use of uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class TcPalmAnalysis method runSelection.
/**
* Run selection of the current clusters.
*
* @param work the current work
*/
private void runSelection(Work work) {
// Support square ROI
// - Map image ROI bounds to the data
// - Check if the cluster is inside the rectangle bounds
final Roi roi = work.roi;
final TcPalmAnalysisSettings settings = work.settings;
final Rectangle2D scaledBounds = createScaledBounds(roi);
final BiPredicate<ClusterData, Rectangle2D> filter = createSelectionFilter(roi, settings);
clusters = new LocalList<>();
clusterData.forEach(c -> {
if (filter.test(c, scaledBounds)) {
clusters.add(c);
}
});
// Build total activations data
countData = createCumulativeCountData(clusters, true);
// Add a table of the clusters.
final ClusterDataTableModelFrame clustersTable = createGroupsTable();
clustersTable.getModel().setData(clusters, dataCalibration);
// Allow a configurable action that accepts the array of ClusterData that is selected.
clustersTable.selectedAction = clusterSelectedListener;
// Extract the localisations into a loop view
final MemoryPeakResults subset = new MemoryPeakResults();
subset.copySettings(results);
clusters.forEach(c -> {
c.results.forEach(peak -> {
if (scaledBounds.contains(peak.getXPosition(), peak.getYPosition())) {
subset.add(peak);
}
});
});
// Clear bounds to force a recompute
subset.setBounds(null);
loopImage.setSettings(settings).setResults(subset).update();
}
use of uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class PulseActivationAnalysis method runSimulation.
private void runSimulation() {
title += " Simulation";
if (!showSimulationDialog()) {
return;
}
final long start = System.currentTimeMillis();
final UniformRandomProvider rng = getUniformRandomProvider();
// Draw the molecule positions
ImageJUtils.showStatus("Simulating molecules ...");
final float[][][] molecules = new float[3][][];
final MemoryPeakResults[] channelResults = new MemoryPeakResults[3];
final Calibration calibration = CalibrationHelper.create(settings.nmPerPixel, 1, 100);
final Rectangle bounds = new Rectangle(settings.size, settings.size);
for (int c = 0; c < 3; c++) {
molecules[c] = simulateMolecules(rng, c);
// Create a dataset to store the activations
final MemoryPeakResults r = new MemoryPeakResults();
r.setCalibration(calibration);
r.setBounds(bounds);
r.setName(title + " C" + (c + 1));
channelResults[c] = r;
}
// Simulate activation
ImageJUtils.showStatus("Simulating activations ...");
for (int c = 0; c < 3; c++) {
simulateActivations(rng, molecules, c, channelResults);
}
// Combine
ImageJUtils.showStatus("Producing simulation output ...");
final MemoryPeakResults r = new MemoryPeakResults();
r.setCalibration(calibration);
r.setBounds((Rectangle) bounds.clone());
r.setName(title);
final ImageProcessor[] images = new ImageProcessor[3];
for (int c = 0; c < 3; c++) {
final PeakResult[] list = channelResults[c].toArray();
r.addAll(list);
// Draw the unmixed activations
final ResultsImageSettings.Builder builder = ResultsImageSettings.newBuilder().setImageType(ResultsImageType.DRAW_LOCALISATIONS).setImageMode(ResultsImageMode.IMAGE_ADD).setWeighted(true).setEqualised(true).setImageSizeMode(ResultsImageSizeMode.IMAGE_SIZE).setImageSize(1024);
final ImageJImagePeakResults image = ImagePeakResultsFactory.createPeakResultsImage(builder, title, bounds, settings.nmPerPixel);
image.setCalibration(calibration);
image.setLiveImage(false);
image.setDisplayImage(false);
image.begin();
image.addAll(list);
image.end();
images[c] = image.getImagePlus().getProcessor();
}
displayComposite(images, title);
// Add to memory. Set the composite dataset first.
