use of cbit.vcell.model.LumpedKinetics in project vcell by virtualcell.
the class StochMathMapping_4_8 method refreshMathDescription.
/**
* set up a math description based on current simulationContext.
*/
private void refreshMathDescription() throws MappingException, MatrixException, MathException, ExpressionException, ModelException {
// use local variable instead of using getter all the time.
SimulationContext simContext = getSimulationContext();
// local structure mapping list
StructureMapping[] structureMappings = simContext.getGeometryContext().getStructureMappings();
// We have to check if all the reactions are able to tranform to stochastic jump processes before generating the math.
String stochChkMsg = simContext.getModel().isValidForStochApp();
if (!(stochChkMsg.equals(""))) {
throw new ModelException("Problem updating math description: " + simContext.getName() + "\n" + stochChkMsg);
}
// All sizes must be set for new ODE models and ratios must be set for old ones.
simContext.checkValidity();
//
// verify that all structures are mapped to subvolumes and all subvolumes are mapped to a structure
//
Structure[] structures = simContext.getGeometryContext().getModel().getStructures();
for (int i = 0; i < structures.length; i++) {
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(structures[i]);
if (sm == null || (sm instanceof FeatureMapping && getSubVolume(((FeatureMapping) sm)) == null)) {
throw new MappingException("model structure '" + structures[i].getName() + "' not mapped to a geometry subVolume");
}
if (sm != null && (sm instanceof MembraneMapping) && ((MembraneMapping) sm).getVolumeFractionParameter() != null) {
Expression volFractExp = ((MembraneMapping) sm).getVolumeFractionParameter().getExpression();
try {
if (volFractExp != null) {
double volFract = volFractExp.evaluateConstant();
if (volFract >= 1.0) {
throw new MappingException("model structure '" + (getSimulationContext().getModel().getStructureTopology().getInsideFeature(((MembraneMapping) sm).getMembrane()).getName() + "' has volume fraction >= 1.0"));
}
}
} catch (ExpressionException e) {
e.printStackTrace(System.out);
}
}
}
SubVolume[] subVolumes = simContext.getGeometryContext().getGeometry().getGeometrySpec().getSubVolumes();
for (int i = 0; i < subVolumes.length; i++) {
if (getStructures(subVolumes[i]) == null || getStructures(subVolumes[i]).length == 0) {
throw new MappingException("geometry subVolume '" + subVolumes[i].getName() + "' not mapped from a model structure");
}
}
//
// gather only those reactionSteps that are not "excluded"
//
ReactionSpec[] reactionSpecs = simContext.getReactionContext().getReactionSpecs();
Vector<ReactionStep> rsList = new Vector<ReactionStep>();
for (int i = 0; i < reactionSpecs.length; i++) {
if (reactionSpecs[i].isExcluded() == false) {
rsList.add(reactionSpecs[i].getReactionStep());
}
}
ReactionStep[] reactionSteps = new ReactionStep[rsList.size()];
rsList.copyInto(reactionSteps);
//
for (int i = 0; i < reactionSteps.length; i++) {
Kinetics.UnresolvedParameter[] unresolvedParameters = reactionSteps[i].getKinetics().getUnresolvedParameters();
if (unresolvedParameters != null && unresolvedParameters.length > 0) {
StringBuffer buffer = new StringBuffer();
for (int j = 0; j < unresolvedParameters.length; j++) {
if (j > 0) {
buffer.append(", ");
}
buffer.append(unresolvedParameters[j].getName());
}
throw new MappingException(reactionSteps[i].getDisplayType() + " '" + reactionSteps[i].getName() + "' contains unresolved identifier(s): " + buffer);
}
}
//
// create new MathDescription (based on simContext's previous MathDescription if possible)
//
MathDescription oldMathDesc = simContext.getMathDescription();
mathDesc = null;
if (oldMathDesc != null) {
if (oldMathDesc.getVersion() != null) {
mathDesc = new MathDescription(oldMathDesc.getVersion());
} else {
mathDesc = new MathDescription(oldMathDesc.getName());
}
} else {
mathDesc = new MathDescription(simContext.getName() + "_generated");
}
//
// temporarily place all variables in a hashtable (before binding) and discarding duplicates
//
VariableHash varHash = new VariableHash();
//
// conversion factors
//
Model model = simContext.getModel();
ModelUnitSystem modelUnitSystem = model.getUnitSystem();
varHash.addVariable(new Constant(getMathSymbol(model.getKMOLE(), null), getIdentifierSubstitutions(model.getKMOLE().getExpression(), model.getKMOLE().getUnitDefinition(), null)));
varHash.addVariable(new Constant(getMathSymbol(model.getN_PMOLE(), null), getIdentifierSubstitutions(model.getN_PMOLE().getExpression(), model.getN_PMOLE().getUnitDefinition(), null)));
varHash.addVariable(new Constant(getMathSymbol(model.getFARADAY_CONSTANT(), null), getIdentifierSubstitutions(model.getFARADAY_CONSTANT().getExpression(), model.getFARADAY_CONSTANT().getUnitDefinition(), null)));
varHash.addVariable(new Constant(getMathSymbol(model.getFARADAY_CONSTANT_NMOLE(), null), getIdentifierSubstitutions(model.getFARADAY_CONSTANT_NMOLE().getExpression(), model.getFARADAY_CONSTANT_NMOLE().getUnitDefinition(), null)));
varHash.addVariable(new Constant(getMathSymbol(model.getGAS_CONSTANT(), null), getIdentifierSubstitutions(model.getGAS_CONSTANT().getExpression(), model.getGAS_CONSTANT().getUnitDefinition(), null)));
varHash.addVariable(new Constant(getMathSymbol(model.getTEMPERATURE(), null), getIdentifierSubstitutions(new Expression(simContext.getTemperatureKelvin()), model.getTEMPERATURE().getUnitDefinition(), null)));
