use of cbit.vcell.model.FluxReaction in project vcell by virtualcell.
the class PathwayMapping method createReactionStepsFromTableRow.
private void createReactionStepsFromTableRow(BioModel bioModel, Transport bioPaxObject, double stoich, String id, String location, ArrayList<ConversionTableRow> conversionTableRows, boolean addSubunits) throws Exception {
if (bioModel == null) {
return;
}
for (Process process : BioPAXUtil.getAllProcesses(bioModel.getPathwayModel(), bioPaxObject)) {
// use user defined id as the name of the reaction name
// get participants from table rows
ArrayList<ConversionTableRow> participants = new ArrayList<ConversionTableRow>();
for (ConversionTableRow ctr : conversionTableRows) {
if (ctr.interactionId().equals(bioPaxObject.getID())) {
participants.add(ctr);
}
}
// create reaction object
String name = getSafetyName(process.getName() + "_" + location);
if (bioModel.getModel().getReactionStep(name) == null) {
// create a new reactionStep object
FluxReaction fluxReactionStep = bioModel.getModel().createFluxReaction((Membrane) bioModel.getModel().getStructure(location));
fluxReactionStep.setName(name);
RelationshipObject newRelationship = new RelationshipObject(fluxReactionStep, bioPaxObject);
bioModel.getRelationshipModel().addRelationshipObject(newRelationship);
createReactionStep(bioModel, process, fluxReactionStep, newRelationship, participants, addSubunits);
} else {
// bioModel.getModel().getReactionStep(safeId).setStructure(bioModel.getModel().getStructure(location));
// add missing parts for the existing reactionStep
RelationshipObject newRelationship = new RelationshipObject(bioModel.getModel().getReactionStep(name), bioPaxObject);
bioModel.getRelationshipModel().addRelationshipObject(newRelationship);
createReactionStep(bioModel, process, bioModel.getModel().getReactionStep(name), newRelationship, participants, addSubunits);
}
}
}
use of cbit.vcell.model.FluxReaction in project vcell by virtualcell.
the class SBMLImporter method addReactions.
/**
* addReactions:
*/
protected void addReactions(VCMetaData metaData) {
if (sbmlModel == null) {
throw new SBMLImportException("SBML model is NULL");
}
ListOf<Reaction> reactions = sbmlModel.getListOfReactions();
final int numReactions = reactions.size();
if (numReactions == 0) {
lg.info("No Reactions");
return;
}
// all reactions
ArrayList<ReactionStep> vcReactionList = new ArrayList<>();
// just the fast ones
ArrayList<ReactionStep> fastReactionList = new ArrayList<>();
Model vcModel = vcBioModel.getSimulationContext(0).getModel();
ModelUnitSystem vcModelUnitSystem = vcModel.getUnitSystem();
SpeciesContext[] vcSpeciesContexts = vcModel.getSpeciesContexts();
try {
for (Reaction sbmlRxn : reactions) {
ReactionStep vcReaction = null;
String rxnName = sbmlRxn.getId();
boolean bReversible = true;
if (sbmlRxn.isSetReversible()) {
bReversible = sbmlRxn.getReversible();
}
// Check of reaction annotation is present; if so, does it have
// an embedded element (flux or simpleRxn).
// Create a fluxReaction or simpleReaction accordingly.
Element sbmlImportRelatedElement = sbmlAnnotationUtil.readVCellSpecificAnnotation(sbmlRxn);
Structure reactionStructure = getReactionStructure(sbmlRxn, vcSpeciesContexts, sbmlImportRelatedElement);
if (sbmlImportRelatedElement != null) {
Element embeddedRxnElement = getEmbeddedElementInAnnotation(sbmlImportRelatedElement, REACTION);
if (embeddedRxnElement != null) {
if (embeddedRxnElement.getName().equals(XMLTags.FluxStepTag)) {
// If embedded element is a flux reaction, set flux
// reaction's strucure, flux carrier, physicsOption
// from the element attributes.
String structName = embeddedRxnElement.getAttributeValue(XMLTags.StructureAttrTag);
CastInfo<Membrane> ci = SBMLHelper.getTypedStructure(Membrane.class, vcModel, structName);
if (!ci.isGood()) {
throw new SBMLImportException("Appears that the flux reaction is occuring on " + ci.actualName() + ", not a membrane.");
}
vcReaction = new FluxReaction(vcModel, ci.get(), null, rxnName, bReversible);
vcReaction.setModel(vcModel);
// Set the fluxOption on the flux reaction based on
// whether it is molecular, molecular & electrical,
// electrical.
