Search in sources :

Example 26 with CameraPinhole

use of boofcv.struct.calib.CameraPinhole in project BoofCV by lessthanoptimal.

the class TestRefineTwoViewPinholeRotation method imperfectInput_perfectObservations.

/**
 * Intrinsic parameters are not correct, but the model will match. No noise added to observations.
 */
@Test
void imperfectInput_perfectObservations() {
    CameraPinhole intrinsic1 = new CameraPinhole(400, 400, 0.0, 500, 550, 1000, 1000);
    CameraPinhole intrinsic2 = new CameraPinhole(600, 600, 0.0, 400, 440, 800, 800);
    List<AssociatedPair> pairs = renderPairs(intrinsic1, intrinsic2, 100, 0.0);
    evaluateImperfect(intrinsic1, intrinsic2, pairs);
}
Also used : AssociatedPair(boofcv.struct.geo.AssociatedPair) CameraPinhole(boofcv.struct.calib.CameraPinhole) Test(org.junit.jupiter.api.Test)

Example 27 with CameraPinhole

use of boofcv.struct.calib.CameraPinhole in project BoofCV by lessthanoptimal.

the class TestRefineTwoViewPinholeRotation method perfectInput.

/**
 * Give it perfect input and see if it screws things up
 */
@Test
void perfectInput() {
    CameraPinhole intrinsic1 = new CameraPinhole(400, 410, 0.1, 500, 550, 1000, 1000);
    CameraPinhole intrinsic2 = new CameraPinhole(600, 550, 0.02, 400, 440, 800, 800);
    List<AssociatedPair> pairs = renderPairs(intrinsic1, intrinsic2, 50, 0.0);
    var alg = new RefineTwoViewPinholeRotation();
    // turn off all assumptions
    alg.assumeUnityAspect = false;
    alg.zeroSkew = false;
    alg.assumeSameIntrinsics = false;
    CameraPinhole found1 = new CameraPinhole(intrinsic1);
    CameraPinhole found2 = new CameraPinhole(intrinsic2);
    DMatrixRMaj R = view1_to_view2.R.copy();
    assertTrue(alg.refine(pairs, R, found1, found2));
    // Score shouldn't get worse, but since the input is perfect it might not get better
    assertTrue(alg.errorAfter <= alg.errorBefore);
    // should be very very similar
    assertTrue(found1.isEquals(intrinsic1, 1e-6));
    assertTrue(found2.isEquals(intrinsic2, 1e-6));
    assertTrue(MatrixFeatures_DDRM.isIdentical(view1_to_view2.R, R, 1e-6));
}
Also used : AssociatedPair(boofcv.struct.geo.AssociatedPair) DMatrixRMaj(org.ejml.data.DMatrixRMaj) CameraPinhole(boofcv.struct.calib.CameraPinhole) Test(org.junit.jupiter.api.Test)

Example 28 with CameraPinhole

use of boofcv.struct.calib.CameraPinhole in project BoofCV by lessthanoptimal.

the class ExampleTrifocalStereoUncalibrated method main.