Enumeration<SpeciesContextMapping> enum1 = getSpeciesContextMappings();
while (enum1.hasMoreElements()) {
SpeciesContextMapping scm = enum1.nextElement();
if (scm.getVariable() instanceof StochVolVariable) {
varHash.addVariable(scm.getVariable());
}
}
//
// add rate term for all reactions
// add current source terms for each reaction step in a membrane
//
/*for (int i = 0; i < reactionSteps.length; i++){
boolean bAllReactionParticipantsFixed = true;
ReactionParticipant rp_Array[] = reactionSteps[i].getReactionParticipants();
for (int j = 0; j < rp_Array.length; j++) {
SpeciesContextSpec scs = getSimulationContext().getReactionContext().getSpeciesContextSpec(rp_Array[j].getSpeciesContext());
if (!(rp_Array[j] instanceof Catalyst) && !scs.isConstant()){
bAllReactionParticipantsFixed = false; // found at least one reactionParticipant that is not fixed and needs this rate
}
}
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(reactionSteps[i].getStructure());
}---don't think it's useful, isn't it?*/
// deals with model parameters
ModelParameter[] modelParameters = simContext.getModel().getModelParameters();
for (int j = 0; j < modelParameters.length; j++) {
Expression expr = getSubstitutedExpr(modelParameters[j].getExpression(), true, false);
expr = getIdentifierSubstitutions(expr, modelParameters[j].getUnitDefinition(), null);
varHash.addVariable(newFunctionOrConstant(getMathSymbol(modelParameters[j], null), expr));
}
// added July 2009, ElectricalStimulusParameter electric mapping tab
ElectricalStimulus[] elecStimulus = simContext.getElectricalStimuli();
if (elecStimulus.length > 0) {
throw new MappingException("Modles with electrophysiology are not supported for stochastic applications.");
}
for (int j = 0; j < structureMappings.length; j++) {
if (structureMappings[j] instanceof MembraneMapping) {
MembraneMapping memMapping = (MembraneMapping) structureMappings[j];
Parameter initialVoltageParm = memMapping.getInitialVoltageParameter();
try {
Expression exp = initialVoltageParm.getExpression();
exp.evaluateConstant();
varHash.addVariable(newFunctionOrConstant(getMathSymbol(memMapping.getMembrane().getMembraneVoltage(), memMapping), getIdentifierSubstitutions(memMapping.getInitialVoltageParameter().getExpression(), memMapping.getInitialVoltageParameter().getUnitDefinition(), memMapping)));
} catch (ExpressionException e) {
e.printStackTrace(System.out);
throw new MappingException("Membrane initial voltage: " + initialVoltageParm.getName() + " cannot be evaluated as constant.");
}
}
}
//
for (int j = 0; j < reactionSteps.length; j++) {
ReactionStep rs = reactionSteps[j];
if (simContext.getReactionContext().getReactionSpec(rs).isExcluded()) {
continue;
}
if (rs.getKinetics() instanceof LumpedKinetics) {
throw new RuntimeException("Lumped Kinetics not yet supported for Stochastic Math Generation");
}
Kinetics.KineticsParameter[] parameters = rs.getKinetics().getKineticsParameters();
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(rs.getStructure());
if (parameters != null) {
for (int i = 0; i < parameters.length; i++) {
if ((parameters[i].getRole() == Kinetics.ROLE_CurrentDensity) && (parameters[i].getExpression() == null || parameters[i].getExpression().isZero())) {
continue;
}
// don't add rate, we'll do it later when creating the jump processes
if (parameters[i].getRole() != Kinetics.ROLE_ReactionRate) {
Expression expr = getSubstitutedExpr(parameters[i].getExpression(), true, false);
varHash.addVariable(newFunctionOrConstant(getMathSymbol(parameters[i], sm), getIdentifierSubstitutions(expr, parameters[i].getUnitDefinition(), sm)));
}
}
}
}
// the parameter "Size" is already put into mathsymbolmapping in refreshSpeciesContextMapping()
for (int i = 0; i < structureMappings.length; i++) {
StructureMapping sm = structureMappings[i];
StructureMapping.StructureMappingParameter parm = sm.getParameterFromRole(StructureMapping.ROLE_Size);
if (parm.getExpression() != null) {
try {
double value = parm.getExpression().evaluateConstant();
varHash.addVariable(new Constant(getMathSymbol(parm, sm), new Expression(value)));
} catch (ExpressionException e) {
// varHash.addVariable(new Function(getMathSymbol0(parm,sm),getIdentifierSubstitutions(parm.getExpression(),parm.getUnitDefinition(),sm)));
e.printStackTrace(System.out);
throw new MappingException("Size of structure:" + sm.getNameScope().getName() + " cannot be evaluated as constant.");
}
}
}
//
// species initial values (either function or constant)
//
SpeciesContextSpec[] speciesContextSpecs = simContext.getReactionContext().getSpeciesContextSpecs();
for (int i = 0; i < speciesContextSpecs.length; i++) {
// can be concentration or amount
SpeciesContextSpec.SpeciesContextSpecParameter initParam = null;
Expression iniExp = null;
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(speciesContextSpecs[i].getSpeciesContext().getStructure());
if (speciesContextSpecs[i].getInitialConcentrationParameter() != null && speciesContextSpecs[i].getInitialConcentrationParameter().getExpression() != null) {
// use concentration, need to set up amount functions
initParam = speciesContextSpecs[i].getInitialConcentrationParameter();
iniExp = initParam.getExpression();
iniExp = getSubstitutedExpr(iniExp, true, !speciesContextSpecs[i].isConstant());
// now create the appropriate function or Constant for the speciesContextSpec.