String fluxOptionStr = embeddedRxnElement.getAttributeValue(XMLTags.FluxOptionAttrTag);
if (fluxOptionStr.equals(XMLTags.FluxOptionMolecularOnly)) {
((FluxReaction) vcReaction).setPhysicsOptions(ReactionStep.PHYSICS_MOLECULAR_ONLY);
} else if (fluxOptionStr.equals(XMLTags.FluxOptionMolecularAndElectrical)) {
((FluxReaction) vcReaction).setPhysicsOptions(ReactionStep.PHYSICS_MOLECULAR_AND_ELECTRICAL);
} else if (fluxOptionStr.equals(XMLTags.FluxOptionElectricalOnly)) {
((FluxReaction) vcReaction).setPhysicsOptions(ReactionStep.PHYSICS_ELECTRICAL_ONLY);
} else {
localIssueList.add(new Issue(vcReaction, issueContext, IssueCategory.SBMLImport_Reaction, "Unknown FluxOption : " + fluxOptionStr + " for SBML reaction : " + rxnName, Issue.SEVERITY_WARNING));
// logger.sendMessage(VCLogger.Priority.MediumPriority,
// VCLogger.ErrorType.ReactionError,
// "Unknown FluxOption : " + fluxOptionStr +
// " for SBML reaction : " + rxnName);
}
} else if (embeddedRxnElement.getName().equals(XMLTags.SimpleReactionTag)) {
// if embedded element is a simple reaction, set
// simple reaction's structure from element
// attributes
vcReaction = new SimpleReaction(vcModel, reactionStructure, rxnName, bReversible);
}
} else {
vcReaction = new SimpleReaction(vcModel, reactionStructure, rxnName, bReversible);
}
} else {
vcReaction = new SimpleReaction(vcModel, reactionStructure, rxnName, bReversible);
}
// set annotations and notes on vcReactions[i]
sbmlAnnotationUtil.readAnnotation(vcReaction, sbmlRxn);
sbmlAnnotationUtil.readNotes(vcReaction, sbmlRxn);
// the limit on the reactionName length.
if (rxnName.length() > 64) {
String freeTextAnnotation = metaData.getFreeTextAnnotation(vcReaction);
if (freeTextAnnotation == null) {
freeTextAnnotation = "";
}
StringBuffer oldRxnAnnotation = new StringBuffer(freeTextAnnotation);
oldRxnAnnotation.append("\n\n" + rxnName);
metaData.setFreeTextAnnotation(vcReaction, oldRxnAnnotation.toString());
}
// Now add the reactants, products, modifiers as specified by
// the sbmlRxn
addReactionParticipants(sbmlRxn, vcReaction);
KineticLaw kLaw = sbmlRxn.getKineticLaw();
Kinetics kinetics = null;
if (kLaw != null) {
// Convert the formula from kineticLaw into MathML and then
// to an expression (infix) to be used in VCell kinetics
ASTNode sbmlRateMath = kLaw.getMath();
Expression kLawRateExpr = getExpressionFromFormula(sbmlRateMath);
Expression vcRateExpression = new Expression(kLawRateExpr);
// modifier (catalyst) to the reaction.
for (int k = 0; k < vcSpeciesContexts.length; k++) {
if (vcRateExpression.hasSymbol(vcSpeciesContexts[k].getName())) {
if ((vcReaction.getReactant(vcSpeciesContexts[k].getName()) == null) && (vcReaction.getProduct(vcSpeciesContexts[k].getName()) == null) && (vcReaction.getCatalyst(vcSpeciesContexts[k].getName()) == null)) {
// This means that the speciesContext is not a
// reactant, product or modifier : it has to be
// added to the VC Rxn as a catalyst
vcReaction.addCatalyst(vcSpeciesContexts[k]);
}
}
}
// set kinetics on VCell reaction
if (bSpatial) {
// if spatial SBML ('isSpatial' attribute set), create
// DistributedKinetics)
SpatialReactionPlugin ssrplugin = (SpatialReactionPlugin) sbmlRxn.getPlugin(SBMLUtils.SBML_SPATIAL_NS_PREFIX);
// 'spatial'
if (ssrplugin != null && ssrplugin.getIsLocal()) {
kinetics = new GeneralKinetics(vcReaction);
} else {
kinetics = new GeneralLumpedKinetics(vcReaction);
}
} else {
kinetics = new GeneralLumpedKinetics(vcReaction);
}
// set kinetics on vcReaction
vcReaction.setKinetics(kinetics);
// If the name of the rate parameter has been changed by
// user, or matches with global/local param,
// it has to be changed.
resolveRxnParameterNameConflicts(sbmlRxn, kinetics, sbmlImportRelatedElement);
/**
* Now, based on the kinetic law expression, see if the rate
* is expressed in concentration/time or substance/time : If
* the compartment_id of the compartment corresponding to
* the structure in which the reaction takes place occurs in
* the rate law expression, it is in concentration/time;
* divide it by the compartment size and bring in the rate
* law as 'Distributed' kinetics. If not, the rate law is in
* substance/time; bring it in (as is) as 'Lumped' kinetics.