public static void main(String[] args) {
    String name = "rock_leaves_";
    // String name = "mono_wall_";
    // String name = "minecraft_cave1_";
    // String name = "minecraft_distant_";
    // String name = "bobcats_";
    // String name = "chicken_";
    // String name = "turkey_";
    // String name = "rockview_";
    // String name = "pebbles_";
    // String name = "books_";
    // String name = "skull_";
    // String name = "triflowers_";
    BufferedImage buff01 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "01.jpg"));
    BufferedImage buff02 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "02.jpg"));
    BufferedImage buff03 = UtilImageIO.loadImageNotNull(UtilIO.pathExample("triple/" + name + "03.jpg"));
    Planar<GrayU8> color01 = ConvertBufferedImage.convertFrom(buff01, true, ImageType.pl(3, GrayU8.class));
    Planar<GrayU8> color02 = ConvertBufferedImage.convertFrom(buff02, true, ImageType.pl(3, GrayU8.class));
    Planar<GrayU8> color03 = ConvertBufferedImage.convertFrom(buff03, true, ImageType.pl(3, GrayU8.class));
    GrayU8 image01 = ConvertImage.average(color01, null);
    GrayU8 image02 = ConvertImage.average(color02, null);
    GrayU8 image03 = ConvertImage.average(color03, null);
    // using SURF features. Robust and fairly fast to compute
    DetectDescribePoint<GrayU8, TupleDesc_F64> detDesc = FactoryDetectDescribe.surfStable(new ConfigFastHessian(0, 4, 1000, 1, 9, 4, 2), null, null, GrayU8.class);
    // Associate features across all three views using previous example code
    var associateThree = new ExampleAssociateThreeView();
    associateThree.initialize(detDesc);
    associateThree.detectFeatures(image01, 0);
    associateThree.detectFeatures(image02, 1);
    associateThree.detectFeatures(image03, 2);
    System.out.println("features01.size = " + associateThree.features01.size);
    System.out.println("features02.size = " + associateThree.features02.size);
    System.out.println("features03.size = " + associateThree.features03.size);
    int width = image01.width, height = image01.height;
    System.out.println("Image Shape " + width + " x " + height);
    double cx = width / 2;
    double cy = height / 2;
    // The self calibration step requires that the image coordinate system be in the image center
    associateThree.locations01.forEach(p -> p.setTo(p.x - cx, p.y - cy));
    associateThree.locations02.forEach(p -> p.setTo(p.x - cx, p.y - cy));
    associateThree.locations03.forEach(p -> p.setTo(p.x - cx, p.y - cy));
    // Converting data formats for the found features into what can be processed by SFM algorithms
    // Notice how the image center is subtracted from the coordinates? In many cases a principle point
    // of zero is assumed. This is a reasonable assumption in almost all modern cameras. Errors in
    // the principle point tend to materialize as translations and are non fatal.
    // Associate features in the three views using image information alone
    DogArray<AssociatedTripleIndex> associatedIdx = associateThree.threeViewPairwiseAssociate();
    // Convert the matched indexes into AssociatedTriple which contain the actual pixel coordinates
    var associated = new DogArray<>(AssociatedTriple::new);
    associatedIdx.forEach(p -> associated.grow().setTo(associateThree.locations01.get(p.a), associateThree.locations02.get(p.b), associateThree.locations03.get(p.c)));
    System.out.println("Total Matched Triples = " + associated.size);
    var model = new TrifocalTensor();
    List<AssociatedTriple> inliers = ExampleComputeTrifocalTensor.computeTrifocal(associated, model);
    System.out.println("Remaining after RANSAC " + inliers.size());
    // Show remaining associations from RANSAC
    var triplePanel = new AssociatedTriplePanel();
    triplePanel.setPixelOffset(cx, cy);
    triplePanel.setImages(buff01, buff02, buff03);
    triplePanel.setAssociation(inliers);
    ShowImages.showWindow(triplePanel, "Associations", true);
    // estimate using all the inliers
    // No need to re-scale the input because the estimator automatically adjusts the input on its own
    var configTri = new ConfigTrifocal();