varHash.addVariable(newFunctionOrConstant(getMathSymbol(initParam, sm), getIdentifierSubstitutions(iniExp, initParam.getUnitDefinition(), sm)));
// add function for initial amount
SpeciesContextSpec.SpeciesContextSpecParameter initAmountParam = speciesContextSpecs[i].getInitialCountParameter();
Expression iniAmountExp = getExpressionConcToAmt(new Expression(initParam, getNameScope()), speciesContextSpecs[i].getSpeciesContext());
// iniAmountExp.bindExpression(this);
varHash.addVariable(new Function(getMathSymbol(initAmountParam, sm), getIdentifierSubstitutions(iniAmountExp, initAmountParam.getUnitDefinition(), sm), nullDomain));
} else if (speciesContextSpecs[i].getInitialCountParameter() != null && speciesContextSpecs[i].getInitialCountParameter().getExpression() != null) {
// use amount
initParam = speciesContextSpecs[i].getInitialCountParameter();
iniExp = initParam.getExpression();
iniExp = getSubstitutedExpr(iniExp, false, !speciesContextSpecs[i].isConstant());
// now create the appropriate function or Constant for the speciesContextSpec.
varHash.addVariable(newFunctionOrConstant(getMathSymbol(initParam, sm), getIdentifierSubstitutions(iniExp, initParam.getUnitDefinition(), sm)));
}
// add spConcentration (concentration of species) to varHash as function or constant
SpeciesConcentrationParameter spConcParam = getSpeciesConcentrationParameter(speciesContextSpecs[i].getSpeciesContext());
varHash.addVariable(newFunctionOrConstant(getMathSymbol(spConcParam, sm), getIdentifierSubstitutions(spConcParam.getExpression(), spConcParam.getUnitDefinition(), sm)));
}
//
// constant species (either function or constant)
//
enum1 = getSpeciesContextMappings();
while (enum1.hasMoreElements()) {
SpeciesContextMapping scm = (SpeciesContextMapping) enum1.nextElement();
if (scm.getVariable() instanceof Constant) {
varHash.addVariable(scm.getVariable());
}
}
//
if (simContext.getGeometryContext().getGeometry() != null) {
try {
mathDesc.setGeometry(simContext.getGeometryContext().getGeometry());
} catch (java.beans.PropertyVetoException e) {
e.printStackTrace(System.out);
throw new MappingException("failure setting geometry " + e.getMessage());
}
} else {
throw new MappingException("geometry must be defined");
}
//
// functions: species which is not a variable, but has dependency expression
//
enum1 = getSpeciesContextMappings();
while (enum1.hasMoreElements()) {
SpeciesContextMapping scm = (SpeciesContextMapping) enum1.nextElement();
if (scm.getVariable() == null && scm.getDependencyExpression() != null) {
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(scm.getSpeciesContext().getStructure());
Expression exp = scm.getDependencyExpression();
exp.bindExpression(this);
SpeciesCountParameter spCountParam = getSpeciesCountParameter(scm.getSpeciesContext());
varHash.addVariable(new Function(getMathSymbol(spCountParam, sm), getIdentifierSubstitutions(exp, spCountParam.getUnitDefinition(), sm), nullDomain));
}
}
//
// create subDomains
//
SubDomain subDomain = null;
subVolumes = simContext.getGeometryContext().getGeometry().getGeometrySpec().getSubVolumes();
for (int j = 0; j < subVolumes.length; j++) {
SubVolume subVolume = (SubVolume) subVolumes[j];
//
// get priority of subDomain
//
int priority;
Feature spatialFeature = getResolvedFeature(subVolume);
if (spatialFeature == null) {
if (simContext.getGeometryContext().getGeometry().getDimension() > 0) {
throw new MappingException("no compartment (in Physiology) is mapped to subdomain '" + subVolume.getName() + "' (in Geometry)");
} else {
priority = CompartmentSubDomain.NON_SPATIAL_PRIORITY;
}
} else {
// now does not have to match spatial feature, *BUT* needs to be unique
priority = j;
}
subDomain = new CompartmentSubDomain(subVolume.getName(), priority);
mathDesc.addSubDomain(subDomain);
}
// ReactionSpec[] reactionSpecs = simContext.getReactionContext().getReactionSpecs();---need to take a look here!