*/
ListOf<LocalParameter> localParameters = kLaw.getListOfLocalParameters();
for (LocalParameter p : localParameters) {
String paramName = p.getId();
KineticsParameter kineticsParameter = kinetics.getKineticsParameter(paramName);
if (kineticsParameter == null) {
// add unresolved for now to prevent errors in kinetics.setParameterValue(kp,vcRateExpression) below
kinetics.addUnresolvedParameter(paramName);
}
}
KineticsParameter kp = kinetics.getAuthoritativeParameter();
if (lg.isDebugEnabled()) {
lg.debug("Setting " + kp.getName() + ": " + vcRateExpression.infix());
}
kinetics.setParameterValue(kp, vcRateExpression);
// If there are any global parameters used in the kinetics,
// and if they have species,
// check if the species are already reactionParticipants in
// the reaction. If not, add them as catalysts.
KineticsProxyParameter[] kpps = kinetics.getProxyParameters();
for (int j = 0; j < kpps.length; j++) {
if (kpps[j].getTarget() instanceof ModelParameter) {
ModelParameter mp = (ModelParameter) kpps[j].getTarget();
HashSet<String> refSpeciesNameHash = new HashSet<String>();
getReferencedSpeciesInExpr(mp.getExpression(), refSpeciesNameHash);
java.util.Iterator<String> refSpIterator = refSpeciesNameHash.iterator();
while (refSpIterator.hasNext()) {
String spName = refSpIterator.next();
org.sbml.jsbml.Species sp = sbmlModel.getSpecies(spName);
ArrayList<ReactionParticipant> rpArray = getVCReactionParticipantsFromSymbol(vcReaction, sp.getId());
if (rpArray == null || rpArray.size() == 0) {
// This means that the speciesContext is not
// a reactant, product or modifier : it has
// to be added as a catalyst
vcReaction.addCatalyst(vcModel.getSpeciesContext(sp.getId()));
}
}
}
}
// model - local params cannot be defined by rules.
for (LocalParameter param : localParameters) {
String paramName = param.getId();
Expression exp = new Expression(param.getValue());
String unitString = param.getUnits();
VCUnitDefinition paramUnit = sbmlUnitIdentifierHash.get(unitString);
if (paramUnit == null) {
paramUnit = vcModelUnitSystem.getInstance_TBD();
}
// check if sbml local param is in kinetic params list;
// if so, add its value.
boolean lpSet = false;
KineticsParameter kineticsParameter = kinetics.getKineticsParameter(paramName);
if (kineticsParameter != null) {
if (lg.isDebugEnabled()) {
lg.debug("Setting local " + kineticsParameter.getName() + ": " + exp.infix());
}
kineticsParameter.setExpression(exp);
kineticsParameter.setUnitDefinition(paramUnit);
lpSet = true;
} else {
UnresolvedParameter ur = kinetics.getUnresolvedParameter(paramName);
if (ur != null) {
kinetics.addUserDefinedKineticsParameter(paramName, exp, paramUnit);
lpSet = true;
}
}
if (!lpSet) {
// check if it is a proxy parameter (specifically,
// speciesContext or model parameter (structureSize
// too)).
KineticsProxyParameter kpp = kinetics.getProxyParameter(paramName);
// and units to local param values
if (kpp != null && kpp.getTarget() instanceof ModelParameter) {
kinetics.convertParameterType(kpp, false);
kineticsParameter = kinetics.getKineticsParameter(paramName);
kinetics.setParameterValue(kineticsParameter, exp);
kineticsParameter.setUnitDefinition(paramUnit);
}
}
}
} else {
// sbmlKLaw was null, so creating a GeneralKinetics with 0.0
// as rate.
kinetics = new GeneralKinetics(vcReaction);
}
// end - if-else KLaw != null
// set the reaction kinetics, and add reaction to the vcell
// model.
