Search in sources :

Example 1 with DistributedKinetics

use of cbit.vcell.model.DistributedKinetics in project vcell by virtualcell.

the class SBMLExporter method addReactions.

/**
 * addReactions comment.
 * @throws SbmlException
 * @throws XMLStreamException
 */
protected void addReactions() throws SbmlException, XMLStreamException {
    // Check if any reaction has electrical mapping
    boolean bCalculatePotential = false;
    StructureMapping[] structureMappings = getSelectedSimContext().getGeometryContext().getStructureMappings();
    for (int i = 0; i < structureMappings.length; i++) {
        if (structureMappings[i] instanceof MembraneMapping) {
            if (((MembraneMapping) structureMappings[i]).getCalculateVoltage()) {
                bCalculatePotential = true;
            }
        }
    }
    // If it does, VCell doesn't export it to SBML (no representation).
    if (bCalculatePotential) {
        throw new RuntimeException("This VCell model has Electrical mapping; cannot be exported to SBML at this time");
    }
    l2gMap.clear();
    ReactionSpec[] vcReactionSpecs = getSelectedSimContext().getReactionContext().getReactionSpecs();
    for (int i = 0; i < vcReactionSpecs.length; i++) {
        if (vcReactionSpecs[i].isExcluded()) {
            continue;
        }
        ReactionStep vcReactionStep = vcReactionSpecs[i].getReactionStep();
        // Create sbml reaction
        String rxnName = vcReactionStep.getName();
        org.sbml.jsbml.Reaction sbmlReaction = sbmlModel.createReaction();
        sbmlReaction.setId(org.vcell.util.TokenMangler.mangleToSName(rxnName));
        sbmlReaction.setName(rxnName);
        // If the reactionStep is a flux reaction, add the details to the annotation (structure, carrier valence, flux carrier, fluxOption, etc.)
        // If reactionStep is a simple reaction, add annotation to indicate the structure of reaction.
        // Useful when roundtripping ...
        Element sbmlImportRelatedElement = null;
        // try {
        // sbmlImportRelatedElement = getAnnotationElement(vcReactionStep);
        // } catch (XmlParseException e1) {
        // e1.printStackTrace(System.out);
        // //			throw new RuntimeException("Error ");
        // }
        // Get annotation (RDF and non-RDF) for reactionStep from SBMLAnnotationUtils
        sbmlAnnotationUtil.writeAnnotation(vcReactionStep, sbmlReaction, sbmlImportRelatedElement);
        // Now set notes,
        sbmlAnnotationUtil.writeNotes(vcReactionStep, sbmlReaction);
        // Get reaction kineticLaw
        Kinetics vcRxnKinetics = vcReactionStep.getKinetics();
        org.sbml.jsbml.KineticLaw sbmlKLaw = sbmlReaction.createKineticLaw();
        try {
            // Convert expression from kinetics rate parameter into MathML and use libSBMl utilities to convert it to formula
            // (instead of directly using rate parameter's expression infix) to maintain integrity of formula :
            // for example logical and inequalities are not handled gracefully by libSBMl if expression.infix is used.
            final Expression localRateExpr;
            final Expression lumpedRateExpr;
            if (vcRxnKinetics instanceof DistributedKinetics) {
                localRateExpr = ((DistributedKinetics) vcRxnKinetics).getReactionRateParameter().getExpression();
                lumpedRateExpr = null;
            } else if (vcRxnKinetics instanceof LumpedKinetics) {
                localRateExpr = null;
                lumpedRateExpr = ((LumpedKinetics) vcRxnKinetics).getLumpedReactionRateParameter().getExpression();
            } else {
                throw new RuntimeException("unexpected Rate Law '" + vcRxnKinetics.getClass().getSimpleName() + "', not distributed or lumped type");
            }
            // if (vcRxnKinetics instanceof DistributedKinetics)
            // Expression correctedRateExpr = kineticsAdapter.getExpression();
            // Add parameters, if any, to the kineticLaw
            Kinetics.KineticsParameter[] vcKineticsParams = vcRxnKinetics.getKineticsParameters();
            // In the first pass thro' the kinetic params, store the non-numeric param names and expressions in arrays
            String[] kinParamNames = new String[vcKineticsParams.length];
            Expression[] kinParamExprs = new Expression[vcKineticsParams.length];
            for (int j = 0; j < vcKineticsParams.length; j++) {
                if (true) {
                    // Since local reaction parameters cannot be defined by a rule, such parameters (with rules) are exported as global parameters.
                    if ((vcKineticsParams[j].getRole() == Kinetics.ROLE_CurrentDensity && (!vcKineticsParams[j].getExpression().isZero())) || (vcKineticsParams[j].getRole() == Kinetics.ROLE_LumpedCurrent && (!vcKineticsParams[j].getExpression().isZero()))) {
                        throw new RuntimeException("Electric current not handled by SBML export; failed to export reaction \"" + vcReactionStep.getName() + "\" at this time");
                    }
                    if (!vcKineticsParams[j].getExpression().isNumeric()) {
                        // NON_NUMERIC KINETIC PARAM
                        // Create new name for kinetic parameter and store it in kinParamNames, store corresponding exprs in kinParamExprs
                        // Will be used later to add this param as global.
                        String newParamName = TokenMangler.mangleToSName(vcKineticsParams[j].getName() + "_" + vcReactionStep.getName());
                        kinParamNames[j] = newParamName;
                        kinParamExprs[j] = new Expression(vcKineticsParams[j].getExpression());
                    }
                }
            }
            // If so, these need to be added as global param (else the SBML doc will not be valid)
            for (int j = 0; j < vcKineticsParams.length; j++) {
                final KineticsParameter vcKParam = vcKineticsParams[j];
                if ((vcKParam.getRole() != Kinetics.ROLE_ReactionRate) && (vcKParam.getRole() != Kinetics.ROLE_LumpedReactionRate)) {
                    // if expression of kinetic param evaluates to a double, the parameter value is set
                    if ((vcKParam.getRole() == Kinetics.ROLE_CurrentDensity && (!vcKParam.getExpression().isZero())) || (vcKParam.getRole() == Kinetics.ROLE_LumpedCurrent && (!vcKParam.getExpression().isZero()))) {
                        throw new RuntimeException("Electric current not handled by SBML export; failed to export reaction \"" + vcReactionStep.getName() + "\" at this time");
                    }
                    if (vcKParam.getExpression().isNumeric()) {
                        // NUMERIC KINETIC PARAM
                        // check if it is used in other parameters that have expressions,
                        boolean bAddedParam = false;
                        String origParamName = vcKParam.getName();
                        String newParamName = TokenMangler.mangleToSName(origParamName + "_" + vcReactionStep.getName());
                        VCUnitDefinition vcUnit = vcKParam.getUnitDefinition();
                        for (int k = 0; k < vcKineticsParams.length; k++) {
                            if (kinParamExprs[k] != null) {
                                // The param could be in the expression for any other param
                                if (kinParamExprs[k].hasSymbol(origParamName)) {
                                    // mangle its name to avoid conflict with other globals
                                    if (globalParamNamesHash.get(newParamName) == null) {
                                        globalParamNamesHash.put(newParamName, newParamName);
                                        org.sbml.jsbml.Parameter sbmlKinParam = sbmlModel.createParameter();
                                        sbmlKinParam.setId(newParamName);
                                        sbmlKinParam.setValue(vcKParam.getConstantValue());
                                        final boolean constValue = vcKParam.isConstant();
                                        sbmlKinParam.setConstant(true);
                                        // Set SBML units for sbmlParam using VC units from vcParam
                                        if (!vcUnit.isTBD()) {
                                            UnitDefinition unitDefn = getOrCreateSBMLUnit(vcUnit);
                                            sbmlKinParam.setUnits(unitDefn);
                                        }
                                        Pair<String, String> origParam = new Pair<String, String>(rxnName, origParamName);
                                        l2gMap.put(origParam, newParamName);
                                        bAddedParam = true;
                                    } else {
                                    // need to get another name for param and need to change all its refereces in the other kinParam euqations.
                                    }
                                    // update the expression to contain new name, since the globalparam has new name
                                    kinParamExprs[k].substituteInPlace(new Expression(origParamName), new Expression(newParamName));
                                }
                            }
                        }
                        // If the param hasn't been added yet, it is definitely a local param. add it to kineticLaw now.
                        if (!bAddedParam) {
                            org.sbml.jsbml.LocalParameter sbmlKinParam = sbmlKLaw.createLocalParameter();
                            sbmlKinParam.setId(origParamName);
                            sbmlKinParam.setValue(vcKParam.getConstantValue());
                            System.out.println("tis constant " + sbmlKinParam.isExplicitlySetConstant());
                            // Set SBML units for sbmlParam using VC units from vcParam
                            if (!vcUnit.isTBD()) {
                                UnitDefinition unitDefn = getOrCreateSBMLUnit(vcUnit);
                                sbmlKinParam.setUnits(unitDefn);
                            }
                        } else {
                            // hence change its occurance in rate expression if it contains that param name
                            if (localRateExpr != null && localRateExpr.hasSymbol(origParamName)) {
                                localRateExpr.substituteInPlace(new Expression(origParamName), new Expression(newParamName));
                            }
                            if (lumpedRateExpr != null && lumpedRateExpr.hasSymbol(origParamName)) {
                                lumpedRateExpr.substituteInPlace(new Expression(origParamName), new Expression(newParamName));
                            }
                        }
                    }
                }
            }
            // (using the kinParamNames and kinParamExprs above) to ensure uniqueness in the global parameter names.
            for (int j = 0; j < vcKineticsParams.length; j++) {
                if (((vcKineticsParams[j].getRole() != Kinetics.ROLE_ReactionRate) && (vcKineticsParams[j].getRole() != Kinetics.ROLE_LumpedReactionRate)) && !(vcKineticsParams[j].getExpression().isNumeric())) {
                    String oldName = vcKineticsParams[j].getName();
                    String newName = kinParamNames[j];
                    // change the name of this parameter in the rate expression
                    if (localRateExpr != null && localRateExpr.hasSymbol(oldName)) {
                        localRateExpr.substituteInPlace(new Expression(oldName), new Expression(newName));
                    }
                    if (lumpedRateExpr != null && lumpedRateExpr.hasSymbol(oldName)) {
                        lumpedRateExpr.substituteInPlace(new Expression(oldName), new Expression(newName));
                    }
                    // Change the occurence of this param in other param expressions
                    for (int k = 0; k < vcKineticsParams.length; k++) {
                        if (((vcKineticsParams[k].getRole() != Kinetics.ROLE_ReactionRate) && (vcKineticsParams[j].getRole() != Kinetics.ROLE_LumpedReactionRate)) && !(vcKineticsParams[k].getExpression().isNumeric())) {
                            if (k != j && vcKineticsParams[k].getExpression().hasSymbol(oldName)) {
                                // for all params except the current param represented by index j (whose name was changed)
                                kinParamExprs[k].substituteInPlace(new Expression(oldName), new Expression(newName));
                            }
                            if (k == j && vcKineticsParams[k].getExpression().hasSymbol(oldName)) {
                                throw new RuntimeException("A parameter cannot refer to itself in its expression");
                            }
                        }
                    }
                // end for - k
                }
            }
            // In the fifth pass thro' the kinetic params, the non-numeric params are added to the global params of the model
            for (int j = 0; j < vcKineticsParams.length; j++) {
                if (((vcKineticsParams[j].getRole() != Kinetics.ROLE_ReactionRate) && (vcKineticsParams[j].getRole() != Kinetics.ROLE_LumpedReactionRate)) && !(vcKineticsParams[j].getExpression().isNumeric())) {
                    // Now, add this param to the globalParamNamesHash and add a global parameter to the sbmlModel
                    String paramName = kinParamNames[j];
                    if (globalParamNamesHash.get(paramName) == null) {
                        globalParamNamesHash.put(paramName, paramName);
                    } else {
                    // need to get another name for param and need to change all its refereces in the other kinParam euqations.
                    }
                    Pair<String, String> origParam = new Pair<String, String>(rxnName, paramName);
                    // keeps its name but becomes a global (?)
                    l2gMap.put(origParam, paramName);
                    ASTNode paramFormulaNode = getFormulaFromExpression(kinParamExprs[j]);
                    AssignmentRule sbmlParamAssignmentRule = sbmlModel.createAssignmentRule();
                    sbmlParamAssignmentRule.setVariable(paramName);
                    sbmlParamAssignmentRule.setMath(paramFormulaNode);
                    org.sbml.jsbml.Parameter sbmlKinParam = sbmlModel.createParameter();
                    sbmlKinParam.setId(paramName);
                    if (!vcKineticsParams[j].getUnitDefinition().isTBD()) {
                        sbmlKinParam.setUnits(getOrCreateSBMLUnit(vcKineticsParams[j].getUnitDefinition()));
                    }
                    // Since the parameter is being specified by a Rule, its 'constant' field shoud be set to 'false' (default - true).
                    sbmlKinParam.setConstant(false);
                }
            }
            // end for (j) - fifth pass
            // After making all necessary adjustments to the rate expression, now set the sbmlKLaw.
            final ASTNode exprFormulaNode;
            if (lumpedRateExpr != null) {
                exprFormulaNode = getFormulaFromExpression(lumpedRateExpr);
            } else {
                if (bSpatial) {
                    exprFormulaNode = getFormulaFromExpression(localRateExpr);
                } else {
                    exprFormulaNode = getFormulaFromExpression(Expression.mult(localRateExpr, new Expression(vcReactionStep.getStructure().getName())));
                }
            }
            sbmlKLaw.setMath(exprFormulaNode);
        } catch (cbit.vcell.parser.ExpressionException e) {
            e.printStackTrace(System.out);
            throw new RuntimeException("Error getting value of parameter : " + e.getMessage());
        }
        // Add kineticLaw to sbmlReaction - not needed now, since we use sbmlRxn.createKLaw() ??
        // sbmlReaction.setKineticLaw(sbmlKLaw);
        // Add reactants, products, modifiers
        // Simple reactions have catalysts, fluxes have 'flux'
        cbit.vcell.model.ReactionParticipant[] rxnParticipants = vcReactionStep.getReactionParticipants();
        for (ReactionParticipant rxnParticpant : rxnParticipants) {
            SimpleSpeciesReference ssr = null;
            SpeciesReference sr = null;
            if (rxnParticpant instanceof cbit.vcell.model.Reactant) {
                ssr = sr = sbmlReaction.createReactant();
            } else if (rxnParticpant instanceof cbit.vcell.model.Product) {
                ssr = sr = sbmlReaction.createProduct();
            }
            if (rxnParticpant instanceof cbit.vcell.model.Catalyst) {
                ssr = sbmlReaction.createModifier();
            }
            if (ssr != null) {
                ssr.setSpecies(rxnParticpant.getSpeciesContext().getName());
            }
            if (sr != null) {
                sr.setStoichiometry(Double.parseDouble(Integer.toString(rxnParticpant.getStoichiometry())));
                String modelUniqueName = vcReactionStep.getName() + '_' + rxnParticpant.getName();
                sr.setId(TokenMangler.mangleToSName(modelUniqueName));
                // SBML-REVIEW
                sr.setConstant(true);
                // int rcode = sr.appendNotes("<
                try {
                    SBMLHelper.addNote(sr, "VCELL guess: how do we know if reaction is constant?");
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }
        sbmlReaction.setFast(vcReactionSpecs[i].isFast());
        // this attribute is mandatory for L3, optional for L2. So explicitly setting value.
        sbmlReaction.setReversible(true);
        if (bSpatial) {
            // set compartment for reaction if spatial
            sbmlReaction.setCompartment(vcReactionStep.getStructure().getName());
            // CORE  HAS ALT MATH true
            // set the "isLocal" attribute = true (in 'spatial' namespace) for each species
            SpatialReactionPlugin srplugin = (SpatialReactionPlugin) sbmlReaction.getPlugin(SBMLUtils.SBML_SPATIAL_NS_PREFIX);
            srplugin.setIsLocal(vcRxnKinetics instanceof DistributedKinetics);
        }
    }
}
Also used : MembraneMapping(cbit.vcell.mapping.MembraneMapping) LumpedKinetics(cbit.vcell.model.LumpedKinetics) Element(org.jdom.Element) StructureMapping(cbit.vcell.mapping.StructureMapping) SimpleSpeciesReference(org.sbml.jsbml.SimpleSpeciesReference) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) SpeciesReference(org.sbml.jsbml.SpeciesReference) SimpleSpeciesReference(org.sbml.jsbml.SimpleSpeciesReference) ASTNode(org.sbml.jsbml.ASTNode) VCUnitDefinition(cbit.vcell.units.VCUnitDefinition) UnitDefinition(org.sbml.jsbml.UnitDefinition) Pair(org.vcell.util.Pair) DistributedKinetics(cbit.vcell.model.DistributedKinetics) SpatialReactionPlugin(org.sbml.jsbml.ext.spatial.SpatialReactionPlugin) ReactionSpec(cbit.vcell.mapping.ReactionSpec) AssignmentRule(org.sbml.jsbml.AssignmentRule) ExpressionException(cbit.vcell.parser.ExpressionException) InteriorPoint(org.sbml.jsbml.ext.spatial.InteriorPoint) XMLStreamException(javax.xml.stream.XMLStreamException) SbmlException(org.vcell.sbml.SbmlException) ImageException(cbit.image.ImageException) SBMLException(org.sbml.jsbml.SBMLException) ExpressionException(cbit.vcell.parser.ExpressionException) VCUnitDefinition(cbit.vcell.units.VCUnitDefinition) Expression(cbit.vcell.parser.Expression) ReactionStep(cbit.vcell.model.ReactionStep) Kinetics(cbit.vcell.model.Kinetics) DistributedKinetics(cbit.vcell.model.DistributedKinetics) LumpedKinetics(cbit.vcell.model.LumpedKinetics) ReactionParticipant(cbit.vcell.model.ReactionParticipant)