for (int i = 0; i < reactionSpecs.length; i++) {
if (reactionSpecs[i].isExcluded()) {
continue;
}
// get the reaction
ReactionStep reactionStep = reactionSpecs[i].getReactionStep();
Kinetics kinetics = reactionStep.getKinetics();
// the structure where reaction happens
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(reactionStep.getStructure());
// create symbol table for jump process based on reactionStep and structure mapping
// final ReactionStep finalRS = reactionStep;
// final StructureMapping finalSM = sm;
// SymbolTable symTable = new SymbolTable(){
// public SymbolTableEntry getEntry(String identifierString) throws ExpressionBindingException {
// SymbolTableEntry ste = finalRS.getEntry(identifierString);
// if(ste == null)
// {
// ste = finalSM.getEntry(identifierString);
// }
// return ste;
// }
// };
// Different ways to deal with simple reactions and flux reactions
// probability parameter from modelUnitSystem
VCUnitDefinition probabilityParamUnit = modelUnitSystem.getStochasticSubstanceUnit().divideBy(modelUnitSystem.getTimeUnit());
if (// simple reactions
reactionStep instanceof SimpleReaction) {
// check the reaction rate law to see if we need to decompose a reaction(reversible) into two jump processes.
// rate constants are important in calculating the probability rate.
// for Mass Action, we use KForward and KReverse,
// for General Kinetics we parse reaction rate J to see if it is in Mass Action form.
Expression forwardRate = null;
Expression reverseRate = null;
if (kinetics.getKineticsDescription().equals(KineticsDescription.MassAction)) {
forwardRate = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KForward).getExpression();
reverseRate = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KReverse).getExpression();
} else if (kinetics.getKineticsDescription().equals(KineticsDescription.General)) {
Expression rateExp = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate).getExpression();
MassActionSolver.MassActionFunction maFunc = MassActionSolver.solveMassAction(null, null, rateExp, reactionStep);
if (maFunc.getForwardRate() == null && maFunc.getReverseRate() == null) {
throw new MappingException("Cannot generate stochastic math mapping for the reaction:" + reactionStep.getName() + "\nLooking for the rate function according to the form of k1*Reactant1^Stoir1*Reactant2^Stoir2...-k2*Product1^Stoip1*Product2^Stoip2.");
} else {
if (maFunc.getForwardRate() != null) {
forwardRate = maFunc.getForwardRate();
}
if (maFunc.getReverseRate() != null) {
reverseRate = maFunc.getReverseRate();
}
}
}
/*else if (kinetics.getKineticsDescription().getName().compareTo(KineticsDescription.HMM_irreversible.getName())==0)
{
forwardRate = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_Km).getExpression();
}
else if (kinetics.getKineticsDescription().getName().compareTo(KineticsDescription.HMM_reversible.getName())==0)
{
forwardRate = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KmFwd).getExpression();
reverseRate = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_KmRev).getExpression();
}*/
boolean isForwardRatePresent = false;
boolean isReverseRatePresent = false;
if (forwardRate != null) {
isForwardRatePresent = true;
}
if (reverseRate != null) {
isReverseRatePresent = true;
}
// we process it as forward reaction
if ((isForwardRatePresent)) /*|| ((forwardRate == null) && (reverseRate == null))*/
{
// get jump process name
String jpName = TokenMangler.mangleToSName(reactionStep.getName());
// get probability
Expression exp = null;
// reactions are mass actions
exp = getProbabilityRate(reactionStep, true);
// bind symbol table before substitute identifiers in the reaction step
exp.bindExpression(this);
MathMapping_4_8.ProbabilityParameter probParm = null;
try {
probParm = addProbabilityParameter("P_" + jpName, exp, MathMapping_4_8.PARAMETER_ROLE_P, probabilityParamUnit, reactionSpecs[i]);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probParm, sm), getIdentifierSubstitutions(exp, probabilityParamUnit, sm)));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probParm, sm)));
// actions
ReactionParticipant[] reacPart = reactionStep.getReactionParticipants();
for (int j = 0; j < reacPart.length; j++) {
Action action = null;
SpeciesCountParameter spCountParam = getSpeciesCountParameter(reacPart[j].getSpeciesContext());
if (reacPart[j] instanceof Reactant) {
// check if the reactant is a constant. If the species is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Reactant) reacPart[j]).getStoichiometry();
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression("-" + String.valueOf(stoi)));
jp.addAction(action);
}
} else if (reacPart[j] instanceof Product) {
// check if the product is a constant. If the product is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Product) reacPart[j]).getStoichiometry();
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression(stoi));
jp.addAction(action);
}
}
}
// add jump process to compartment subDomain
subDomain.addJumpProcess(jp);
}
if (// one more jump process for a reversible reaction
isReverseRatePresent) {
// get jump process name
String jpName = TokenMangler.mangleToSName(reactionStep.getName()) + "_reverse";
Expression exp = null;
// reactions are mass actions
exp = getProbabilityRate(reactionStep, false);
// bind symbol table before substitute identifiers in the reaction step
exp.bindExpression(this);
MathMapping_4_8.ProbabilityParameter probRevParm = null;
try {
probRevParm = addProbabilityParameter("P_" + jpName, exp, MathMapping_4_8.PARAMETER_ROLE_P_reverse, probabilityParamUnit, reactionSpecs[i]);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probRevParm, sm), getIdentifierSubstitutions(exp, probabilityParamUnit, sm)));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probRevParm, sm)));
// actions
ReactionParticipant[] reacPart = reactionStep.getReactionParticipants();
for (int j = 0; j < reacPart.length; j++) {
Action action = null;
SpeciesCountParameter spCountParam = getSpeciesCountParameter(reacPart[j].getSpeciesContext());
if (reacPart[j] instanceof Reactant) {
// check if the reactant is a constant. If the species is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Reactant) reacPart[j]).getStoichiometry();
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression(stoi));
jp.addAction(action);
}
} else if (reacPart[j] instanceof Product) {
// check if the product is a constant. If the product is a constant, there will be no action taken on this species
if (// not a constant
!simContext.getReactionContext().getSpeciesContextSpec(reacPart[j].getSpeciesContext()).isConstant()) {
int stoi = ((Product) reacPart[j]).getStoichiometry();
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression("-" + String.valueOf(stoi)));
jp.addAction(action);
}
}
}
// add jump process to compartment subDomain
subDomain.addJumpProcess(jp);
}
// end of if(isForwardRateNonZero), if(isReverseRateNonRate)
} else if (// flux reactions
reactionStep instanceof FluxReaction) {
// we could set jump processes for general flux rate in forms of p1*Sout + p2*Sin
if (kinetics.getKineticsDescription().equals(KineticsDescription.General)) {
Expression fluxRate = kinetics.getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate).getExpression();
// we have to pass the math description para to flux solver, coz somehow math description in simulation context is not updated.