kinetics.resolveUndefinedUnits();
// System.out.println("ADDED SBML REACTION : \"" + rxnName +
// "\" to VCModel");
vcReactionList.add(vcReaction);
if (sbmlRxn.isSetFast() && sbmlRxn.getFast()) {
fastReactionList.add(vcReaction);
}
}
// end - for vcReactions
ReactionStep[] array = vcReactionList.toArray(new ReactionStep[vcReactionList.size()]);
vcModel.setReactionSteps(array);
final ReactionContext rc = vcBioModel.getSimulationContext(0).getReactionContext();
for (ReactionStep frs : fastReactionList) {
final ReactionSpec rs = rc.getReactionSpec(frs);
rs.setReactionMapping(ReactionSpec.FAST);
}
} catch (ModelPropertyVetoException mpve) {
throw new SBMLImportException(mpve.getMessage(), mpve);
} catch (Exception e1) {
e1.printStackTrace(System.out);
throw new SBMLImportException(e1.getMessage(), e1);
}
}
use of cbit.vcell.model.FluxReaction in project vcell by virtualcell.
the class XmlReader method getFluxReaction.
/**
* This method returns a FluxReaction object from a XML element.
* Creation date: (3/16/2001 11:52:02 AM)
* @return cbit.vcell.model.FluxReaction
* @param param org.jdom.Element
* @throws XmlParseException
* @throws PropertyVetoException
* @throws ModelException
* @throws Exception
*/
private FluxReaction getFluxReaction(Element param, Model model) throws XmlParseException, PropertyVetoException {
// retrieve the key if there is one
KeyValue key = null;
String keystring = param.getAttributeValue(XMLTags.KeyValueAttrTag);
if (keystring != null && keystring.length() > 0 && this.readKeysFlag) {
key = new KeyValue(keystring);
}
// resolve reference to the Membrane
String structureName = unMangle(param.getAttributeValue(XMLTags.StructureAttrTag));
Membrane structureref = (Membrane) model.getStructure(structureName);
if (structureref == null) {
throw new XmlParseException("The membrane " + structureName + " could not be resolved in the dictionnary!");
}
// -- Instantiate new FluxReaction --
FluxReaction fluxreaction = null;
String name = unMangle(param.getAttributeValue(XMLTags.NameAttrTag));
String reversibleAttributeValue = param.getAttributeValue(XMLTags.ReversibleAttrTag);
boolean bReversible = true;
if (reversibleAttributeValue != null) {
if (Boolean.TRUE.toString().equals(reversibleAttributeValue)) {
bReversible = true;
} else if (Boolean.FALSE.toString().equals(reversibleAttributeValue)) {
bReversible = false;
} else {
throw new RuntimeException("unexpected value " + reversibleAttributeValue + " for reversible flag for reaction " + name);
}
}
try {
fluxreaction = new FluxReaction(model, structureref, key, name, bReversible);
fluxreaction.setModel(model);
} catch (Exception e) {
e.printStackTrace();
throw new XmlParseException("An exception occurred while trying to create the FluxReaction " + name, e);
}
// resolve reference to the fluxCarrier
if (param.getAttribute(XMLTags.FluxCarrierAttrTag) != null) {
String speciesname = unMangle(param.getAttributeValue(XMLTags.FluxCarrierAttrTag));
Species specieref = model.getSpecies(speciesname);
if (specieref != null) {
Feature insideFeature = model.getStructureTopology().getInsideFeature(structureref);
try {
if (insideFeature != null) {
SpeciesContext insideSpeciesContext = model.getSpeciesContext(specieref, insideFeature);
fluxreaction.addProduct(insideSpeciesContext, 1);
}
Feature outsideFeature = model.getStructureTopology().getOutsideFeature(structureref);
if (outsideFeature != null) {
SpeciesContext outsideSpeciesContext = model.getSpeciesContext(specieref, outsideFeature);
fluxreaction.addReactant(outsideSpeciesContext, 1);
}
} catch (ModelException e) {
e.printStackTrace(System.out);
throw new XmlParseException(e.getMessage());
}
}
}
// Annotation
// String rsAnnotation = null;
// String annotationText = param.getChildText(XMLTags.AnnotationTag, vcNamespace);
// if (annotationText!=null && annotationText.length()>0) {
// rsAnnotation = unMangle(annotationText);
// }
// fluxreaction.setAnnotation(rsAnnotation);
// set the fluxOption
String fluxOptionString = null;
fluxOptionString = param.getAttributeValue(XMLTags.FluxOptionAttrTag);
if (fluxOptionString != null && fluxOptionString.length() > 0) {
try {
if (fluxOptionString.equals(XMLTags.FluxOptionElectricalOnly)) {