Example 2 with DistributedKinetics

use of cbit.vcell.model.DistributedKinetics in project vcell by virtualcell.

the class StructureAnalyzer method getCorrectedRateExpression.

public Expression getCorrectedRateExpression(ReactionStep reactionStep, ReactionParticipant reactionParticipant, RateType rateType) throws Exception {
    if (reactionParticipant instanceof Catalyst) {
        throw new Exception("Catalyst " + reactionParticipant + " doesn't have a rate for this reaction");
    // return new Expression(0.0);
    }
    double stoich = reactionStep.getStoichiometry(reactionParticipant.getSpeciesContext());
    if (stoich == 0.0) {
        return new Expression(0.0);
    }
    // 
    // make distributed rate with correct stoichiometry for this participant
    // 
    VCUnitDefinition correctedReactionRateUnit = null;
    Expression distribRate = null;
    if (reactionStep.getKinetics() instanceof DistributedKinetics) {
        DistributedKinetics distributedKinetics = (DistributedKinetics) reactionStep.getKinetics();
        KineticsParameter distribReactionRateParameter = distributedKinetics.getReactionRateParameter();
        distribRate = new Expression(distribReactionRateParameter, mathMapping.getNameScope());
        correctedReactionRateUnit = distribReactionRateParameter.getUnitDefinition();
    } else if (reactionStep.getKinetics() instanceof LumpedKinetics) {
        // 
        // need to put this into concentration/time with respect to structure for reaction.
        // 
        Structure.StructureSize structureSize = reactionStep.getStructure().getStructureSize();
        LumpedKinetics lumpedKinetics = (LumpedKinetics) reactionStep.getKinetics();
        KineticsParameter lumpedReactionRateParameter = lumpedKinetics.getLumpedReactionRateParameter();
        Expression lumpedReactionRateExp = new Expression(lumpedReactionRateParameter, mathMapping.getNameScope());
        distribRate = Expression.div(lumpedReactionRateExp, new Expression(structureSize, mathMapping.getNameScope()));
        ;
        correctedReactionRateUnit = lumpedReactionRateParameter.getUnitDefinition().divideBy(structureSize.getUnitDefinition());
    }
    // correct for stoichiometry
    Expression distribRateWithStoich = distribRate;
    if (stoich != 1) {
        distribRateWithStoich = Expression.mult(new Expression(stoich), distribRateWithStoich);
    }
    // flux correction if reaction and reactionParticipant are in different compartments. (not necessarily dimensionless, use KFlux parameter).
    Expression distribRateWithStoichFlux = distribRateWithStoich;
    if (reactionStep.getStructure() != reactionParticipant.getStructure()) {
        StructureMapping reactionSM = mathMapping.getSimulationContext().getGeometryContext().getStructureMapping(reactionStep.getStructure());
        StructureMapping speciesSM = mathMapping.getSimulationContext().getGeometryContext().getStructureMapping(reactionParticipant.getStructure());
        Parameter fluxCorrectionParameter = mathMapping.getFluxCorrectionParameter(reactionSM, speciesSM);
        Expression fluxCorrection = new Expression(fluxCorrectionParameter, mathMapping.getNameScope());
        distribRateWithStoichFlux = Expression.mult(fluxCorrection, distribRateWithStoichFlux);
        correctedReactionRateUnit = correctedReactionRateUnit.multiplyBy(fluxCorrectionParameter.getUnitDefinition());
    }
    // apply unit factor for difference substance
    ModelUnitSystem unitSystem = mathMapping.getSimulationContext().getModel().getUnitSystem();
    VCUnitDefinition timeUnit = unitSystem.getTimeUnit();
    VCUnitDefinition speciesConcUnit = reactionParticipant.getSpeciesContext().getUnitDefinition();
    VCUnitDefinition speciesConcRateUnit = speciesConcUnit.divideBy(timeUnit);
    Expression unitFactor = null;
    if (rateType == RateType.ConcentrationRate) {
        unitFactor = mathMapping.getUnitFactor(speciesConcRateUnit.divideBy(correctedReactionRateUnit));
    } else if (rateType == RateType.ResolvedFluxRate) {
        unitFactor = mathMapping.getUnitFactor(speciesConcRateUnit.multiplyBy(unitSystem.getLengthUnit()).divideBy(correctedReactionRateUnit));
    }
    return Expression.mult(unitFactor, distribRateWithStoichFlux).flatten();
}
Also used : DistributedKinetics(cbit.vcell.model.DistributedKinetics) VCUnitDefinition(cbit.vcell.units.VCUnitDefinition) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) LumpedKinetics(cbit.vcell.model.LumpedKinetics) Expression(cbit.vcell.parser.Expression) MathMappingParameter(cbit.vcell.mapping.AbstractMathMapping.MathMappingParameter) Parameter(cbit.vcell.model.Parameter) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) Catalyst(cbit.vcell.model.Catalyst) ModelUnitSystem(cbit.vcell.model.ModelUnitSystem)