MassActionSolver.MassActionFunction fluxFunc = MassActionSolver.solveMassAction(null, null, fluxRate, (FluxReaction) reactionStep);
// create jump process for forward flux if it exists.
if (fluxFunc.getForwardRate() != null && !fluxFunc.getForwardRate().isZero()) {
// jump process name
// +"_reverse";
String jpName = TokenMangler.mangleToSName(reactionStep.getName());
// we do it here instead of fluxsolver, coz we need to use getMathSymbol0(), structuremapping...etc.
Expression rate = fluxFunc.getForwardRate();
// get species expression (depend on structure, if mem: Species/mem_Size, if vol: species*KMOLE/vol_size)
SpeciesContext scOut = fluxFunc.getReactants().get(0).getSpeciesContext();
Expression speciesFactor = null;
if (scOut.getStructure() instanceof Feature) {
Expression exp1 = new Expression(Model.reservedConstantsMap.get(ReservedSymbolRole.KMOLE));
Expression exp2 = new Expression(scOut.getStructure().getStructureSize(), getNameScope());
speciesFactor = Expression.div(Expression.invert(exp1), exp2);
} else {
throw new MappingException("Species involved in a flux have to be volume species.");
}
Expression speciesExp = Expression.mult(speciesFactor, new Expression(scOut, getNameScope()));
// get probability expression by adding factor to rate (rate: rate*size_mem/KMOLE)
Expression expr1 = Expression.mult(rate, speciesExp);
Expression numeratorExpr = Expression.mult(expr1, new Expression(sm.getStructure().getStructureSize(), getNameScope()));
Expression exp = new Expression(Model.reservedConstantsMap.get(ReservedSymbolRole.KMOLE));
Expression probExp = Expression.mult(numeratorExpr, exp);
// bind symbol table before substitute identifiers in the reaction step
probExp.bindExpression(reactionStep);
MathMapping_4_8.ProbabilityParameter probParm = null;
try {
probParm = addProbabilityParameter("P_" + jpName, probExp, MathMapping_4_8.PARAMETER_ROLE_P, probabilityParamUnit, reactionSpecs[i]);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probParm, sm), getIdentifierSubstitutions(probExp, probabilityParamUnit, sm)));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probParm, sm)));
// actions
Action action = null;
SpeciesContext sc = fluxFunc.getReactants().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression(-1));
jp.addAction(action);
}
sc = fluxFunc.getProducts().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression(1));
jp.addAction(action);
}
subDomain.addJumpProcess(jp);
}
if (fluxFunc.getReverseRate() != null && !fluxFunc.getReverseRate().isZero()) {
// jump process name
String jpName = TokenMangler.mangleToSName(reactionStep.getName()) + "_reverse";
Expression rate = fluxFunc.getReverseRate();
// get species expression (depend on structure, if mem: Species/mem_Size, if vol: species*KMOLE/vol_size)
SpeciesContext scIn = fluxFunc.getProducts().get(0).getSpeciesContext();
Expression speciesFactor = null;
if (scIn.getStructure() instanceof Feature) {
Expression exp1 = new Expression(Model.reservedConstantsMap.get(ReservedSymbolRole.KMOLE));
Expression exp2 = new Expression(scIn.getStructure().getStructureSize(), getNameScope());
speciesFactor = Expression.div(Expression.invert(exp1), exp2);
} else {
throw new MappingException("Species involved in a flux have to be volume species.");
}
Expression speciesExp = Expression.mult(speciesFactor, new Expression(scIn, getNameScope()));
// get probability expression by adding factor to rate (rate: rate*size_mem/KMOLE)
Expression expr1 = Expression.mult(rate, speciesExp);
Expression numeratorExpr = Expression.mult(expr1, new Expression(sm.getStructure().getStructureSize(), getNameScope()));
Expression exp = new Expression(Model.reservedConstantsMap.get(ReservedSymbolRole.KMOLE));
Expression probRevExp = Expression.mult(numeratorExpr, exp);
// bind symbol table before substitute identifiers in the reaction step
probRevExp.bindExpression(reactionStep);
MathMapping_4_8.ProbabilityParameter probRevParm = null;
try {
probRevParm = addProbabilityParameter("P_" + jpName, probRevExp, MathMapping_4_8.PARAMETER_ROLE_P_reverse, probabilityParamUnit, reactionSpecs[i]);
} catch (PropertyVetoException pve) {
pve.printStackTrace();
throw new MappingException(pve.getMessage());
}
// add probability to function or constant
varHash.addVariable(newFunctionOrConstant(getMathSymbol(probRevParm, sm), getIdentifierSubstitutions(probRevExp, probabilityParamUnit, sm)));
JumpProcess jp = new JumpProcess(jpName, new Expression(getMathSymbol(probRevParm, sm)));
// actions
Action action = null;
SpeciesContext sc = fluxFunc.getReactants().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression(1));