fluxreaction.setPhysicsOptions(FluxReaction.PHYSICS_ELECTRICAL_ONLY);
} else if (fluxOptionString.equals(XMLTags.FluxOptionMolecularAndElectrical)) {
fluxreaction.setPhysicsOptions(FluxReaction.PHYSICS_MOLECULAR_AND_ELECTRICAL);
} else if (fluxOptionString.equals(XMLTags.FluxOptionMolecularOnly)) {
fluxreaction.setPhysicsOptions(FluxReaction.PHYSICS_MOLECULAR_ONLY);
}
} catch (java.beans.PropertyVetoException e) {
e.printStackTrace(System.out);
throw new XmlParseException("A propertyVetoException was fired when setting the fluxOption to the flux reaction " + name, e);
}
}
// Add Reactants, if any
try {
Iterator<Element> iterator = param.getChildren(XMLTags.ReactantTag, vcNamespace).iterator();
while (iterator.hasNext()) {
Element temp = iterator.next();
// Add Reactant to this SimpleReaction
fluxreaction.addReactionParticipant(getReactant(temp, fluxreaction, model));
}
} catch (java.beans.PropertyVetoException e) {
e.printStackTrace();
throw new XmlParseException("Error adding a reactant to the reaction " + name + " : " + e.getMessage());
}
// Add Products, if any
try {
Iterator<Element> iterator = param.getChildren(XMLTags.ProductTag, vcNamespace).iterator();
while (iterator.hasNext()) {
Element temp = iterator.next();
// Add Product to this simplereaction
fluxreaction.addReactionParticipant(getProduct(temp, fluxreaction, model));
}
} catch (java.beans.PropertyVetoException e) {
e.printStackTrace();
throw new XmlParseException("Error adding a product to the reaction " + name + " : " + e.getMessage());
}
// Add Catalyst(Modifiers) (if there are)
Iterator<Element> iterator = param.getChildren(XMLTags.CatalystTag, vcNamespace).iterator();
while (iterator.hasNext()) {
Element temp = iterator.next();
fluxreaction.addReactionParticipant(getCatalyst(temp, fluxreaction, model));
}
// Add Kinetics
fluxreaction.setKinetics(getKinetics(param.getChild(XMLTags.KineticsTag, vcNamespace), fluxreaction, model));
// set the valence (for legacy support for "chargeCarrierValence" stored with reaction).
String valenceString = null;
try {
valenceString = unMangle(param.getAttributeValue(XMLTags.FluxCarrierValenceAttrTag));
if (valenceString != null && valenceString.length() > 0) {
KineticsParameter chargeValenceParameter = fluxreaction.getKinetics().getChargeValenceParameter();
if (chargeValenceParameter != null) {
chargeValenceParameter.setExpression(new Expression(Integer.parseInt(unMangle(valenceString))));
}
}
} catch (NumberFormatException e) {
e.printStackTrace();
throw new XmlParseException("A NumberFormatException was fired when setting the (integer) valence '" + valenceString + "' (integer) to the flux reaction " + name, e);
}
return fluxreaction;
}
use of cbit.vcell.model.FluxReaction in project vcell by virtualcell.
the class StochMathMapping method addJumpProcesses.
private void addJumpProcesses(VariableHash varHash, GeometryClass geometryClass, SubDomain subDomain) throws ExpressionException, ModelException, MappingException, MathException {
// set up jump processes
// get all the reactions from simulation context
// ReactionSpec[] reactionSpecs = simContext.getReactionContext().getReactionSpecs();---need to take a look here!
ModelUnitSystem modelUnitSystem = getSimulationContext().getModel().getUnitSystem();
ReactionSpec[] reactionSpecs = getSimulationContext().getReactionContext().getReactionSpecs();
for (ReactionSpec reactionSpec : reactionSpecs) {
if (reactionSpec.isExcluded()) {
continue;
}
// get the reaction
ReactionStep reactionStep = reactionSpec.getReactionStep();
Kinetics kinetics = reactionStep.getKinetics();
// probability parameter from modelUnitSystem
VCUnitDefinition probabilityParamUnit = modelUnitSystem.getStochasticSubstanceUnit().divideBy(modelUnitSystem.getTimeUnit());
// Different ways to deal with simple reactions and flux reactions
if (// simple reactions
reactionStep instanceof SimpleReaction) {
// check the reaction rate law to see if we need to decompose a reaction(reversible) into two jump processes.
// rate constants are important in calculating the probability rate.
// for Mass Action, we use KForward and KReverse,
// for General Kinetics we parse reaction rate J to see if it is in Mass Action form.