    configTri.which = EnumTrifocal.ALGEBRAIC_7;
    configTri.converge.maxIterations = 100;
    Estimate1ofTrifocalTensor trifocalEstimator = FactoryMultiView.trifocal_1(configTri);
    if (!trifocalEstimator.process(inliers, model))
        throw new RuntimeException("Estimator failed");
    model.print();
    DMatrixRMaj P1 = CommonOps_DDRM.identity(3, 4);
    DMatrixRMaj P2 = new DMatrixRMaj(3, 4);
    DMatrixRMaj P3 = new DMatrixRMaj(3, 4);
    MultiViewOps.trifocalToCameraMatrices(model, P2, P3);
    // Most of the time this refinement step makes little difference, but in some edges cases it appears
    // to help convergence
    System.out.println("Refining projective camera matrices");
    RefineThreeViewProjective refineP23 = FactoryMultiView.threeViewRefine(null);
    if (!refineP23.process(inliers, P2, P3, P2, P3))
        throw new RuntimeException("Can't refine P2 and P3!");
    var selfcalib = new SelfCalibrationLinearDualQuadratic(1.0);
    selfcalib.addCameraMatrix(P1);
    selfcalib.addCameraMatrix(P2);
    selfcalib.addCameraMatrix(P3);
    var listPinhole = new ArrayList<CameraPinhole>();
    GeometricResult result = selfcalib.solve();
    if (GeometricResult.SOLVE_FAILED != result) {
        for (int i = 0; i < 3; i++) {
            Intrinsic c = selfcalib.getIntrinsics().get(i);
            CameraPinhole p = new CameraPinhole(c.fx, c.fy, 0, 0, 0, width, height);
            listPinhole.add(p);
        }
    } else {
        System.out.println("Self calibration failed!");
        for (int i = 0; i < 3; i++) {
            CameraPinhole p = new CameraPinhole(width / 2, width / 2, 0, 0, 0, width, height);
            listPinhole.add(p);
        }
    }
    // parameter
    for (int i = 0; i < 3; i++) {
        CameraPinhole r = listPinhole.get(i);
        System.out.println("fx=" + r.fx + " fy=" + r.fy + " skew=" + r.skew);
    }
    System.out.println("Projective to metric");
    // convert camera matrix from projective to metric
    // storage for rectifying homography
    var H = new DMatrixRMaj(4, 4);
    if (!MultiViewOps.absoluteQuadraticToH(selfcalib.getQ(), H))
        throw new RuntimeException("Projective to metric failed");
    var K = new DMatrixRMaj(3, 3);
    var worldToView = new ArrayList<Se3_F64>();
    for (int i = 0; i < 3; i++) {
        worldToView.add(new Se3_F64());
    }
    // ignore K since we already have that
    MultiViewOps.projectiveToMetric(P1, H, worldToView.get(0), K);
    MultiViewOps.projectiveToMetric(P2, H, worldToView.get(1), K);
    MultiViewOps.projectiveToMetric(P3, H, worldToView.get(2), K);
    // scale is arbitrary. Set max translation to 1
    adjustTranslationScale(worldToView);
    // Construct bundle adjustment data structure
    var structure = new SceneStructureMetric(false);
    structure.initialize(3, 3, inliers.size());
    var observations = new SceneObservations();
    observations.initialize(3);
    for (int i = 0; i < listPinhole.size(); i++) {
        BundlePinholeSimplified bp = new BundlePinholeSimplified();
        bp.f = listPinhole.get(i).fx;
        structure.setCamera(i, false, bp);
        structure.setView(i, i, i == 0, worldToView.get(i));
    }
    for (int i = 0; i < inliers.size(); i++) {
        AssociatedTriple t = inliers.get(i);
        observations.getView(0).add(i, (float) t.p1.x, (float) t.p1.y);
        observations.getView(1).add(i, (float) t.p2.x, (float) t.p2.y);
        observations.getView(2).add(i, (float) t.p3.x, (float) t.p3.y);
        structure.connectPointToView(i, 0);
        structure.connectPointToView(i, 1);
        structure.connectPointToView(i, 2);
    }
    // Initial estimate for point 3D locations
    triangulatePoints(structure, observations);
    ConfigLevenbergMarquardt configLM = new ConfigLevenbergMarquardt();
    configLM.dampeningInitial = 1e-3;
    configLM.hessianScaling = false;
    ConfigBundleAdjustment configSBA = new ConfigBundleAdjustment();
    configSBA.configOptimizer = configLM;
    // Create and configure the bundle adjustment solver
    BundleAdjustment<SceneStructureMetric> bundleAdjustment = FactoryMultiView.bundleSparseMetric(configSBA);