Example 3 with DistributedKinetics

use of cbit.vcell.model.DistributedKinetics in project vcell by virtualcell.

the class StructureAnalyzer method getReactionRateExpression.

public Expression getReactionRateExpression(ReactionStep reactionStep, ReactionParticipant reactionParticipant) throws Exception {
    if (reactionParticipant instanceof Catalyst) {
        throw new Exception("Catalyst " + reactionParticipant + " doesn't have a rate for this reaction");
    // return new Expression(0.0);
    }
    double stoich = reactionStep.getStoichiometry(reactionParticipant.getSpeciesContext());
    if (stoich == 0.0) {
        return new Expression(0.0);
    }
    if (reactionStep.getKinetics() instanceof DistributedKinetics) {
        DistributedKinetics distributedKinetics = (DistributedKinetics) reactionStep.getKinetics();
        if (stoich != 1) {
            Expression exp = Expression.mult(new Expression(stoich), new Expression(distributedKinetics.getReactionRateParameter(), mathMapping_4_8.getNameScope()));
            return exp;
        } else {
            Expression exp = new Expression(distributedKinetics.getReactionRateParameter(), mathMapping_4_8.getNameScope());
            return exp;
        }
    } else if (reactionStep.getKinetics() instanceof LumpedKinetics) {
        Structure.StructureSize structureSize = reactionStep.getStructure().getStructureSize();
        // 
        // need to put this into concentration/time with respect to structure for reaction.
        // 
        LumpedKinetics lumpedKinetics = (LumpedKinetics) reactionStep.getKinetics();
        Expression factor = null;
        ModelUnitSystem unitSystem = mathMapping_4_8.getSimulationContext().getModel().getUnitSystem();
        if (reactionStep.getStructure() instanceof Feature || ((reactionStep.getStructure() instanceof Membrane) && reactionStep instanceof FluxReaction)) {
            VCUnitDefinition lumpedToVolumeSubstance = unitSystem.getVolumeSubstanceUnit().divideBy(unitSystem.getLumpedReactionSubstanceUnit());
            factor = Expression.div(new Expression(lumpedToVolumeSubstance.getDimensionlessScale()), new Expression(structureSize, mathMapping_4_8.getNameScope()));
        } else if (reactionStep.getStructure() instanceof Membrane && reactionStep instanceof SimpleReaction) {
            VCUnitDefinition lumpedToVolumeSubstance = unitSystem.getMembraneSubstanceUnit().divideBy(unitSystem.getLumpedReactionSubstanceUnit());
            factor = Expression.div(new Expression(lumpedToVolumeSubstance.getDimensionlessScale()), new Expression(structureSize, mathMapping_4_8.getNameScope()));
        } else {
            throw new RuntimeException("failed to create reaction rate expression for reaction " + reactionStep.getName() + ", with kinetic type of " + reactionStep.getKinetics().getClass().getName());
        }
        if (stoich != 1) {
            Expression exp = Expression.mult(new Expression(stoich), Expression.mult(new Expression(lumpedKinetics.getLumpedReactionRateParameter(), mathMapping_4_8.getNameScope()), factor));
            return exp;
        } else {
            Expression exp = Expression.mult(new Expression(lumpedKinetics.getLumpedReactionRateParameter(), mathMapping_4_8.getNameScope()), factor);
            return exp;
        }
    } else {
        throw new RuntimeException("unexpected kinetic type " + reactionStep.getKinetics().getClass().getName());
    }
}
Also used : DistributedKinetics(cbit.vcell.model.DistributedKinetics) SimpleReaction(cbit.vcell.model.SimpleReaction) LumpedKinetics(cbit.vcell.model.LumpedKinetics) FluxReaction(cbit.vcell.model.FluxReaction) Feature(cbit.vcell.model.Feature) VCUnitDefinition(cbit.vcell.units.VCUnitDefinition) Expression(cbit.vcell.parser.Expression) Membrane(cbit.vcell.model.Membrane) Catalyst(cbit.vcell.model.Catalyst) ModelUnitSystem(cbit.vcell.model.ModelUnitSystem)

Example 4 with DistributedKinetics

use of cbit.vcell.model.DistributedKinetics in project vcell by virtualcell.

the class KineticsTypeTemplatePanel method getJToggleButton.

private JButton getJToggleButton() {
    if (jToggleButton == null) {
        jToggleButton = new JButton("Convert");
        jToggleButton.addActionListener(new java.awt.event.ActionListener() {

            public void actionPerformed(java.awt.event.ActionEvent e) {
                ModelUnitSystem modelUnitSystem = getKinetics().getReactionStep().getModel().getUnitSystem();
                if (getKinetics() instanceof DistributedKinetics) {
                    try {
                        reactionStep.setKinetics(LumpedKinetics.toLumpedKinetics((DistributedKinetics) getKinetics()));
                    } catch (Exception e2) {
                        e2.printStackTrace(System.out);
                        if (getKinetics().getKineticsDescription().isElectrical()) {
                            DialogUtils.showErrorDialog(KineticsTypeTemplatePanel.this, "failed to translate into General Current Kinetics [" + modelUnitSystem.getCurrentUnit().getSymbolUnicode() + "]: " + e2.getMessage(), e2);
                        } else {
                            DialogUtils.showErrorDialog(KineticsTypeTemplatePanel.this, "failed to translate into General Lumped Kinetics [" + modelUnitSystem.getLumpedReactionRateUnit().getSymbolUnicode() + "]: " + e2.getMessage(), e2);
                        }
                    }
                } else if (getKinetics() instanceof LumpedKinetics) {
                    try {
                        reactionStep.setKinetics(DistributedKinetics.toDistributedKinetics((LumpedKinetics) getKinetics()));
                    } catch (Exception e2) {
                        e2.printStackTrace(System.out);
                        if (getKinetics().getKineticsDescription().isElectrical()) {
                            DialogUtils.showErrorDialog(KineticsTypeTemplatePanel.this, "failed to translate into General Current Density Kinetics [" + modelUnitSystem.getCurrentDensityUnit().getSymbolUnicode() + "]: " + e2.getMessage(), e2);
                        } else {
                            if (getKinetics().getReactionStep().getStructure() instanceof Feature) {
                                DialogUtils.showErrorDialog(KineticsTypeTemplatePanel.this, "failed to translate into General Kinetics [" + modelUnitSystem.getVolumeReactionRateUnit().getSymbolUnicode() + "]: " + e2.getMessage(), e2);
                            } else {
                                DialogUtils.showErrorDialog(KineticsTypeTemplatePanel.this, "failed to translate into General Kinetics [" + modelUnitSystem.getMembraneReactionRateUnit().getSymbolUnicode() + "]: " + e2.getMessage(), e2);
                            }
                        }
                    }
                }
            }
        });
    }
    return jToggleButton;
}
Also used : DistributedKinetics(cbit.vcell.model.DistributedKinetics) ActionListener(java.awt.event.ActionListener) LumpedKinetics(cbit.vcell.model.LumpedKinetics) JButton(javax.swing.JButton) Feature(cbit.vcell.model.Feature) ModelUnitSystem(cbit.vcell.model.ModelUnitSystem)

Example 5 with DistributedKinetics

use of cbit.vcell.model.DistributedKinetics in project vcell by virtualcell.

the class ParticleMathMapping method refreshMathDescription.