Expression forwardRate = null;
Expression reverseRate = null;
if (kinetics.getKineticsDescription().equals(KineticsDescription.MassAction) || kinetics.getKineticsDescription().equals(KineticsDescription.General)) {
Expression rateExp = new Expression(kinetics.getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate), reactionStep.getNameScope());
Parameter forwardRateParameter = null;
Parameter reverseRateParameter = null;
if (kinetics.getKineticsDescription().equals(KineticsDescription.MassAction)) {
forwardRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KForward);
reverseRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KReverse);
}
MassActionSolver.MassActionFunction maFunc = MassActionSolver.solveMassAction(forwardRateParameter, reverseRateParameter, rateExp, reactionStep);
if (maFunc.getForwardRate() == null && maFunc.getReverseRate() == null) {
throw new MappingException("Cannot generate stochastic math mapping for the reaction:" + reactionStep.getName() + "\nLooking for the rate function according to the form of k1*Reactant1^Stoir1*Reactant2^Stoir2...-k2*Product1^Stoip1*Product2^Stoip2.");
} else {
if (maFunc.getForwardRate() != null) {
forwardRate = maFunc.getForwardRate();
}
if (maFunc.getReverseRate() != null) {
reverseRate = maFunc.getReverseRate();
}
}
} else // if it's macro/microscopic kinetics, we'll have them set up as reactions with only forward rate.
if (kinetics.getKineticsDescription().equals(KineticsDescription.Macroscopic_irreversible) || kinetics.getKineticsDescription().equals(KineticsDescription.Microscopic_irreversible)) {
Expression Kon = getIdentifierSubstitutions(new Expression(reactionStep.getKinetics().getKineticsParameterFromRole(Kinetics.ROLE_KOn), getNameScope()), reactionStep.getKinetics().getKineticsParameterFromRole(Kinetics.ROLE_Binding_Radius).getUnitDefinition(), geometryClass);
if (Kon != null) {
Expression KonCopy = new Expression(Kon);
try {
MassActionSolver.substituteParameters(KonCopy, true).evaluateConstant();
forwardRate = new Expression(Kon);
} catch (ExpressionException e) {
throw new MathException(VCellErrorMessages.getMassActionSolverMessage(reactionStep.getName(), "Problem with Kon parameter in " + reactionStep.getName() + ": '" + KonCopy.infix() + "', " + e.getMessage()));
}
} else {
throw new MathException(VCellErrorMessages.getMassActionSolverMessage(reactionStep.getName(), "Kon parameter of " + reactionStep.getName() + " is null."));
}
}
boolean isForwardRatePresent = false;
boolean isReverseRatePresent = false;
if (forwardRate != null) {
isForwardRatePresent = true;
}
if (reverseRate != null) {
isReverseRatePresent = true;
}
// we process it as forward reaction
if ((isForwardRatePresent)) /*|| ((forwardRate == null) && (reverseRate == null))*/
{
// get jump process name
String jpName = TokenMangler.mangleToSName(reactionStep.getName());
// get probability
Expression exp = null;
// reactions are of mass action form
exp = getProbabilityRate(reactionStep, forwardRate, true);
ProbabilityParameter probParm = null;
try {
probParm = addProbabilityParameter(PARAMETER_PROBABILITYRATE_PREFIX + jpName, exp, PARAMETER_ROLE_P, probabilityParamUnit, reactionStep);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probParm, geometryClass), getIdentifierSubstitutions(exp, probabilityParamUnit, geometryClass), geometryClass));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probParm, geometryClass)));
// actions
ReactionParticipant[] reacPart = reactionStep.getReactionParticipants();
for (int j = 0; j < reacPart.length; j++) {
Action action = null;
SpeciesCountParameter spCountParam = getSpeciesCountParameter(reacPart[j].getSpeciesContext());
if (reacPart[j] instanceof Reactant) {
// check if the reactant is a constant. If the species is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Reactant) reacPart[j]).getStoichiometry();
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(-stoi));
jp.addAction(action);
}
} else if (reacPart[j] instanceof Product) {
// check if the product is a constant. If the product is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Product) reacPart[j]).getStoichiometry();
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(stoi));
jp.addAction(action);
}
}
}
// add jump process to compartment subDomain
subDomain.addJumpProcess(jp);
}
if (// one more jump process for a reversible reaction
isReverseRatePresent) {
// get jump process name
String jpName = TokenMangler.mangleToSName(reactionStep.getName()) + PARAMETER_PROBABILITY_RATE_REVERSE_SUFFIX;
Expression exp = null;
// reactions are mass actions
exp = getProbabilityRate(reactionStep, reverseRate, false);