MemoryPeakResults.addResults(r);
for (int c = 0; c < 3; c++) {
MemoryPeakResults.addResults(channelResults[c]);
}
// TODO:
// Show an image of what it looks like with no unmixing, i.e. colours allocated
// from the frame
ImageJUtils.showStatus("Simulation complete: " + TextUtils.millisToString(System.currentTimeMillis() - start));
}
use of uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class PsfCreator method runUsingFitting.
private void runUsingFitting() {
if (!showFittingDialog()) {
return;
}
if (!loadConfiguration()) {
return;
}
final BasePoint[] spots = getSpots(0, true);
if (spots.length == 0) {
IJ.error(TITLE, "No spots without neighbours within " + (boxRadius * 2) + "px");
return;
}
final ImageStack stack = getImageStack();
final int width = imp.getWidth();
final int height = imp.getHeight();
final int currentSlice = imp.getSlice();
// Adjust settings for a single maxima
config.setIncludeNeighbours(false);
final ArrayList<double[]> centres = new ArrayList<>(spots.length);
final int iterations = 1;
final LoessInterpolator loess = new LoessInterpolator(settings.getSmoothing(), iterations);
// TODO - The fitting routine may not produce many points. In this instance the LOESS
// interpolator
// fails to smooth the data very well. A higher bandwidth helps this but perhaps
// try a different smoothing method.
// For each spot
ImageJUtils.log(TITLE + ": " + imp.getTitle());
ImageJUtils.log("Finding spot locations...");
ImageJUtils.log(" %d spot%s without neighbours within %dpx", spots.length, ((spots.length == 1) ? "" : "s"), (boxRadius * 2));
final StoredDataStatistics averageSd = new StoredDataStatistics();
final StoredDataStatistics averageA = new StoredDataStatistics();
final Statistics averageRange = new Statistics();
final MemoryPeakResults allResults = new MemoryPeakResults();
allResults.setCalibration(fitConfig.getCalibration());
allResults.setPsf(fitConfig.getPsf());
allResults.setName(TITLE);
allResults.setBounds(new Rectangle(0, 0, width, height));
MemoryPeakResults.addResults(allResults);
for (int n = 1; n <= spots.length; n++) {
final BasePoint spot = spots[n - 1];
final int x = (int) spot.getX();
final int y = (int) spot.getY();
final MemoryPeakResults results = fitSpot(stack, width, height, x, y);
allResults.add(results);
if (results.size() < 5) {
ImageJUtils.log(" Spot %d: Not enough fit results %d", n, results.size());
continue;
}
// Get the results for the spot centre and width
final double[] z = new double[results.size()];
final double[] xCoord = new double[z.length];
final double[] yCoord = new double[z.length];
final double[] sd;
final double[] a;
final Counter counter = new Counter();
// We have fit the results so they will be in the preferred units
results.forEach(new PeakResultProcedure() {
@Override
public void execute(PeakResult peak) {
final int i = counter.getAndIncrement();
z[i] = peak.getFrame();
xCoord[i] = peak.getXPosition() - x;
yCoord[i] = peak.getYPosition() - y;
}
});
final WidthResultProcedure wp = new WidthResultProcedure(results, DistanceUnit.PIXEL);
wp.getW();
sd = SimpleArrayUtils.toDouble(wp.wx);
final HeightResultProcedure hp = new HeightResultProcedure(results, IntensityUnit.COUNT);
hp.getH();
a = SimpleArrayUtils.toDouble(hp.heights);
// Smooth the amplitude plot
final double[] smoothA = loess.smooth(z, a);
// Find the maximum amplitude
int maximumIndex = findMaximumIndex(smoothA);
// Find the range at a fraction of the max. This is smoothed to find the X/Y centre
int start = 0;
int stop = smoothA.length - 1;
final double limit = smoothA[maximumIndex] * settings.getAmplitudeFraction();
for (int j = 0; j < smoothA.length; j++) {
if (smoothA[j] > limit) {
start = j;
break;
}
}
for (int j = smoothA.length; j-- > 0; ) {
if (smoothA[j] > limit) {
stop = j;
break;
}
}
averageRange.add(stop - start + 1);
// Extract xy centre coords and smooth
double[] smoothX = new double[stop - start + 1];
double[] smoothY = new double[smoothX.length];
double[] smoothSd = new double[smoothX.length];
final double[] newZ = new double[smoothX.length];
for (int j = start, k = 0; j <= stop; j++, k++) {
smoothX[k] = xCoord[j];
smoothY[k] = yCoord[j];
smoothSd[k] = sd[j];
newZ[k] = z[j];
}
smoothX = loess.smooth(newZ, smoothX);
smoothY = loess.smooth(newZ, smoothY);
smoothSd = loess.smooth(newZ, smoothSd);
// Since the amplitude is not very consistent move from this peak to the
// lowest width which is the in-focus spot.