/**
 * This method was created in VisualAge.
 */
private void refreshMathDescription() throws MappingException, MatrixException, MathException, ExpressionException, ModelException {
    getSimulationContext().checkValidity();
    if (getSimulationContext().getGeometry().getDimension() == 0) {
        throw new MappingException("particle math mapping requires spatial geometry - dimension >= 1");
    }
    StructureMapping[] structureMappings = getSimulationContext().getGeometryContext().getStructureMappings();
    for (int i = 0; i < structureMappings.length; i++) {
        if (structureMappings[i] instanceof MembraneMapping) {
            if (((MembraneMapping) structureMappings[i]).getCalculateVoltage()) {
                throw new MappingException("electric potential not yet supported for particle models");
            }
        }
    }
    // 
    // fail if any events
    // 
    BioEvent[] bioEvents = getSimulationContext().getBioEvents();
    if (bioEvents != null && bioEvents.length > 0) {
        throw new MappingException("events not yet supported for particle-based models");
    }
    // 
    // gather only those reactionSteps that are not "excluded"
    // 
    ReactionSpec[] reactionSpecs = getSimulationContext().getReactionContext().getReactionSpecs();
    Vector<ReactionStep> rsList = new Vector<ReactionStep>();
    for (int i = 0; i < reactionSpecs.length; i++) {
        if (reactionSpecs[i].isExcluded() == false) {
            if (reactionSpecs[i].isFast()) {
                throw new MappingException("fast reactions not supported for particle models");
            }
            rsList.add(reactionSpecs[i].getReactionStep());
        }
    }
    ReactionStep[] reactionSteps = new ReactionStep[rsList.size()];
    rsList.copyInto(reactionSteps);
    // 
    for (int i = 0; i < reactionSteps.length; i++) {
        Kinetics.UnresolvedParameter[] unresolvedParameters = reactionSteps[i].getKinetics().getUnresolvedParameters();
        if (unresolvedParameters != null && unresolvedParameters.length > 0) {
            StringBuffer buffer = new StringBuffer();
            for (int j = 0; j < unresolvedParameters.length; j++) {
                if (j > 0) {
                    buffer.append(", ");
                }
                buffer.append(unresolvedParameters[j].getName());
            }
            throw new MappingException(reactionSteps[i].getDisplayType() + " '" + reactionSteps[i].getName() + "' contains unresolved identifier(s): " + buffer);
        }
    }
    // 
    // temporarily place all variables in a hashtable (before binding) and discarding duplicates (check for equality)
    // 
    VariableHash varHash = new VariableHash();
    // //
    // // verify that all structures are mapped to geometry classes and all geometry classes are mapped to a structure
    // //
    // Structure structures[] = getSimulationContext().getGeometryContext().getModel().getStructures();
    // for (int i = 0; i < structures.length; i++){
    // StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(structures[i]);
    // if (sm==null || (sm.getGeometryClass() == null)){
    // throw new MappingException("model structure '"+structures[i].getName()+"' not mapped to a geometry subdomain");
    // }
    // if (sm.getUnitSizeParameter()!=null){
    // Expression unitSizeExp = sm.getUnitSizeParameter().getExpression();
    // if(unitSizeExp != null)
    // {
    // try {
    // double unitSize = unitSizeExp.evaluateConstant();
    // if (unitSize != 1.0){
    // throw new MappingException("model structure '"+sm.getStructure().getName()+"' unit size = "+unitSize+" != 1.0 ... partial volume or surface mapping not yet supported for particles");
    // }
    // }catch (ExpressionException e){
    // e.printStackTrace(System.out);
    // throw new MappingException("couldn't evaluate unit size for model structure '"+sm.getStructure().getName()+"' : "+e.getMessage());
    // }
    // }
    // }
    // }
    // {
    // GeometryClass[] geometryClass = getSimulationContext().getGeometryContext().getGeometry().getGeometryClasses();
    // for (int i = 0; i < geometryClass.length; i++){
    // Structure[] mappedStructures = getSimulationContext().getGeometryContext().getStructuresFromGeometryClass(geometryClass[i]);
    // if (mappedStructures==null || mappedStructures.length==0){
    // throw new MappingException("geometryClass '"+geometryClass[i].getName()+"' not mapped from a model structure");
    // }
    // }
    // }
    // deals with model parameters
    Model model = getSimulationContext().getModel();
    ModelUnitSystem modelUnitSystem = model.getUnitSystem();
    ModelParameter[] modelParameters = model.getModelParameters();
    // populate in globalParameterVariants hashtable
    for (int j = 0; j < modelParameters.length; j++) {
        Expression modelParamExpr = modelParameters[j].getExpression();
        GeometryClass geometryClass = getDefaultGeometryClass(modelParamExpr);
        modelParamExpr = getIdentifierSubstitutions(modelParamExpr, modelParameters[j].getUnitDefinition(), geometryClass);
        varHash.addVariable(newFunctionOrConstant(getMathSymbol(modelParameters[j], geometryClass), modelParamExpr, geometryClass));
    }
    // 
    // create new MathDescription (based on simContext's previous MathDescription if possible)
    // 
    MathDescription oldMathDesc = getSimulationContext().getMathDescription();
    mathDesc = null;
    if (oldMathDesc != null) {
        if (oldMathDesc.getVersion() != null) {
            mathDesc = new MathDescription(oldMathDesc.getVersion());
        } else {
            mathDesc = new MathDescription(oldMathDesc.getName());
        }
    } else {
        mathDesc = new MathDescription(getSimulationContext().getName() + "_generated");
    }
    // 
    // volume particle variables
    // 
    Enumeration<SpeciesContextMapping> enum1 = getSpeciesContextMappings();
    while (enum1.hasMoreElements()) {
        SpeciesContextMapping scm = enum1.nextElement();
        if (scm.getVariable() instanceof ParticleVariable) {
            if (!(mathDesc.getVariable(scm.getVariable().getName()) instanceof ParticleVariable)) {
                varHash.addVariable(scm.getVariable());
            }
        }
    }
    varHash.addVariable(new Constant(getMathSymbol(model.getPI_CONSTANT(), null), getIdentifierSubstitutions(model.getPI_CONSTANT().getExpression(), model.getPI_CONSTANT().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getFARADAY_CONSTANT(), null), getIdentifierSubstitutions(model.getFARADAY_CONSTANT().getExpression(), model.getFARADAY_CONSTANT().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getFARADAY_CONSTANT_NMOLE(), null), getIdentifierSubstitutions(model.getFARADAY_CONSTANT_NMOLE().getExpression(), model.getFARADAY_CONSTANT_NMOLE().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getGAS_CONSTANT(), null), getIdentifierSubstitutions(model.getGAS_CONSTANT().getExpression(), model.getGAS_CONSTANT().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getTEMPERATURE(), null), getIdentifierSubstitutions(new Expression(getSimulationContext().getTemperatureKelvin()), model.getTEMPERATURE().getUnitDefinition(), null)));
    // 
    for (int j = 0; j < structureMappings.length; j++) {
        if (structureMappings[j] instanceof MembraneMapping) {
            MembraneMapping membraneMapping = (MembraneMapping) structureMappings[j];
            GeometryClass geometryClass = membraneMapping.getGeometryClass();
            // 
            // don't calculate voltage, still may need it though
            // 
            Parameter initialVoltageParm = membraneMapping.getInitialVoltageParameter();
            Variable voltageFunction = newFunctionOrConstant(getMathSymbol(membraneMapping.getMembrane().getMembraneVoltage(), geometryClass), getIdentifierSubstitutions(initialVoltageParm.getExpression(), initialVoltageParm.getUnitDefinition(), geometryClass), geometryClass);
            varHash.addVariable(voltageFunction);
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(membraneMapping.getMembrane().getMembraneVoltage(), membraneMapping.getGeometryClass()), getIdentifierSubstitutions(membraneMapping.getInitialVoltageParameter().getExpression(), membraneMapping.getInitialVoltageParameter().getUnitDefinition(), membraneMapping.getGeometryClass()), membraneMapping.getGeometryClass()));
        }
    }
    // 
    for (int j = 0; j < reactionSteps.length; j++) {
        ReactionStep rs = reactionSteps[j];
        if (getSimulationContext().getReactionContext().getReactionSpec(rs).isExcluded()) {
            continue;
        }
        Kinetics.KineticsParameter[] parameters = rs.getKinetics().getKineticsParameters();
        GeometryClass geometryClass = null;
        if (rs.getStructure() != null) {
            geometryClass = getSimulationContext().getGeometryContext().getStructureMapping(rs.getStructure()).getGeometryClass();
        }
        if (parameters != null) {
            for (int i = 0; i < parameters.length; i++) {
                // Reaction rate, currentDensity, LumpedCurrent and null parameters are not going to displayed in the particle math description.
                if (((parameters[i].getRole() == Kinetics.ROLE_CurrentDensity) || (parameters[i].getRole() == Kinetics.ROLE_LumpedCurrent) || (parameters[i].getRole() == Kinetics.ROLE_ReactionRate)) || (parameters[i].getExpression() == null)) {
                    continue;
                }
                varHash.addVariable(newFunctionOrConstant(getMathSymbol(parameters[i], geometryClass), getIdentifierSubstitutions(parameters[i].getExpression(), parameters[i].getUnitDefinition(), geometryClass), geometryClass));
            }
        }
    }
    // 
    // initial constants (either function or constant)
    // 
    SpeciesContextSpec[] speciesContextSpecs = getSimulationContext().getReactionContext().getSpeciesContextSpecs();
    for (int i = 0; i < speciesContextSpecs.length; i++) {
        SpeciesContextSpecParameter initParm = null;
        Expression initExpr = null;
        if (getSimulationContext().isUsingConcentration()) {
            initParm = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_InitialConcentration);
            initExpr = new Expression(initParm.getExpression());
        // if (speciesContextSpecs[i].getSpeciesContext().getStructure() instanceof Feature) {
        // initExpr = Expression.div(initExpr, new Expression(model.getKMOLE, getNameScope())).flatten();
        // }
        } else {
            initParm = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_InitialCount);
            initExpr = new Expression(initParm.getExpression());
        }
        if (initExpr != null) {
            StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(speciesContextSpecs[i].getSpeciesContext().getStructure());
            String[] symbols = initExpr.getSymbols();
            // Check if 'initExpr' has other speciesContexts in its expression, need to replace it with 'spContext_init'
            for (int j = 0; symbols != null && j < symbols.length; j++) {
                // if symbol is a speciesContext, replacing it with a reference to initial condition for that speciesContext.
                SpeciesContext spC = null;
                SymbolTableEntry ste = initExpr.getSymbolBinding(symbols[j]);
                if (ste instanceof SpeciesContextSpecProxyParameter) {
                    SpeciesContextSpecProxyParameter spspp = (SpeciesContextSpecProxyParameter) ste;
                    if (spspp.getTarget() instanceof SpeciesContext) {
                        spC = (SpeciesContext) spspp.getTarget();
                        SpeciesContextSpec spcspec = getSimulationContext().getReactionContext().getSpeciesContextSpec(spC);
                        SpeciesContextSpecParameter spCInitParm = spcspec.getParameterFromRole(SpeciesContextSpec.ROLE_InitialConcentration);
                        // if initConc param expression is null, try initCount
                        if (spCInitParm.getExpression() == null) {
                            spCInitParm = spcspec.getParameterFromRole(SpeciesContextSpec.ROLE_InitialCount);
                        }
                        // need to get init condn expression, but can't get it from getMathSymbol() (mapping between bio and math), hence get it as below.
                        Expression scsInitExpr = new Expression(spCInitParm, getNameScope());
                        // scsInitExpr.bindExpression(this);
                        initExpr.substituteInPlace(new Expression(spC.getName()), scsInitExpr);
                    }
                }
            }
            // now create the appropriate function for the current speciesContextSpec.
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(initParm, sm.getGeometryClass()), getIdentifierSubstitutions(initExpr, initParm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
    }
    // 
    for (int i = 0; i < speciesContextSpecs.length; i++) {
        SpeciesContextSpec.SpeciesContextSpecParameter diffParm = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_DiffusionRate);
        if (diffParm != null) {
            StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(speciesContextSpecs[i].getSpeciesContext().getStructure());
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(diffParm, sm.getGeometryClass()), getIdentifierSubstitutions(diffParm.getExpression(), diffParm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
    }
    // 
    for (int i = 0; i < speciesContextSpecs.length; i++) {
        SpeciesContextSpec.SpeciesContextSpecParameter bc_xm = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_BoundaryValueXm);
        StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(speciesContextSpecs[i].getSpeciesContext().getStructure());
        if (bc_xm != null && (bc_xm.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(bc_xm, sm.getGeometryClass()), getIdentifierSubstitutions(bc_xm.getExpression(), bc_xm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter bc_xp = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_BoundaryValueXp);