    // prints out useful debugging information that lets you know how well it's converging
    // bundleAdjustment.setVerbose(System.out,0);
    // convergence criteria
    bundleAdjustment.configure(1e-6, 1e-6, 100);
    bundleAdjustment.setParameters(structure, observations);
    bundleAdjustment.optimize(structure);
    // See if the solution is physically possible. If not fix and run bundle adjustment again
    checkBehindCamera(structure, observations, bundleAdjustment);
    // It's very difficult to find the best solution due to the number of local minimum. In the three view
    // case it's often the problem that a small translation is virtually identical to a small rotation.
    // Convergence can be improved by considering that possibility
    // Now that we have a decent solution, prune the worst outliers to improve the fit quality even more
    var pruner = new PruneStructureFromSceneMetric(structure, observations);
    pruner.pruneObservationsByErrorRank(0.7);
    pruner.pruneViews(10);
    pruner.pruneUnusedMotions();
    pruner.prunePoints(1);
    bundleAdjustment.setParameters(structure, observations);
    bundleAdjustment.optimize(structure);
    System.out.println("Final Views");
    for (int i = 0; i < 3; i++) {
        BundlePinholeSimplified cp = structure.getCameras().get(i).getModel();
        Vector3D_F64 T = structure.getParentToView(i).T;
        System.out.printf("[ %d ] f = %5.1f T=%s\n", i, cp.f, T.toString());
    }
    System.out.println("\n\nComputing Stereo Disparity");
    BundlePinholeSimplified cp = structure.getCameras().get(0).getModel();
    var intrinsic01 = new CameraPinholeBrown();
    intrinsic01.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
    intrinsic01.fsetRadial(cp.k1, cp.k2);
    cp = structure.getCameras().get(1).getModel();
    var intrinsic02 = new CameraPinholeBrown();
    intrinsic02.fsetK(cp.f, cp.f, 0, cx, cy, width, height);
    intrinsic02.fsetRadial(cp.k1, cp.k2);
    Se3_F64 leftToRight = structure.getParentToView(1);
    // TODO dynamic max disparity
    computeStereoCloud(image01, image02, color01, color02, intrinsic01, intrinsic02, leftToRight, 0, 250);
}
Also used : ConfigFastHessian(boofcv.abst.feature.detect.interest.ConfigFastHessian) ConfigTrifocal(boofcv.factory.geo.ConfigTrifocal) Estimate1ofTrifocalTensor(boofcv.abst.geo.Estimate1ofTrifocalTensor) TrifocalTensor(boofcv.struct.geo.TrifocalTensor) ExampleComputeTrifocalTensor(boofcv.examples.sfm.ExampleComputeTrifocalTensor) CameraPinholeBrown(boofcv.struct.calib.CameraPinholeBrown) BundlePinholeSimplified(boofcv.alg.geo.bundle.cameras.BundlePinholeSimplified) DMatrixRMaj(org.ejml.data.DMatrixRMaj) ArrayList(java.util.ArrayList) CameraPinhole(boofcv.struct.calib.CameraPinhole) BufferedImage(java.awt.image.BufferedImage) ConvertBufferedImage(boofcv.io.image.ConvertBufferedImage) SelfCalibrationLinearDualQuadratic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic) SceneStructureMetric(boofcv.abst.geo.bundle.SceneStructureMetric) AssociatedTriple(boofcv.struct.geo.AssociatedTriple) ExampleAssociateThreeView(boofcv.examples.features.ExampleAssociateThreeView) Estimate1ofTrifocalTensor(boofcv.abst.geo.Estimate1ofTrifocalTensor) AssociatedTripleIndex(boofcv.struct.feature.AssociatedTripleIndex) ConfigLevenbergMarquardt(org.ddogleg.optimization.lm.ConfigLevenbergMarquardt) GrayU8(boofcv.struct.image.GrayU8) TupleDesc_F64(boofcv.struct.feature.TupleDesc_F64) RefineThreeViewProjective(boofcv.abst.geo.RefineThreeViewProjective) PruneStructureFromSceneMetric(boofcv.abst.geo.bundle.PruneStructureFromSceneMetric) DogArray(org.ddogleg.struct.DogArray) DetectDescribePoint(boofcv.abst.feature.detdesc.DetectDescribePoint) ConfigBundleAdjustment(boofcv.factory.geo.ConfigBundleAdjustment) Vector3D_F64(georegression.struct.point.Vector3D_F64) AssociatedTriplePanel(boofcv.gui.feature.AssociatedTriplePanel) SceneObservations(boofcv.abst.geo.bundle.SceneObservations) GeometricResult(boofcv.alg.geo.GeometricResult) Intrinsic(boofcv.alg.geo.selfcalib.SelfCalibrationLinearDualQuadratic.Intrinsic) Se3_F64(georegression.struct.se.Se3_F64)