maximumIndex = findMinimumIndex(smoothSd, maximumIndex - start);
// Find the centre at the amplitude peak
final double cx = smoothX[maximumIndex] + x;
final double cy = smoothY[maximumIndex] + y;
int cz = (int) newZ[maximumIndex];
double csd = smoothSd[maximumIndex];
double ca = smoothA[maximumIndex + start];
// The average should weight the SD using the signal for each spot
averageSd.add(smoothSd[maximumIndex]);
averageA.add(ca);
if (ignoreSpot(n, z, a, smoothA, xCoord, yCoord, sd, newZ, smoothX, smoothY, smoothSd, cx, cy, cz, csd)) {
ImageJUtils.log(" Spot %d was ignored", n);
continue;
}
// Store result - it may have been moved interactively
maximumIndex += this.slice - cz;
cz = (int) newZ[maximumIndex];
csd = smoothSd[maximumIndex];
ca = smoothA[maximumIndex + start];
ImageJUtils.log(" Spot %d => x=%.2f, y=%.2f, z=%d, sd=%.2f, A=%.2f", n, cx, cy, cz, csd, ca);
centres.add(new double[] { cx, cy, cz, csd, n });
}
if (settings.getInteractiveMode()) {
imp.setSlice(currentSlice);
imp.setOverlay(null);
// Hide the amplitude and spot plots
ImageJUtils.hide(TITLE_AMPLITUDE);
ImageJUtils.hide(TITLE_PSF_PARAMETERS);
}
if (centres.isEmpty()) {
final String msg = "No suitable spots could be identified";
ImageJUtils.log(msg);
IJ.error(TITLE, msg);
return;
}
// Find the limits of the z-centre
int minz = (int) centres.get(0)[2];
int maxz = minz;
for (final double[] centre : centres) {
if (minz > centre[2]) {
minz = (int) centre[2];
} else if (maxz < centre[2]) {
maxz = (int) centre[2];
}
}
IJ.showStatus("Creating PSF image");
// Create a stack that can hold all the data.
final ImageStack psf = createStack(stack, minz, maxz, settings.getMagnification());
// For each spot
final Statistics stats = new Statistics();
boolean ok = true;
for (int i = 0; ok && i < centres.size(); i++) {
final double increment = 1.0 / (stack.getSize() * centres.size());
setProgress((double) i / centres.size());
final double[] centre = centres.get(i);
// Extract the spot
final float[][] spot = new float[stack.getSize()][];
Rectangle regionBounds = null;
for (int slice = 1; slice <= stack.getSize(); slice++) {
final ImageExtractor ie = ImageExtractor.wrap((float[]) stack.getPixels(slice), width, height);
if (regionBounds == null) {
regionBounds = ie.getBoxRegionBounds((int) centre[0], (int) centre[1], boxRadius);
}
spot[slice - 1] = ie.crop(regionBounds);
}
if (regionBounds == null) {
// Empty stack
continue;
}
final int n = (int) centre[4];
final float b = getBackground(n, spot);
if (!subtractBackgroundAndWindow(spot, b, regionBounds.width, regionBounds.height, centre, loess)) {
ImageJUtils.log(" Spot %d was ignored", n);
continue;
}
stats.add(b);
// Adjust the centre using the crop
centre[0] -= regionBounds.x;
centre[1] -= regionBounds.y;
// This takes a long time so this should track progress
ok = addToPsf(maxz, settings.getMagnification(), psf, centre, spot, regionBounds, increment, settings.getCentreEachSlice());
}
if (settings.getInteractiveMode()) {
ImageJUtils.hide(TITLE_INTENSITY);
}
IJ.showProgress(1);
if (!ok || stats.getN() == 0) {
return;
}
final double avSd = getAverage(averageSd, averageA, 2);
ImageJUtils.log(" Average background = %.2f, Av. SD = %s px", stats.getMean(), MathUtils.rounded(avSd, 4));
normalise(psf, maxz, avSd * settings.getMagnification(), false);
IJ.showProgress(1);
psfImp = ImageJUtils.display(TITLE_PSF, psf);
psfImp.setSlice(maxz);
psfImp.resetDisplayRange();
psfImp.updateAndDraw();
final double[][] fitCom = new double[2][psf.getSize()];
Arrays.fill(fitCom[0], Double.NaN);
Arrays.fill(fitCom[1], Double.NaN);
final double fittedSd = fitPsf(psf, loess, maxz, averageRange.getMean(), fitCom);
// Compute the drift in the PSF:
// - Use fitted centre if available; otherwise find CoM for each frame
// - express relative to the average centre
final double[][] com = calculateCentreOfMass(psf, fitCom, nmPerPixel / settings.getMagnification());
final double[] slice = SimpleArrayUtils.newArray(psf.getSize(), 1, 1.0);
final String title = TITLE + " CoM Drift";
final Plot plot = new Plot(title, "Slice", "Drift (nm)");
plot.addLabel(0, 0, "Red = X; Blue = Y");
// double[] limitsX = Maths.limits(com[0]);
// double[] limitsY = Maths.limits(com[1]);
final double[] limitsX = getLimits(com[0]);
final double[] limitsY = getLimits(com[1]);
plot.setLimits(1, psf.getSize(), Math.min(limitsX[0], limitsY[0]), Math.max(limitsX[1], limitsY[1]));
plot.setColor(Color.red);
plot.addPoints(slice, com[0], Plot.DOT);
plot.addPoints(slice, loess.smooth(slice, com[0]), Plot.LINE);
plot.setColor(Color.blue);
plot.addPoints(slice, com[1], Plot.DOT);
plot.addPoints(slice, loess.smooth(slice, com[1]), Plot.LINE);
ImageJUtils.display(title, plot);
// TODO - Redraw the PSF with drift correction applied.