ProbabilityParameter probRevParm = null;
try {
probRevParm = addProbabilityParameter(PARAMETER_PROBABILITYRATE_PREFIX + jpName, exp, PARAMETER_ROLE_P_reverse, probabilityParamUnit, reactionStep);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probRevParm, geometryClass), getIdentifierSubstitutions(exp, probabilityParamUnit, geometryClass), geometryClass));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probRevParm, geometryClass)));
// actions
ReactionParticipant[] reacPart = reactionStep.getReactionParticipants();
for (int j = 0; j < reacPart.length; j++) {
Action action = null;
SpeciesCountParameter spCountParam = getSpeciesCountParameter(reacPart[j].getSpeciesContext());
if (reacPart[j] instanceof Reactant) {
// check if the reactant is a constant. If the species is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Reactant) reacPart[j]).getStoichiometry();
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(stoi));
jp.addAction(action);
}
} else if (reacPart[j] instanceof Product) {
// check if the product is a constant. If the product is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Product) reacPart[j]).getStoichiometry();
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(-stoi));
jp.addAction(action);
}
}
}
// add jump process to compartment subDomain
subDomain.addJumpProcess(jp);
}
// end of if(isForwardRateNonZero), if(isReverseRateNonRate)
} else if (// flux reactions
reactionStep instanceof FluxReaction) {
// we could set jump processes for general flux rate in forms of p1*Sout + p2*Sin
if (kinetics.getKineticsDescription().equals(KineticsDescription.General) || kinetics.getKineticsDescription().equals(KineticsDescription.GeneralPermeability)) {
Expression fluxRate = new Expression(kinetics.getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate), reactionStep.getNameScope());
// we have to pass the math description para to flux solver, coz somehow math description in simulation context is not updated.
// forward and reverse rate parameters may be null
Parameter forwardRateParameter = null;
Parameter reverseRateParameter = null;
if (kinetics.getKineticsDescription().equals(KineticsDescription.GeneralPermeability)) {
forwardRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_Permeability);
reverseRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_Permeability);
}
MassActionSolver.MassActionFunction fluxFunc = MassActionSolver.solveMassAction(forwardRateParameter, reverseRateParameter, fluxRate, (FluxReaction) reactionStep);
// create jump process for forward flux if it exists.
Expression rsStructureSize = new Expression(reactionStep.getStructure().getStructureSize(), getNameScope());
VCUnitDefinition probRateUnit = modelUnitSystem.getStochasticSubstanceUnit().divideBy(modelUnitSystem.getAreaUnit()).divideBy(modelUnitSystem.getTimeUnit());
Expression rsRateUnitFactor = getUnitFactor(probRateUnit.divideBy(modelUnitSystem.getFluxReactionUnit()));
if (fluxFunc.getForwardRate() != null && !fluxFunc.getForwardRate().isZero()) {
Expression rate = fluxFunc.getForwardRate();
// get species expression (depend on structure, if mem: Species/mem_Size, if vol: species*KMOLE/vol_size)
if (fluxFunc.getReactants().size() != 1) {
throw new MappingException("Flux " + reactionStep.getName() + " should have only one reactant.");
}
SpeciesContext scReactant = fluxFunc.getReactants().get(0).getSpeciesContext();
Expression scConcExpr = new Expression(getSpeciesConcentrationParameter(scReactant), getNameScope());
Expression probExp = Expression.mult(rate, rsRateUnitFactor, rsStructureSize, scConcExpr);
// jump process name
// +"_reverse";
String jpName = TokenMangler.mangleToSName(reactionStep.getName());
ProbabilityParameter probParm = null;
try {
probParm = addProbabilityParameter(PARAMETER_PROBABILITYRATE_PREFIX + jpName, probExp, PARAMETER_ROLE_P, probabilityParamUnit, reactionStep);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
String ms = getMathSymbol(probParm, geometryClass);
Expression is = getIdentifierSubstitutions(probExp, probabilityParamUnit, geometryClass);
Variable nfoc = newFunctionOrConstant(ms, is, geometryClass);
varHash.addVariable(nfoc);
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probParm, geometryClass)));
// actions
Action action = null;
SpeciesContext sc = fluxFunc.getReactants().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(-1));
jp.addAction(action);
}
sc = fluxFunc.getProducts().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(1));
jp.addAction(action);
}
subDomain.addJumpProcess(jp);
}
// create jump process for reverse flux if it exists.