jp.addAction(action);
}
sc = fluxFunc.getProducts().get(0).getSpeciesContext();
if (!simContext.getReactionContext().getSpeciesContextSpec(sc).isConstant()) {
SpeciesCountParameter spCountParam = getSpeciesCountParameter(sc);
action = new Action(varHash.getVariable(getMathSymbol(spCountParam, sm)), "inc", new Expression(-1));
jp.addAction(action);
}
subDomain.addJumpProcess(jp);
}
}
}
// end of if (simplereaction)...else if(fluxreaction)
}
// end of reaction step loop
//
// set Variables to MathDescription all at once with the order resolved by "VariableHash"
//
mathDesc.setAllVariables(varHash.getAlphabeticallyOrderedVariables());
// set up variable initial conditions in subDomain
SpeciesContextSpec[] scSpecs = simContext.getReactionContext().getSpeciesContextSpecs();
for (int i = 0; i < speciesContextSpecs.length; i++) {
// get stochastic variable by name
SpeciesCountParameter spCountParam = getSpeciesCountParameter(speciesContextSpecs[i].getSpeciesContext());
StructureMapping sm = simContext.getGeometryContext().getStructureMapping(speciesContextSpecs[i].getSpeciesContext().getStructure());
String varName = getMathSymbol(spCountParam, sm);
if (scSpecs[i].isConstant()) {
continue;
}
StochVolVariable var = (StochVolVariable) mathDesc.getVariable(varName);
// stochastic use initial number of particles
SpeciesContextSpec.SpeciesContextSpecParameter initParm = scSpecs[i].getInitialCountParameter();
// stochastic variables initial expression.
if (initParm != null) {
VarIniCondition varIni = new VarIniCount(var, new Expression(getMathSymbol(initParm, sm)));
subDomain.addVarIniCondition(varIni);
}
}
if (!mathDesc.isValid()) {
throw new MappingException("generated an invalid mathDescription: " + mathDesc.getWarning());
}
}
use of cbit.vcell.model.LumpedKinetics in project vcell by virtualcell.
the class MembraneStructureAnalyzer method refreshResolvedFluxes.
/**
* This method was created in VisualAge.
*/
void refreshResolvedFluxes() throws Exception {
// System.out.println("MembraneStructureAnalyzer.refreshResolvedFluxes()");
GeometryContext geoContext = mathMapping_4_8.getSimulationContext().getGeometryContext();
StructureTopology structTopology = mathMapping_4_8.getSimulationContext().getModel().getStructureTopology();
Vector<ResolvedFlux> resolvedFluxList = new Vector<ResolvedFlux>();
//
// for each reaction, get all fluxReactions associated with this membrane
//
Vector<ReactionStep> fluxList = new Vector<ReactionStep>();
ReactionSpec[] reactionSpecs = mathMapping_4_8.getSimulationContext().getReactionContext().getReactionSpecs();
for (int j = 0; j < reactionSpecs.length; j++) {
if (reactionSpecs[j].isExcluded()) {
continue;
}
ReactionStep rs = reactionSpecs[j].getReactionStep();
if (rs.getStructure() == getMembrane()) {
if (rs instanceof FluxReaction) {
fluxList.addElement(rs);
}
}
}
//
for (int i = 0; i < fluxList.size(); i++) {
FluxReaction fr = (FluxReaction) fluxList.elementAt(i);
Species fluxCarrier = null;
for (ReactionParticipant rp : fr.getReactionParticipants()) {
if (rp instanceof Reactant || rp instanceof Product) {
if (fluxCarrier == null) {
fluxCarrier = rp.getSpecies();
} else {
if (fluxCarrier != rp.getSpecies()) {
throw new Exception("Flux reaction '" + fr.getName() + "' with multiple species not allowed in VCell 4.8.");
}
}
}
}
if (fluxCarrier == null) {
continue;
}
ResolvedFlux rf = null;
for (int j = 0; j < resolvedFluxList.size(); j++) {
ResolvedFlux rf_tmp = (ResolvedFlux) resolvedFluxList.elementAt(j);
if (rf_tmp.getSpecies() == fluxCarrier) {
rf = rf_tmp;
}
}
//
// if "inside" speciesContext is not "fixed", add flux to ResolvedFlux
//
SpeciesContext insideSpeciesContext = mathMapping_4_8.getSimulationContext().getModel().getSpeciesContext(fluxCarrier, structTopology.getInsideFeature(getMembrane()));
SpeciesContextSpec insideSpeciesContextSpec = mathMapping_4_8.getSimulationContext().getReactionContext().getSpeciesContextSpec(insideSpeciesContext);
// if (!insideSpeciesContextSpec.isConstant()){
if (bNoFluxIfFixed || !insideSpeciesContextSpec.isConstant()) {
if (bNoFluxIfFixed && insideSpeciesContextSpec.isConstant()) {
bNoFluxIfFixedExercised = true;
}
if (rf == null) {
rf = new ResolvedFlux(fluxCarrier, fr.getKinetics().getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate).getUnitDefinition());
resolvedFluxList.addElement(rf);
}
FeatureMapping insideFeatureMapping = (FeatureMapping) geoContext.getStructureMapping((structTopology.getInsideFeature((Membrane) fr.getStructure())));