Example 29 with CameraPinhole

use of boofcv.struct.calib.CameraPinhole in project BoofCV by lessthanoptimal.

the class ExampleStereoTwoViewsOneCamera method showPointCloud.

/**
 * Show results as a point cloud
 */
public static void showPointCloud(ImageGray disparity, BufferedImage left, Se3_F64 motion, DMatrixRMaj rectifiedK, DMatrixRMaj rectifiedR, int disparityMin, int disparityRange) {
    DisparityToColorPointCloud d2c = new DisparityToColorPointCloud();
    PointCloudWriter.CloudArraysF32 cloud = new PointCloudWriter.CloudArraysF32();
    double baseline = motion.getT().norm();
    d2c.configure(baseline, rectifiedK, rectifiedR, new DoNothing2Transform2_F64(), disparityMin, disparityRange);
    d2c.process(disparity, UtilDisparitySwing.wrap(left), cloud);
    CameraPinhole rectifiedPinhole = PerspectiveOps.matrixToPinhole(rectifiedK, disparity.width, disparity.height, null);
    // skew the view to make the structure easier to see
    Se3_F64 cameraToWorld = SpecialEuclideanOps_F64.eulerXyz(-baseline * 5, 0, 0, 0, 0.2, 0, null);
    PointCloudViewer pcv = VisualizeData.createPointCloudViewer();
    pcv.setCameraHFov(PerspectiveOps.computeHFov(rectifiedPinhole));
    pcv.setCameraToWorld(cameraToWorld);
    pcv.setTranslationStep(baseline / 3);
    pcv.addCloud(cloud.cloudXyz, cloud.cloudRgb);
    pcv.setDotSize(1);
    pcv.setTranslationStep(baseline / 10);
    pcv.getComponent().setPreferredSize(new Dimension(left.getWidth(), left.getHeight()));
    ShowImages.showWindow(pcv.getComponent(), "Point Cloud", true);
}
Also used : DisparityToColorPointCloud(boofcv.alg.cloud.DisparityToColorPointCloud) DoNothing2Transform2_F64(boofcv.struct.distort.DoNothing2Transform2_F64) PointCloudViewer(boofcv.visualize.PointCloudViewer) PointCloudWriter(boofcv.alg.cloud.PointCloudWriter) CameraPinhole(boofcv.struct.calib.CameraPinhole) Se3_F64(georegression.struct.se.Se3_F64)

Example 30 with CameraPinhole

use of boofcv.struct.calib.CameraPinhole in project BoofCV by lessthanoptimal.

the class TestCodecSceneStructureMetric method createSceneStereo.

