));
}
Also used : CreateDataSettingsHelper(uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper)

Aggregations

CreateDataSettingsHelper (uk.ac.sussex.gdsc.smlm.ij.settings.CreateDataSettingsHelper)4 ImagePlus (ij.ImagePlus)2 ImageStack (ij.ImageStack)2 Rectangle (java.awt.Rectangle)2 LinkedList (java.util.LinkedList)2 ExecutorService (java.util.concurrent.ExecutorService)2 AiryPsfModel (uk.ac.sussex.gdsc.smlm.model.AiryPsfModel)2 GaussianPsfModel (uk.ac.sussex.gdsc.smlm.model.GaussianPsfModel)2 ImagePsfModel (uk.ac.sussex.gdsc.smlm.model.ImagePsfModel)2 PsfModel (uk.ac.sussex.gdsc.smlm.model.PsfModel)2 ReadHint (uk.ac.sussex.gdsc.smlm.results.ImageSource.ReadHint)2 TextFormat (com.google.protobuf.TextFormat)1 TFloatArrayList (gnu.trove.list.array.TFloatArrayList)1 TIntArrayList (gnu.trove.list.array.TIntArrayList)1 TIntIntHashMap (gnu.trove.map.hash.TIntIntHashMap)1 TIntHashSet (gnu.trove.set.hash.TIntHashSet)1 IJ (ij.IJ)1 Prefs (ij.Prefs)1 WindowManager (ij.WindowManager)1 GenericDialog (ij.gui.GenericDialog)1