Expression residualVolumeFraction = mathMapping_4_8.getResidualVolumeFraction(insideFeatureMapping).renameBoundSymbols(mathMapping_4_8.getNameScope());
Expression insideFluxCorrection = Expression.invert(residualVolumeFraction);
//
if (bResolvedFluxCorrectionBug && !residualVolumeFraction.compareEqual(new Expression(1.0))) {
bResolvedFluxCorrectionBugExercised = true;
System.out.println("MembraneStructureAnalyzer.refreshResolvedFluxes() ... 'ResolvedFluxCorrection' bug compatability mode");
insideFluxCorrection = new Expression(1.0);
}
//
if (fr.getKinetics() instanceof DistributedKinetics) {
Expression reactionRateParameter = new Expression(((DistributedKinetics) fr.getKinetics()).getReactionRateParameter(), mathMapping_4_8.getNameScope());
if (rf.inFluxExpression.isZero()) {
rf.inFluxExpression = Expression.mult(reactionRateParameter, insideFluxCorrection).flatten();
} else {
rf.inFluxExpression = Expression.add(rf.inFluxExpression, Expression.mult(reactionRateParameter, insideFluxCorrection).flatten());
}
} else if (fr.getKinetics() instanceof LumpedKinetics) {
throw new RuntimeException("Lumped Kinetics for fluxes not yet supported");
} else {
throw new RuntimeException("unexpected Kinetic type in MembraneStructureAnalyzer.refreshResolvedFluxes()");
}
// rf.inFlux.bindExpression(mathMapping);
}
SpeciesContext outsideSpeciesContext = mathMapping_4_8.getSimulationContext().getModel().getSpeciesContext(fluxCarrier, structTopology.getOutsideFeature(getMembrane()));
SpeciesContextSpec outsideSpeciesContextSpec = mathMapping_4_8.getSimulationContext().getReactionContext().getSpeciesContextSpec(outsideSpeciesContext);
// if (!outsideSpeciesContextSpec.isConstant()){
if (bNoFluxIfFixed || !outsideSpeciesContextSpec.isConstant()) {
if (bNoFluxIfFixed && outsideSpeciesContextSpec.isConstant()) {
bNoFluxIfFixedExercised = true;
}
if (rf == null) {
rf = new ResolvedFlux(fluxCarrier, fr.getKinetics().getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate).getUnitDefinition());
resolvedFluxList.addElement(rf);
}
FeatureMapping outsideFeatureMapping = (FeatureMapping) geoContext.getStructureMapping(structTopology.getOutsideFeature((Membrane) fr.getStructure()));
Expression residualVolumeFraction = mathMapping_4_8.getResidualVolumeFraction(outsideFeatureMapping).renameBoundSymbols(mathMapping_4_8.getNameScope());
Expression outsideFluxCorrection = Expression.invert(residualVolumeFraction);
//
if (bResolvedFluxCorrectionBug && !residualVolumeFraction.compareEqual(new Expression(1.0))) {
bResolvedFluxCorrectionBugExercised = true;
System.out.println("MembraneStructureAnalyzer.refreshResolvedFluxes() ... 'ResolvedFluxCorrection' bug compatability mode");
outsideFluxCorrection = new Expression(1.0);
}
//
if (fr.getKinetics() instanceof DistributedKinetics) {
Expression reactionRateParameter = new Expression(((DistributedKinetics) fr.getKinetics()).getReactionRateParameter(), mathMapping_4_8.getNameScope());
if (rf.outFluxExpression.isZero()) {
rf.outFluxExpression = Expression.mult(Expression.negate(reactionRateParameter), outsideFluxCorrection).flatten();
} else {
rf.outFluxExpression = Expression.add(rf.outFluxExpression, Expression.mult(Expression.negate(reactionRateParameter), outsideFluxCorrection).flatten());
}
} else if (fr.getKinetics() instanceof LumpedKinetics) {
throw new RuntimeException("Lumped Kinetics not yet supported for Flux Reaction: " + fr.getName());
} else {
throw new RuntimeException("unexpected Kinetics type for Flux Reaction " + fr.getName());
}
// rf.outFlux.bindExpression(mathMapping);
}
}
//
// for each reaction, incorporate all reactionSteps involving binding with volumetric species
//
double kMoleValue = Model.reservedConstantsMap.get(ReservedSymbolRole.KMOLE);
for (int i = 0; i < reactionSpecs.length; i++) {
if (reactionSpecs[i].isExcluded()) {
continue;
}
ReactionStep rs = reactionSpecs[i].getReactionStep();
if (rs.getStructure() == getMembrane()) {
if (rs instanceof SimpleReaction) {
SimpleReaction sr = (SimpleReaction) rs;
ReactionParticipant[] rp_Array = sr.getReactionParticipants();
for (int k = 0; k < rp_Array.length; k++) {
if (rp_Array[k] instanceof Reactant || rp_Array[k] instanceof Product) {
SpeciesContextSpec scs = mathMapping_4_8.getSimulationContext().getReactionContext().getSpeciesContextSpec(rp_Array[k].getSpeciesContext());
// if (rp_Array[k].getStructure() instanceof Feature && !scs.isConstant()){
if (rp_Array[k].getStructure() instanceof Feature && (bNoFluxIfFixed || !scs.isConstant())) {
if (bNoFluxIfFixed && scs.isConstant()) {
bNoFluxIfFixedExercised = true;
}
//
// for each Reactant or Product binding to this membrane...