        if (bc_xp != null && (bc_xp.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(bc_xp, sm.getGeometryClass()), getIdentifierSubstitutions(bc_xp.getExpression(), bc_xp.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter bc_ym = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_BoundaryValueYm);
        if (bc_ym != null && (bc_ym.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(bc_ym, sm.getGeometryClass()), getIdentifierSubstitutions(bc_ym.getExpression(), bc_ym.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter bc_yp = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_BoundaryValueYp);
        if (bc_yp != null && (bc_yp.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(bc_yp, sm.getGeometryClass()), getIdentifierSubstitutions(bc_yp.getExpression(), bc_yp.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter bc_zm = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_BoundaryValueZm);
        if (bc_zm != null && (bc_zm.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(bc_zm, sm.getGeometryClass()), getIdentifierSubstitutions(bc_zm.getExpression(), bc_zm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter bc_zp = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_BoundaryValueZp);
        if (bc_zp != null && (bc_zp.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(bc_zp, sm.getGeometryClass()), getIdentifierSubstitutions(bc_zp.getExpression(), bc_zp.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
        }
    }
    // 
    for (int i = 0; i < speciesContextSpecs.length; i++) {
        SpeciesContextSpec.SpeciesContextSpecParameter advection_velX = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_VelocityX);
        StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(speciesContextSpecs[i].getSpeciesContext().getStructure());
        GeometryClass geometryClass = sm.getGeometryClass();
        if (advection_velX != null && (advection_velX.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(advection_velX, geometryClass), getIdentifierSubstitutions(advection_velX.getExpression(), advection_velX.getUnitDefinition(), geometryClass), geometryClass));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter advection_velY = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_VelocityY);
        if (advection_velY != null && (advection_velY.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(advection_velY, geometryClass), getIdentifierSubstitutions(advection_velY.getExpression(), advection_velY.getUnitDefinition(), geometryClass), geometryClass));
        }
        SpeciesContextSpec.SpeciesContextSpecParameter advection_velZ = speciesContextSpecs[i].getParameterFromRole(SpeciesContextSpec.ROLE_VelocityZ);
        if (advection_velZ != null && (advection_velZ.getExpression() != null)) {
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(advection_velZ, geometryClass), getIdentifierSubstitutions(advection_velZ.getExpression(), advection_velZ.getUnitDefinition(), geometryClass), geometryClass));
        }
    }
    // 
    // constant species (either function or constant)
    // 
    enum1 = getSpeciesContextMappings();
    while (enum1.hasMoreElements()) {
        SpeciesContextMapping scm = (SpeciesContextMapping) enum1.nextElement();
        if (scm.getVariable() instanceof Constant) {
            varHash.addVariable(scm.getVariable());
        }
    }
    // 
    // conversion factors
    // 
    varHash.addVariable(new Constant(getMathSymbol(model.getKMOLE(), null), getIdentifierSubstitutions(model.getKMOLE().getExpression(), model.getKMOLE().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getN_PMOLE(), null), getIdentifierSubstitutions(model.getN_PMOLE().getExpression(), model.getN_PMOLE().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getKMILLIVOLTS(), null), getIdentifierSubstitutions(model.getKMILLIVOLTS().getExpression(), model.getKMILLIVOLTS().getUnitDefinition(), null)));
    varHash.addVariable(new Constant(getMathSymbol(model.getK_GHK(), null), getIdentifierSubstitutions(model.getK_GHK().getExpression(), model.getK_GHK().getUnitDefinition(), null)));
    // 
    for (int i = 0; i < structureMappings.length; i++) {
        StructureMapping sm = structureMappings[i];
        if (getSimulationContext().getGeometry().getDimension() == 0) {
            StructureMappingParameter sizeParm = sm.getSizeParameter();
            if (sizeParm != null && sizeParm.getExpression() != null) {
                varHash.addVariable(newFunctionOrConstant(getMathSymbol(sizeParm, sm.getGeometryClass()), getIdentifierSubstitutions(sizeParm.getExpression(), sizeParm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
            } else {
                if (sm instanceof MembraneMapping) {
                    MembraneMapping mm = (MembraneMapping) sm;
                    StructureMappingParameter volFrac = mm.getVolumeFractionParameter();
                    if (volFrac != null && volFrac.getExpression() != null) {
                        varHash.addVariable(newFunctionOrConstant(getMathSymbol(volFrac, sm.getGeometryClass()), getIdentifierSubstitutions(volFrac.getExpression(), volFrac.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
                    }
                    StructureMappingParameter surfToVol = mm.getSurfaceToVolumeParameter();
                    if (surfToVol != null && surfToVol.getExpression() != null) {
                        varHash.addVariable(newFunctionOrConstant(getMathSymbol(surfToVol, sm.getGeometryClass()), getIdentifierSubstitutions(surfToVol.getExpression(), surfToVol.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
                    }
                }
            }
        } else {
            Parameter parm = sm.getParameterFromRole(StructureMapping.ROLE_AreaPerUnitArea);
            if (parm != null && parm.getExpression() != null && sm.getGeometryClass() instanceof SurfaceClass) {
                varHash.addVariable(newFunctionOrConstant(getMathSymbol(parm, sm.getGeometryClass()), getIdentifierSubstitutions(parm.getExpression(), parm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
            }
            parm = sm.getParameterFromRole(StructureMapping.ROLE_AreaPerUnitVolume);
            if (parm != null && parm.getExpression() != null && sm.getGeometryClass() instanceof SubVolume) {
                varHash.addVariable(newFunctionOrConstant(getMathSymbol(parm, sm.getGeometryClass()), getIdentifierSubstitutions(parm.getExpression(), parm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
            }
            parm = sm.getParameterFromRole(StructureMapping.ROLE_VolumePerUnitArea);
            if (parm != null && parm.getExpression() != null && sm.getGeometryClass() instanceof SurfaceClass) {
                varHash.addVariable(newFunctionOrConstant(getMathSymbol(parm, sm.getGeometryClass()), getIdentifierSubstitutions(parm.getExpression(), parm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
            }
            parm = sm.getParameterFromRole(StructureMapping.ROLE_VolumePerUnitVolume);
            if (parm != null && parm.getExpression() != null && sm.getGeometryClass() instanceof SubVolume) {
                varHash.addVariable(newFunctionOrConstant(getMathSymbol(parm, sm.getGeometryClass()), getIdentifierSubstitutions(parm.getExpression(), parm.getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass()));
            }
        }
    }
    // 
    // functions
    // 
    enum1 = getSpeciesContextMappings();
    while (enum1.hasMoreElements()) {
        SpeciesContextMapping scm = (SpeciesContextMapping) enum1.nextElement();
        if (scm.getVariable() == null && scm.getDependencyExpression() != null) {
            StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(scm.getSpeciesContext().getStructure());
            Variable dependentVariable = newFunctionOrConstant(getMathSymbol(scm.getSpeciesContext(), sm.getGeometryClass()), getIdentifierSubstitutions(scm.getDependencyExpression(), scm.getSpeciesContext().getUnitDefinition(), sm.getGeometryClass()), sm.getGeometryClass());
            dependentVariable.setDomain(new Domain(sm.getGeometryClass()));
            varHash.addVariable(dependentVariable);
        }
    }
    // 
    for (int i = 0; i < fieldMathMappingParameters.length; i++) {
        if (fieldMathMappingParameters[i] instanceof UnitFactorParameter) {
            GeometryClass geometryClass = fieldMathMappingParameters[i].getGeometryClass();
            varHash.addVariable(newFunctionOrConstant(getMathSymbol(fieldMathMappingParameters[i], geometryClass), getIdentifierSubstitutions(fieldMathMappingParameters[i].getExpression(), fieldMathMappingParameters[i].getUnitDefinition(), geometryClass), fieldMathMappingParameters[i].getGeometryClass()));
        }
    }
    // 
    // set Variables to MathDescription all at once with the order resolved by "VariableHash"
    // 
    mathDesc.setAllVariables(varHash.getAlphabeticallyOrderedVariables());
    // 
    if (getSimulationContext().getGeometryContext().getGeometry() != null) {
        try {
            mathDesc.setGeometry(getSimulationContext().getGeometryContext().getGeometry());
        } catch (java.beans.PropertyVetoException e) {
            e.printStackTrace(System.out);
            throw new MappingException("failure setting geometry " + e.getMessage());
        }
    } else {
        throw new MappingException("geometry must be defined");
    }
    // 
    // create subdomains (volume and surfaces)
    // 
    GeometryClass[] geometryClasses = getSimulationContext().getGeometryContext().getGeometry().getGeometryClasses();
    for (int k = 0; k < geometryClasses.length; k++) {
        if (geometryClasses[k] instanceof SubVolume) {
            SubVolume subVolume = (SubVolume) geometryClasses[k];
            // 
            // get priority of subDomain
            // 
            // now does not have to match spatial feature, *BUT* needs to be unique
            int priority = k;
            // 
            // create subDomain
            // 
            CompartmentSubDomain subDomain = new CompartmentSubDomain(subVolume.getName(), priority);
            mathDesc.addSubDomain(subDomain);
            // 
            // assign boundary condition types
            // 
            StructureMapping[] mappedSMs = getSimulationContext().getGeometryContext().getStructureMappings(subVolume);
            FeatureMapping mappedFM = null;
            for (int i = 0; i < mappedSMs.length; i++) {
                if (mappedSMs[i] instanceof FeatureMapping) {
                    if (mappedFM != null) {
                        lg.warn("WARNING:::: MathMapping.refreshMathDescription() ... assigning boundary condition types not unique");
                    }
                    mappedFM = (FeatureMapping) mappedSMs[i];
                }
            }
            if (mappedFM != null) {
                subDomain.setBoundaryConditionXm(mappedFM.getBoundaryConditionTypeXm());
                subDomain.setBoundaryConditionXp(mappedFM.getBoundaryConditionTypeXp());
                if (getSimulationContext().getGeometry().getDimension() > 1) {
                    subDomain.setBoundaryConditionYm(mappedFM.getBoundaryConditionTypeYm());
                    subDomain.setBoundaryConditionYp(mappedFM.getBoundaryConditionTypeYp());
                }
                if (getSimulationContext().getGeometry().getDimension() > 2) {
                    subDomain.setBoundaryConditionZm(mappedFM.getBoundaryConditionTypeZm());
                    subDomain.setBoundaryConditionZp(mappedFM.getBoundaryConditionTypeZp());
                }
            }
        } else if (geometryClasses[k] instanceof SurfaceClass) {
            SurfaceClass surfaceClass = (SurfaceClass) geometryClasses[k];
            // determine membrane inside and outside subvolume
            // this preserves backward compatibility so that membrane subdomain
            // inside and outside correspond to structure hierarchy when present
            Pair<SubVolume, SubVolume> ret = DiffEquMathMapping.computeBoundaryConditionSource(model, simContext, surfaceClass);
            SubVolume innerSubVolume = ret.one;
            SubVolume outerSubVolume = ret.two;
            // 
            // create subDomain
            // 
            CompartmentSubDomain outerCompartment = mathDesc.getCompartmentSubDomain(outerSubVolume.getName());
            CompartmentSubDomain innerCompartment = mathDesc.getCompartmentSubDomain(innerSubVolume.getName());
            MembraneSubDomain memSubDomain = new MembraneSubDomain(innerCompartment, outerCompartment, surfaceClass.getName());
            mathDesc.addSubDomain(memSubDomain);
        }
    }
    // 
    // create Particle Contexts for all Particle Variables
    // 
    Enumeration<SpeciesContextMapping> enumSCM = getSpeciesContextMappings();
    Expression unitFactor = getUnitFactor(modelUnitSystem.getStochasticSubstanceUnit().divideBy(modelUnitSystem.getVolumeSubstanceUnit()));
    while (enumSCM.hasMoreElements()) {
        SpeciesContextMapping scm = enumSCM.nextElement();
        SpeciesContext sc = scm.getSpeciesContext();
        StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(sc.getStructure());
        SpeciesContextSpec scs = getSimulationContext().getReactionContext().getSpeciesContextSpec(sc);
        if (scm.getVariable() instanceof ParticleVariable && scm.getDependencyExpression() == null) {
            ParticleVariable particleVariable = (ParticleVariable) scm.getVariable();
            // 
            // initial distribution of particles
            // 
            ArrayList<ParticleInitialCondition> particleInitialConditions = new ArrayList<ParticleInitialCondition>();
            ParticleInitialCondition pic = null;
            if (getSimulationContext().isUsingConcentration()) {
                Expression initialDistribution = scs.getInitialConcentrationParameter().getExpression() == null ? null : new Expression(getMathSymbol(scs.getInitialConcentrationParameter(), sm.getGeometryClass()));
                if (particleVariable instanceof VolumeParticleVariable) {
                    initialDistribution = Expression.mult(initialDistribution, unitFactor);
                }
                pic = new ParticleInitialConditionConcentration(initialDistribution);