if (fluxFunc.getReverseRate() != null && !fluxFunc.getReverseRate().isZero()) {
// jump process name
String jpName = TokenMangler.mangleToSName(reactionStep.getName()) + PARAMETER_PROBABILITY_RATE_REVERSE_SUFFIX;
Expression rate = fluxFunc.getReverseRate();
// get species expression (depend on structure, if mem: Species/mem_Size, if vol: species*KMOLE/vol_size)
if (fluxFunc.getProducts().size() != 1) {
throw new MappingException("Flux " + reactionStep.getName() + " should have only one product.");
}
SpeciesContext scProduct = fluxFunc.getProducts().get(0).getSpeciesContext();
Expression scConcExpr = new Expression(getSpeciesConcentrationParameter(scProduct), getNameScope());
Expression probExp = Expression.mult(rate, rsRateUnitFactor, rsStructureSize, scConcExpr);
ProbabilityParameter probRevParm = null;
try {
probRevParm = addProbabilityParameter(PARAMETER_PROBABILITYRATE_PREFIX + jpName, probExp, PARAMETER_ROLE_P_reverse, probabilityParamUnit, reactionStep);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probRevParm, geometryClass), getIdentifierSubstitutions(probExp, probabilityParamUnit, geometryClass), geometryClass));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probRevParm, geometryClass)));
// actions
Action action = null;
SpeciesContext sc = fluxFunc.getReactants().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(1));
jp.addAction(action);
}
sc = fluxFunc.getProducts().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = Action.createIncrementAction(varHash.getVariable(getMathSymbol(spCountParam, geometryClass)), new Expression(-1));
jp.addAction(action);
}
subDomain.addJumpProcess(jp);
}
}
}
// end of if (simplereaction)...else if(fluxreaction)
}
// end of reaction step loop
}
use of cbit.vcell.model.FluxReaction in project vcell by virtualcell.
the class StructureAnalyzer method getReactionRateExpression.
public Expression getReactionRateExpression(ReactionStep reactionStep, ReactionParticipant reactionParticipant) throws Exception {
if (reactionParticipant instanceof Catalyst) {
throw new Exception("Catalyst " + reactionParticipant + " doesn't have a rate for this reaction");
// return new Expression(0.0);
}
double stoich = reactionStep.getStoichiometry(reactionParticipant.getSpeciesContext());
if (stoich == 0.0) {
return new Expression(0.0);
}
if (reactionStep.getKinetics() instanceof DistributedKinetics) {
DistributedKinetics distributedKinetics = (DistributedKinetics) reactionStep.getKinetics();
if (stoich != 1) {
Expression exp = Expression.mult(new Expression(stoich), new Expression(distributedKinetics.getReactionRateParameter(), mathMapping_4_8.getNameScope()));
return exp;
} else {
Expression exp = new Expression(distributedKinetics.getReactionRateParameter(), mathMapping_4_8.getNameScope());
return exp;
}
} else if (reactionStep.getKinetics() instanceof LumpedKinetics) {
Structure.StructureSize structureSize = reactionStep.getStructure().getStructureSize();
//
// need to put this into concentration/time with respect to structure for reaction.
//
LumpedKinetics lumpedKinetics = (LumpedKinetics) reactionStep.getKinetics();
Expression factor = null;
ModelUnitSystem unitSystem = mathMapping_4_8.getSimulationContext().getModel().getUnitSystem();
if (reactionStep.getStructure() instanceof Feature || ((reactionStep.getStructure() instanceof Membrane) && reactionStep instanceof FluxReaction)) {
VCUnitDefinition lumpedToVolumeSubstance = unitSystem.getVolumeSubstanceUnit().divideBy(unitSystem.getLumpedReactionSubstanceUnit());
factor = Expression.div(new Expression(lumpedToVolumeSubstance.getDimensionlessScale()), new Expression(structureSize, mathMapping_4_8.getNameScope()));
} else if (reactionStep.getStructure() instanceof Membrane && reactionStep instanceof SimpleReaction) {
VCUnitDefinition lumpedToVolumeSubstance = unitSystem.getMembraneSubstanceUnit().divideBy(unitSystem.getLumpedReactionSubstanceUnit());
factor = Expression.div(new Expression(lumpedToVolumeSubstance.getDimensionlessScale()), new Expression(structureSize, mathMapping_4_8.getNameScope()));
} else {
throw new RuntimeException("failed to create reaction rate expression for reaction " + reactionStep.getName() + ", with kinetic type of " + reactionStep.getKinetics().getClass().getName());
}
if (stoich != 1) {
Expression exp = Expression.mult(new Expression(stoich), Expression.mult(new Expression(lumpedKinetics.getLumpedReactionRateParameter(), mathMapping_4_8.getNameScope()), factor));
return exp;
} else {
Expression exp = Expression.mult(new Expression(lumpedKinetics.getLumpedReactionRateParameter(), mathMapping_4_8.getNameScope()), factor);
return exp;
}
} else {
throw new RuntimeException("unexpected kinetic type " + reactionStep.getKinetics().getClass().getName());
}
}
Aggregations