/**
 * Create a scene where a "stereo" camera is created that moves. The right to left transform is fixed and common
 * across all views
 */
static SceneStructureMetric createSceneStereo(Random rand, boolean homogenous) {
    SceneStructureMetric out = new SceneStructureMetric(homogenous);
    int numSteps = 2;
    out.initialize(2, 2 * numSteps, 10);
    // Left camera
    out.setCamera(0, true, new CameraPinhole(200, 300, 0.1, 400, 500, 1, 1));
    // Right camera
    out.setCamera(1, false, new CameraPinhole(201 + rand.nextGaussian(), 200, 0.01, 401 + rand.nextGaussian(), 50 + rand.nextGaussian(), 1, 1));
    // Create a fixed transform for left to right camera
    int leftToRightIdx = out.addMotion(true, SpecialEuclideanOps_F64.eulerXyz(0.25, 0.01, -0.05, 0.01, 0.02, -0.1, null));
    if (homogenous) {
        for (int i = 0; i < out.points.size; i++) {
            double w = rand.nextDouble() * 0.5 + 0.5;
            out.setPoint(i, w * (i + 1), w * (i + 2 * rand.nextGaussian()), w * (2 * i - 3 * rand.nextGaussian()), w);
        }
    } else {
        for (int i = 0; i < out.points.size; i++) {
            out.setPoint(i, i + 1, i + 2 * rand.nextGaussian(), 2 * i - 3 * rand.nextGaussian());
        }
    }
    for (int step = 0; step < numSteps; step++) {
        Se3_F64 world_to_left = SpecialEuclideanOps_F64.eulerXyz(0.1, -0.15, -0.05 + step * 0.2, rand.nextGaussian() * 0.05, rand.nextGaussian() * 0.05, rand.nextGaussian() * 0.05, null);
        out.setView(step * 2, 0, false, world_to_left);
        out.setView(step * 2 + 1, -1, leftToRightIdx, step * 2);
        out.connectViewToCamera(step * 2 + 1, 1);
    }
    // Assign first point to all views then the other points to just one view
    for (int i = 0; i < out.views.size; i++) {
        out.points.data[0].views.add(i);
    }
    for (int i = 1; i < out.points.size; i++) {
        out.points.data[i].views.add((i - 1) % out.views.size);
    }
    // Sanity check
    assertEquals(numSteps + 1, out.motions.size);
    assertEquals(numSteps * 2, out.views.size);
    return out;
}
Also used : SceneStructureMetric(boofcv.abst.geo.bundle.SceneStructureMetric) CameraPinhole(boofcv.struct.calib.CameraPinhole) Se3_F64(georegression.struct.se.Se3_F64)

Aggregations

CameraPinhole (boofcv.struct.calib.CameraPinhole)154 Test (org.junit.jupiter.api.Test)81 Se3_F64 (georegression.struct.se.Se3_F64)36 DMatrixRMaj (org.ejml.data.DMatrixRMaj)32 Point2D_F64 (georegression.struct.point.Point2D_F64)24 ArrayList (java.util.ArrayList)23 Point3D_F64 (georegression.struct.point.Point3D_F64)19 Homography2D_F64 (georegression.struct.homography.Homography2D_F64)12 SceneStructureMetric (boofcv.abst.geo.bundle.SceneStructureMetric)11 CameraPinholeBrown (boofcv.struct.calib.CameraPinholeBrown)11 Test (org.junit.Test)10 GrayF32 (boofcv.struct.image.GrayF32)9 ConvertBufferedImage (boofcv.io.image.ConvertBufferedImage)8 Point2Transform2_F32 (boofcv.struct.distort.Point2Transform2_F32)8 BufferedImage (java.awt.image.BufferedImage)8 Point2Transform2_F64 (boofcv.struct.distort.Point2Transform2_F64)7 VerbosePrint (org.ddogleg.struct.VerbosePrint)7 LensDistortionPinhole (boofcv.alg.distort.pinhole.LensDistortionPinhole)6 WorldToCameraToPixel (boofcv.alg.geo.WorldToCameraToPixel)6 CameraPinholeRadial (boofcv.struct.calib.CameraPinholeRadial)5