            } else {
                Expression initialCount = scs.getInitialCountParameter().getExpression() == null ? null : new Expression(getMathSymbol(scs.getInitialCountParameter(), sm.getGeometryClass()));
                if (initialCount == null) {
                    throw new MappingException("initialCount not defined for speciesContext " + scs.getSpeciesContext().getName());
                }
                Expression locationX = new Expression("u");
                Expression locationY = new Expression("u");
                Expression locationZ = new Expression("u");
                pic = new ParticleInitialConditionCount(initialCount, locationX, locationY, locationZ);
            }
            particleInitialConditions.add(pic);
            // 
            // diffusion
            // 
            Expression diffusion = new Expression(getMathSymbol(scs.getDiffusionParameter(), sm.getGeometryClass()));
            Expression driftXExp = null;
            if (scs.getVelocityXParameter().getExpression() != null) {
                driftXExp = new Expression(getMathSymbol(scs.getVelocityXParameter(), sm.getGeometryClass()));
            } else {
                SpatialQuantity[] velX_quantities = scs.getVelocityQuantities(QuantityComponent.X);
                if (velX_quantities.length > 0) {
                    int numRegions = simContext.getGeometry().getGeometrySurfaceDescription().getGeometricRegions(sm.getGeometryClass()).length;
                    if (velX_quantities.length == 1 && numRegions == 1) {
                        driftXExp = new Expression(getMathSymbol(velX_quantities[0], sm.getGeometryClass()));
                    } else {
                        throw new MappingException("multiple advection velocities enabled set for multiple volume domains ");
                    }
                }
            }
            Expression driftYExp = null;
            if (scs.getVelocityYParameter().getExpression() != null) {
                driftYExp = new Expression(getMathSymbol(scs.getVelocityYParameter(), sm.getGeometryClass()));
            } else {
                SpatialQuantity[] velY_quantities = scs.getVelocityQuantities(QuantityComponent.Y);
                if (velY_quantities.length > 0) {
                    int numRegions = simContext.getGeometry().getGeometrySurfaceDescription().getGeometricRegions(sm.getGeometryClass()).length;
                    if (velY_quantities.length == 1 && numRegions == 1) {
                        driftYExp = new Expression(getMathSymbol(velY_quantities[0], sm.getGeometryClass()));
                    } else {
                        throw new MappingException("multiple advection velocities enabled set for multiple volume domains ");
                    }
                }
            }
            Expression driftZExp = null;
            if (scs.getVelocityZParameter().getExpression() != null) {
                driftZExp = new Expression(getMathSymbol(scs.getVelocityZParameter(), sm.getGeometryClass()));
            } else {
                SpatialQuantity[] velZ_quantities = scs.getVelocityQuantities(QuantityComponent.Z);
                if (velZ_quantities.length > 0) {
                    int numRegions = simContext.getGeometry().getGeometrySurfaceDescription().getGeometricRegions(sm.getGeometryClass()).length;
                    if (velZ_quantities.length == 1 && numRegions == 1) {
                        driftZExp = new Expression(getMathSymbol(velZ_quantities[0], sm.getGeometryClass()));
                    } else {
                        throw new MappingException("multiple advection velocities enabled set for multiple volume domains ");
                    }
                }
            }
            ParticleProperties particleProperties = new ParticleProperties(particleVariable, diffusion, driftXExp, driftYExp, driftZExp, particleInitialConditions);
            GeometryClass myGC = sm.getGeometryClass();
            if (myGC == null) {
                throw new MappingException("Application '" + getSimulationContext().getName() + "'\nGeometry->StructureMapping->(" + sm.getStructure().getTypeName() + ")'" + sm.getStructure().getName() + "' must be mapped to geometry domain.\n(see 'Problems' tab)");
            }
            SubDomain subDomain = mathDesc.getSubDomain(myGC.getName());
            subDomain.addParticleProperties(particleProperties);
        }
    }
    for (ReactionStep reactionStep : reactionSteps) {
        Kinetics kinetics = reactionStep.getKinetics();
        StructureMapping sm = getSimulationContext().getGeometryContext().getStructureMapping(reactionStep.getStructure());
        GeometryClass reactionStepGeometryClass = sm.getGeometryClass();
        SubDomain subdomain = mathDesc.getSubDomain(reactionStepGeometryClass.getName());
        KineticsParameter reactionRateParameter = null;
        if (kinetics instanceof LumpedKinetics) {
            reactionRateParameter = ((LumpedKinetics) kinetics).getLumpedReactionRateParameter();
        } else {
            reactionRateParameter = ((DistributedKinetics) kinetics).getReactionRateParameter();
        }
        // macroscopic_irreversible/Microscopic_irreversible for bimolecular membrane reactions. They will NOT go through MassAction solver.
        if (kinetics.getKineticsDescription().equals(KineticsDescription.Macroscopic_irreversible) || kinetics.getKineticsDescription().equals(KineticsDescription.Microscopic_irreversible)) {
            Expression radiusExp = getIdentifierSubstitutions(reactionStep.getKinetics().getKineticsParameterFromRole(Kinetics.ROLE_Binding_Radius).getExpression(), modelUnitSystem.getBindingRadiusUnit(), reactionStepGeometryClass);
            if (radiusExp != null) {
                Expression expCopy = new Expression(radiusExp);
                try {
                    MassActionSolver.substituteParameters(expCopy, true).evaluateConstant();
                } catch (ExpressionException e) {
                    throw new MathException(VCellErrorMessages.getMassActionSolverMessage(reactionStep.getName(), "Problem in binding radius of " + reactionStep.getName() + ":  '" + radiusExp.infix() + "', " + e.getMessage()));
                }
            } else {
                throw new MathException(VCellErrorMessages.getMassActionSolverMessage(reactionStep.getName(), "Binding radius of " + reactionStep.getName() + " is null."));
            }
            List<ParticleVariable> reactantParticles = new ArrayList<ParticleVariable>();
            List<ParticleVariable> productParticles = new ArrayList<ParticleVariable>();
            List<Action> forwardActions = new ArrayList<Action>();
            for (ReactionParticipant rp : reactionStep.getReactionParticipants()) {
                SpeciesContext sc = rp.getSpeciesContext();
                SpeciesContextSpec scs = getSimulationContext().getReactionContext().getSpeciesContextSpec(sc);
                GeometryClass scGeometryClass = getSimulationContext().getGeometryContext().getStructureMapping(sc.getStructure()).getGeometryClass();
                String varName = getMathSymbol(sc, scGeometryClass);
                Variable var = mathDesc.getVariable(varName);
                if (var instanceof ParticleVariable) {
                    ParticleVariable particle = (ParticleVariable) var;
                    if (rp instanceof Reactant) {
                        reactantParticles.add(particle);
                        if (!scs.isConstant() && !scs.isForceContinuous()) {
                            for (int i = 0; i < Math.abs(rp.getStoichiometry()); i++) {
                                if (radiusExp != null) {
                                    forwardActions.add(Action.createDestroyAction(particle));
                                }
                            }
                        }
                    } else if (rp instanceof Product) {
                        productParticles.add(particle);
                        if (!scs.isConstant() && !scs.isForceContinuous()) {
                            for (int i = 0; i < Math.abs(rp.getStoichiometry()); i++) {
                                if (radiusExp != null) {
                                    forwardActions.add(Action.createCreateAction(particle));
                                }
                            }
                        }
                    }
                } else {
                    throw new MappingException("particle variable '" + varName + "' not found");
                }
            }
            JumpProcessRateDefinition bindingRadius = new InteractionRadius(radiusExp);
            // get jump process name
            String jpName = TokenMangler.mangleToSName(reactionStep.getName());
            // only for NFSim/Rules for now.
            ProcessSymmetryFactor processSymmetryFactor = null;
            if (forwardActions.size() > 0) {
                ParticleJumpProcess forwardProcess = new ParticleJumpProcess(jpName, reactantParticles, bindingRadius, forwardActions, processSymmetryFactor);
                subdomain.addParticleJumpProcess(forwardProcess);
            }
        } else // other type of reactions
        {
            /* check the reaction rate law to see if we need to decompose a reaction(reversible) into two jump processes.
			   rate constants are important in calculating the probability rate.
			   for Mass Action, we use KForward and KReverse, 
			   for General Kinetics we parse reaction rate J to see if it is in Mass Action form.
			 */
            Expression forwardRate = null;
            Expression reverseRate = null;
            // Using the MassActionFunction to write out the math description
            MassActionSolver.MassActionFunction maFunc = null;
            if (kinetics.getKineticsDescription().equals(KineticsDescription.MassAction) || kinetics.getKineticsDescription().equals(KineticsDescription.General) || kinetics.getKineticsDescription().equals(KineticsDescription.GeneralPermeability)) {
                Expression rateExp = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate).getExpression();
                Parameter forwardRateParameter = null;
                Parameter reverseRateParameter = null;
                if (kinetics.getKineticsDescription().equals(KineticsDescription.MassAction)) {
                    forwardRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KForward);
                    reverseRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KReverse);
                } else if (kinetics.getKineticsDescription().equals(KineticsDescription.GeneralPermeability)) {
                    forwardRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_Permeability);
                    reverseRateParameter = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_Permeability);
                }
                maFunc = MassActionSolver.solveMassAction(forwardRateParameter, reverseRateParameter, rateExp, reactionStep);
                if (maFunc.getForwardRate() == null && maFunc.getReverseRate() == null) {
                    throw new MappingException("Cannot generate stochastic math mapping for the reaction:" + reactionStep.getName() + "\nLooking for the rate function according to the form of k1*Reactant1^Stoir1*Reactant2^Stoir2...-k2*Product1^Stoip1*Product2^Stoip2.");
                } else {
                    if (maFunc.getForwardRate() != null) {
                        forwardRate = maFunc.getForwardRate();
                    }
                    if (maFunc.getReverseRate() != null) {
                        reverseRate = maFunc.getReverseRate();
                    }
                }
            }
            if (maFunc != null) {
                // if the reaction has forward rate (Mass action,HMMs), or don't have either forward or reverse rate (some other rate laws--like general)
                // we process it as forward reaction
                List<ParticleVariable> reactantParticles = new ArrayList<ParticleVariable>();
                List<ParticleVariable> productParticles = new ArrayList<ParticleVariable>();
                List<Action> forwardActions = new ArrayList<Action>();
                List<Action> reverseActions = new ArrayList<Action>();
                List<ReactionParticipant> reactants = maFunc.getReactants();
                List<ReactionParticipant> products = maFunc.getProducts();
                for (ReactionParticipant rp : reactants) {
                    SpeciesContext sc = rp.getSpeciesContext();
                    SpeciesContextSpec scs = getSimulationContext().getReactionContext().getSpeciesContextSpec(sc);
                    GeometryClass scGeometryClass = getSimulationContext().getGeometryContext().getStructureMapping(sc.getStructure()).getGeometryClass();
                    String varName = getMathSymbol(sc, scGeometryClass);
                    Variable var = mathDesc.getVariable(varName);
                    if (var instanceof ParticleVariable) {
                        ParticleVariable particle = (ParticleVariable) var;
                        reactantParticles.add(particle);
                        if (!scs.isConstant() && !scs.isForceContinuous()) {
                            for (int i = 0; i < Math.abs(rp.getStoichiometry()); i++) {
                                if (forwardRate != null) {
                                    forwardActions.add(Action.createDestroyAction(particle));
                                }
                                if (reverseRate != null) {
                                    reverseActions.add(Action.createCreateAction(particle));
                                }
                            }
                        }
                    } else {
                        throw new MappingException("particle variable '" + varName + "' not found");
                    }
                }
                for (ReactionParticipant rp : products) {
                    SpeciesContext sc = rp.getSpeciesContext();
                    SpeciesContextSpec scs = getSimulationContext().getReactionContext().getSpeciesContextSpec(sc);