// This means that the final image should have no drift.
// This is relevant when combining PSF images. It doesn't matter too much for simulations
// unless the drift is large.
// Add Image properties containing the PSF details
final double fwhm = getFwhm(psf, maxz);
psfImp.setProperty("Info", ImagePsfHelper.toString(ImagePsfHelper.create(maxz, nmPerPixel / settings.getMagnification(), settings.getNmPerSlice(), stats.getN(), fwhm, createNote())));
ImageJUtils.log("%s : z-centre = %d, nm/Pixel = %s, nm/Slice = %s, %d images, " + "PSF SD = %s nm, FWHM = %s px\n", psfImp.getTitle(), maxz, MathUtils.rounded(nmPerPixel / settings.getMagnification(), 3), MathUtils.rounded(settings.getNmPerSlice(), 3), stats.getN(), MathUtils.rounded(fittedSd * nmPerPixel, 4), MathUtils.rounded(fwhm));
createInteractivePlots(psf, maxz, nmPerPixel / settings.getMagnification(), fittedSd * nmPerPixel);
IJ.showStatus("");
}
use of uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class RenameResults method renameResults.
private int renameResults() {
// Start with the original names for the mapping from old to new
final HashMap<String, String> mappedNames = new HashMap<>();
for (final String name : MemoryPeakResults.getResultNames()) {
mappedNames.put(name, name);
}
// Get the new names
final String[] lines = renameText.split("[;\n]");
for (final String line : lines) {
final String[] fields = line.split("[=]");
if (fields.length == 2) {
final String oldName = fields[0].trim();
final String newName = fields[1].trim();
if (!mappedNames.containsKey(oldName)) {
IJ.error(TITLE, "An unknown original name has been specified: " + oldName);
return 0;
}
if (oldName.equals(newName)) {
// No update required
continue;
}
mappedNames.put(oldName, newName);
}
}
// Check the new names are unique
final Set<String> newNames = new HashSet<>();
for (final String newName : mappedNames.values()) {
if (newNames.contains(newName)) {
IJ.error(TITLE, "A duplicate new name has been specified: " + newName);
return 0;
}
newNames.add(newName);
}
// Rename
final List<MemoryPeakResults> renamedResults = new LinkedList<>();
for (final Entry<String, String> entry : mappedNames.entrySet()) {
if (entry.getKey().equals(entry.getValue())) {
continue;
}
// Remove from memory and store in a list
final MemoryPeakResults results = MemoryPeakResults.removeResults(entry.getKey());
if (results != null) {
results.setName(entry.getValue());
renamedResults.add(results);
}
}
// Add back to memory
for (final MemoryPeakResults results : renamedResults) {
MemoryPeakResults.addResults(results);
}
return renamedResults.size();
}
use of uk.ac.sussex.gdsc.smlm.results.MemoryPeakResults in project GDSC-SMLM by aherbert.
the class ResequenceResults method run.
@Override
public void run(String arg) {
SmlmUsageTracker.recordPlugin(this.getClass(), arg);
if (MemoryPeakResults.isMemoryEmpty()) {
IJ.error(TITLE, "There are no fitting results in memory");
return;
}
if (!showDialog()) {
return;
}
final MemoryPeakResults results = ResultsManager.loadInputResults(settings.inputOption, true, null, null);
if (MemoryPeakResults.isEmpty(results)) {
IJ.error(TITLE, "No results could be loaded");
return;
}
if (resequenceResults(results, settings.start, settings.block, settings.skip, (settings.logMapping) ? SimpleImageJTrackProgress.getInstance() : null)) {
IJ.showStatus("Resequenced " + results.getName());
}
}
Aggregations