                    GeometryClass scGeometryClass = getSimulationContext().getGeometryContext().getStructureMapping(sc.getStructure()).getGeometryClass();
                    String varName = getMathSymbol(sc, scGeometryClass);
                    Variable var = mathDesc.getVariable(varName);
                    if (var instanceof ParticleVariable) {
                        ParticleVariable particle = (ParticleVariable) var;
                        productParticles.add(particle);
                        if (!scs.isConstant() && !scs.isForceContinuous()) {
                            for (int i = 0; i < Math.abs(rp.getStoichiometry()); i++) {
                                if (forwardRate != null) {
                                    forwardActions.add(Action.createCreateAction(particle));
                                }
                                if (reverseRate != null) {
                                    reverseActions.add(Action.createDestroyAction(particle));
                                }
                            }
                        }
                    } else {
                        throw new MappingException("particle variable '" + varName + "' not found");
                    }
                }
                // 
                // There are two unit conversions required:
                // 
                // 1) convert entire reaction rate from vcell reaction units to Smoldyn units (molecules/lengthunit^dim/timeunit)
                // (where dim is 2 for membrane reactions and 3 for volume reactions)
                // 
                // for forward rates:
                // 2) convert each reactant from Smoldyn units (molecules/lengthunit^dim) to VCell units
                // (where dim is 2 for membrane reactants and 3 for volume reactants)
                // 
                // or
                // 
                // for reverse rates:
                // 2) convert each product from Smoldyn units (molecules/lengthunit^dim) to VCell units
                // (where dim is 2 for membrane products and 3 for volume products)
                // 
                RationalNumber reactionLocationDim = new RationalNumber(reactionStep.getStructure().getDimension());
                VCUnitDefinition timeUnit = modelUnitSystem.getTimeUnit();
                VCUnitDefinition smoldynReactionSizeUnit = modelUnitSystem.getLengthUnit().raiseTo(reactionLocationDim);
                VCUnitDefinition smoldynSubstanceUnit = modelUnitSystem.getStochasticSubstanceUnit();
                VCUnitDefinition smoldynReactionRateUnit = smoldynSubstanceUnit.divideBy(smoldynReactionSizeUnit).divideBy(timeUnit);
                VCUnitDefinition vcellReactionRateUnit = reactionRateParameter.getUnitDefinition();
                VCUnitDefinition reactionUnitFactor = smoldynReactionRateUnit.divideBy(vcellReactionRateUnit);
                if (forwardRate != null) {
                    VCUnitDefinition smoldynReactantsUnit = modelUnitSystem.getInstance_DIMENSIONLESS();
                    // start with factor to translate entire reaction rate.
                    VCUnitDefinition forwardUnitFactor = reactionUnitFactor;
                    // 
                    for (ReactionParticipant reactant : maFunc.getReactants()) {
                        VCUnitDefinition vcellReactantUnit = reactant.getSpeciesContext().getUnitDefinition();
                        boolean bForceContinuous = simContext.getReactionContext().getSpeciesContextSpec(reactant.getSpeciesContext()).isForceContinuous();
                        VCUnitDefinition smoldynReactantUnit = null;
                        if (bForceContinuous) {
                            // reactant is continuous (vcell units)
                            smoldynReactantUnit = reactant.getSpeciesContext().getUnitDefinition();
                        } else {
                            // reactant is a particle (smoldyn units)
                            RationalNumber reactantLocationDim = new RationalNumber(reactant.getStructure().getDimension());
                            VCUnitDefinition smoldynReactantSize = modelUnitSystem.getLengthUnit().raiseTo(reactantLocationDim);
                            smoldynReactantUnit = smoldynSubstanceUnit.divideBy(smoldynReactantSize);
                        }
                        // keep track of units of all reactants
                        smoldynReactantsUnit = smoldynReactantsUnit.multiplyBy(smoldynReactantUnit);
                        RationalNumber reactantStoichiometry = new RationalNumber(reactant.getStoichiometry());
                        VCUnitDefinition reactantUnitFactor = (vcellReactantUnit.divideBy(smoldynReactantUnit)).raiseTo(reactantStoichiometry);
                        // accumulate unit factors for all reactants
                        forwardUnitFactor = forwardUnitFactor.multiplyBy(reactantUnitFactor);
                    }
                    forwardRate = Expression.mult(forwardRate, getUnitFactor(forwardUnitFactor));
                    VCUnitDefinition smoldynExpectedForwardRateUnit = smoldynReactionRateUnit.divideBy(smoldynReactantsUnit);
                    // get probability
                    Expression exp = getIdentifierSubstitutions(forwardRate, smoldynExpectedForwardRateUnit, reactionStepGeometryClass).flatten();
                    JumpProcessRateDefinition partRateDef = new MacroscopicRateConstant(exp);
                    // create particle jump process
                    String jpName = TokenMangler.mangleToSName(reactionStep.getName());
                    // only for NFSim/Rules for now.
                    ProcessSymmetryFactor processSymmetryFactor = null;
                    if (forwardActions.size() > 0) {
                        ParticleJumpProcess forwardProcess = new ParticleJumpProcess(jpName, reactantParticles, partRateDef, forwardActions, processSymmetryFactor);
                        subdomain.addParticleJumpProcess(forwardProcess);
                    }
                }
                // end of forward rate not null
                if (reverseRate != null) {
                    VCUnitDefinition smoldynProductsUnit = modelUnitSystem.getInstance_DIMENSIONLESS();
                    // start with factor to translate entire reaction rate.
                    VCUnitDefinition reverseUnitFactor = reactionUnitFactor;
                    // 
                    for (ReactionParticipant product : maFunc.getProducts()) {
                        VCUnitDefinition vcellProductUnit = product.getSpeciesContext().getUnitDefinition();
                        boolean bForceContinuous = simContext.getReactionContext().getSpeciesContextSpec(product.getSpeciesContext()).isForceContinuous();
                        VCUnitDefinition smoldynProductUnit = null;
                        if (bForceContinuous) {
                            smoldynProductUnit = product.getSpeciesContext().getUnitDefinition();
                        } else {
                            RationalNumber productLocationDim = new RationalNumber(product.getStructure().getDimension());
                            VCUnitDefinition smoldynProductSize = modelUnitSystem.getLengthUnit().raiseTo(productLocationDim);
                            smoldynProductUnit = smoldynSubstanceUnit.divideBy(smoldynProductSize);
                        }
                        // keep track of units of all products
                        smoldynProductsUnit = smoldynProductsUnit.multiplyBy(smoldynProductUnit);
                        RationalNumber productStoichiometry = new RationalNumber(product.getStoichiometry());
                        VCUnitDefinition productUnitFactor = (vcellProductUnit.divideBy(smoldynProductUnit)).raiseTo(productStoichiometry);
                        // accumulate unit factors for all products
                        reverseUnitFactor = reverseUnitFactor.multiplyBy(productUnitFactor);
                    }
                    reverseRate = Expression.mult(reverseRate, getUnitFactor(reverseUnitFactor));
                    VCUnitDefinition smoldynExpectedReverseRateUnit = smoldynReactionRateUnit.divideBy(smoldynProductsUnit);
                    // get probability
                    Expression exp = getIdentifierSubstitutions(reverseRate, smoldynExpectedReverseRateUnit, reactionStepGeometryClass).flatten();
                    JumpProcessRateDefinition partProbRate = new MacroscopicRateConstant(exp);
                    // get jump process name
                    String jpName = TokenMangler.mangleToSName(reactionStep.getName() + "_reverse");
                    // only for NFSim/Rules for now.
                    ProcessSymmetryFactor processSymmetryFactor = null;
                    if (reverseActions.size() > 0) {
                        ParticleJumpProcess reverseProcess = new ParticleJumpProcess(jpName, productParticles, partProbRate, reverseActions, processSymmetryFactor);
                        subdomain.addParticleJumpProcess(reverseProcess);
                    }
                }
            // end of reverse rate not null
            }
        // end of maFunc not null
        }
    // end of reaction step for loop
    }
    // 
    for (int i = 0; i < fieldMathMappingParameters.length; i++) {
        if (fieldMathMappingParameters[i] instanceof UnitFactorParameter) {
            GeometryClass geometryClass = fieldMathMappingParameters[i].getGeometryClass();
            Variable variable = newFunctionOrConstant(getMathSymbol(fieldMathMappingParameters[i], geometryClass), getIdentifierSubstitutions(fieldMathMappingParameters[i].getExpression(), fieldMathMappingParameters[i].getUnitDefinition(), geometryClass), fieldMathMappingParameters[i].getGeometryClass());
            if (mathDesc.getVariable(variable.getName()) == null) {
                mathDesc.addVariable(variable);
            }
        }
    }
    if (!mathDesc.isValid()) {
        lg.warn(mathDesc.getVCML_database());
        throw new MappingException("generated an invalid mathDescription: " + mathDesc.getWarning());
    }
    if (lg.isDebugEnabled()) {
        System.out.println("]]]]]]]]]]]]]]]]]]]]]] VCML string begin ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]");
        System.out.println(mathDesc.getVCML());
        System.out.println("]]]]]]]]]]]]]]]]]]]]]] VCML string end ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]");
    }
}
Also used : MembraneSubDomain(cbit.vcell.math.MembraneSubDomain) LumpedKinetics(cbit.vcell.model.LumpedKinetics) MathDescription(cbit.vcell.math.MathDescription) ArrayList(java.util.ArrayList) Product(cbit.vcell.model.Product) SpeciesContext(cbit.vcell.model.SpeciesContext) StructureMappingParameter(cbit.vcell.mapping.StructureMapping.StructureMappingParameter) Reactant(cbit.vcell.model.Reactant) ExpressionException(cbit.vcell.parser.ExpressionException) CompartmentSubDomain(cbit.vcell.math.CompartmentSubDomain) SubDomain(cbit.vcell.math.SubDomain) MembraneSubDomain(cbit.vcell.math.MembraneSubDomain) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) SubVolume(cbit.vcell.geometry.SubVolume) Vector(java.util.Vector) SpatialQuantity(cbit.vcell.mapping.spatial.SpatialObject.SpatialQuantity) SpeciesContextSpecParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecParameter) SpeciesContextSpecParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecParameter) JumpProcessRateDefinition(cbit.vcell.math.JumpProcessRateDefinition) InteractionRadius(cbit.vcell.math.InteractionRadius) ParticleJumpProcess(cbit.vcell.math.ParticleJumpProcess) ModelParameter(cbit.vcell.model.Model.ModelParameter) VCUnitDefinition(cbit.vcell.units.VCUnitDefinition) CompartmentSubDomain(cbit.vcell.math.CompartmentSubDomain) ParticleInitialCondition(cbit.vcell.math.ParticleProperties.ParticleInitialCondition) ReactionStep(cbit.vcell.model.ReactionStep) ParticleProperties(cbit.vcell.math.ParticleProperties) Kinetics(cbit.vcell.model.Kinetics) DistributedKinetics(cbit.vcell.model.DistributedKinetics) LumpedKinetics(cbit.vcell.model.LumpedKinetics) CompartmentSubDomain(cbit.vcell.math.CompartmentSubDomain) SubDomain(cbit.vcell.math.SubDomain) Domain(cbit.vcell.math.Variable.Domain) MembraneSubDomain(cbit.vcell.math.MembraneSubDomain) ReactionParticipant(cbit.vcell.model.ReactionParticipant) GeometryClass(cbit.vcell.geometry.GeometryClass) Action(cbit.vcell.math.Action) VolumeParticleVariable(cbit.vcell.math.VolumeParticleVariable) MembraneParticleVariable(cbit.vcell.math.MembraneParticleVariable) ParticleVariable(cbit.vcell.math.ParticleVariable) Variable(cbit.vcell.math.Variable) SpeciesContextSpecProxyParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecProxyParameter) SurfaceClass(cbit.vcell.geometry.SurfaceClass) VariableHash(cbit.vcell.math.VariableHash) VolumeParticleVariable(cbit.vcell.math.VolumeParticleVariable) MembraneParticleVariable(cbit.vcell.math.MembraneParticleVariable) ParticleVariable(cbit.vcell.math.ParticleVariable) MacroscopicRateConstant(cbit.vcell.math.MacroscopicRateConstant) Constant(cbit.vcell.math.Constant) SymbolTableEntry(cbit.vcell.parser.SymbolTableEntry) MacroscopicRateConstant(cbit.vcell.math.MacroscopicRateConstant) RationalNumber(ucar.units_vcell.RationalNumber) ModelUnitSystem(cbit.vcell.model.ModelUnitSystem) Pair(org.vcell.util.Pair) ParticleInitialConditionConcentration(cbit.vcell.math.ParticleProperties.ParticleInitialConditionConcentration) ProcessSymmetryFactor(cbit.vcell.math.ParticleJumpProcess.ProcessSymmetryFactor) Expression(cbit.vcell.parser.Expression) VolumeParticleVariable(cbit.vcell.math.VolumeParticleVariable) MathException(cbit.vcell.math.MathException) Model(cbit.vcell.model.Model) StructureMappingParameter(cbit.vcell.mapping.StructureMapping.StructureMappingParameter) Parameter(cbit.vcell.model.Parameter) KineticsParameter(cbit.vcell.model.Kinetics.KineticsParameter) SpeciesContextSpecProxyParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecProxyParameter) ModelParameter(cbit.vcell.model.Model.ModelParameter) SpeciesContextSpecParameter(cbit.vcell.mapping.SpeciesContextSpec.SpeciesContextSpecParameter) MassActionSolver(cbit.vcell.model.MassActionSolver) ParticleInitialConditionCount(cbit.vcell.math.ParticleProperties.ParticleInitialConditionCount)

Aggregations

DistributedKinetics (cbit.vcell.model.DistributedKinetics)12 LumpedKinetics (cbit.vcell.model.LumpedKinetics)12 ModelUnitSystem (cbit.vcell.model.ModelUnitSystem)7 Expression (cbit.vcell.parser.Expression)7 ReactionStep (cbit.vcell.model.ReactionStep)6 VCUnitDefinition (cbit.vcell.units.VCUnitDefinition)5 Feature (cbit.vcell.model.Feature)4 Kinetics (cbit.vcell.model.Kinetics)4 KineticsParameter (cbit.vcell.model.Kinetics.KineticsParameter)4 ReactionParticipant (cbit.vcell.model.ReactionParticipant)4 ReactionSpec (cbit.vcell.mapping.ReactionSpec)3 FluxReaction (cbit.vcell.model.FluxReaction)3 SubVolume (cbit.vcell.geometry.SubVolume)2 MembraneMapping (cbit.vcell.mapping.MembraneMapping)2 StructureMappingParameter (cbit.vcell.mapping.StructureMapping.StructureMappingParameter)2 Catalyst (cbit.vcell.model.Catalyst)2 Parameter (cbit.vcell.model.Parameter)2 Product (cbit.vcell.model.Product)2 Reactant (cbit.vcell.model.Reactant)2 SimpleReaction (cbit.vcell.model.SimpleReaction)2