//
//
// get ResolvedFlux for this species
//
ResolvedFlux rf = null;
for (int j = 0; j < resolvedFluxList.size(); j++) {
ResolvedFlux rf_tmp = (ResolvedFlux) resolvedFluxList.elementAt(j);
if (rf_tmp.getSpecies() == rp_Array[k].getSpecies()) {
rf = rf_tmp;
}
}
if (rf == null) {
rf = new ResolvedFlux(rp_Array[k].getSpecies(), sr.getKinetics().getKineticsParameterFromRole(Kinetics.ROLE_ReactionRate).getUnitDefinition());
resolvedFluxList.addElement(rf);
}
Expression reactionRateExpression = getReactionRateExpression(sr, rp_Array[k]).renameBoundSymbols(mathMapping_4_8.getNameScope());
if (rp_Array[k].getStructure() == structTopology.getInsideFeature(getMembrane())) {
//
// for binding on inside, add to ResolvedFlux.inFlux
//
FeatureMapping insideFeatureMapping = (FeatureMapping) geoContext.getStructureMapping(structTopology.getInsideFeature(getMembrane()));
Expression residualVolumeFraction = mathMapping_4_8.getResidualVolumeFraction(insideFeatureMapping).renameBoundSymbols(mathMapping_4_8.getNameScope());
Expression insideFluxCorrection = Expression.div(new Expression(kMoleValue), residualVolumeFraction).flatten();
//
if (bResolvedFluxCorrectionBug && !residualVolumeFraction.compareEqual(new Expression(1.0))) {
bResolvedFluxCorrectionBugExercised = true;
System.out.println("MembraneStructureAnalyzer.refreshResolvedFluxes() ... 'ResolvedFluxCorrection' bug compatability mode");
insideFluxCorrection = new Expression(kMoleValue);
}
if (rf.inFluxExpression.isZero()) {
rf.inFluxExpression = Expression.mult(insideFluxCorrection, reactionRateExpression);
} else {
rf.inFluxExpression = Expression.add(rf.inFluxExpression, Expression.mult(insideFluxCorrection, reactionRateExpression));
}
// rf.inFlux.bindExpression(mathMapping);
} else if (rp_Array[k].getStructure() == structTopology.getOutsideFeature(getMembrane())) {
//
// for binding on outside, add to ResolvedFlux.outFlux
//
FeatureMapping outsideFeatureMapping = (FeatureMapping) geoContext.getStructureMapping(structTopology.getOutsideFeature(getMembrane()));
Expression residualVolumeFraction = mathMapping_4_8.getResidualVolumeFraction(outsideFeatureMapping).renameBoundSymbols(mathMapping_4_8.getNameScope());
Expression outsideFluxCorrection = Expression.div(new Expression(kMoleValue), residualVolumeFraction).flatten();
//
if (bResolvedFluxCorrectionBug && !residualVolumeFraction.compareEqual(new Expression(1.0))) {
bResolvedFluxCorrectionBugExercised = true;
System.out.println("MembraneStructureAnalyzer.refreshResolvedFluxes() ... 'ResolvedFluxCorrection' bug compatability mode");
outsideFluxCorrection = new Expression(kMoleValue);
}
if (rf.outFluxExpression.isZero()) {
rf.outFluxExpression = Expression.mult(outsideFluxCorrection, reactionRateExpression);
} else {
rf.outFluxExpression = Expression.add(rf.outFluxExpression, Expression.mult(outsideFluxCorrection, reactionRateExpression));
}
// rf.outFlux.bindExpression(mathMapping);
} else {
throw new Exception("SpeciesContext " + rp_Array[k].getSpeciesContext().getName() + " doesn't border membrane " + getMembrane().getName() + " but reacts there");
}
}
}
}
}
}
}
//
if (resolvedFluxList.size() > 0) {
resolvedFluxes = new ResolvedFlux[resolvedFluxList.size()];
resolvedFluxList.copyInto(resolvedFluxes);
} else {
resolvedFluxes = null;
}
}
use of cbit.vcell.model.LumpedKinetics in project vcell by virtualcell.
the class ElectricalCircuitGraph method getTotalMembraneCurrent.
/**
* Insert the method's description here.
* Creation date: (2/19/2002 12:56:13 PM)
* @return cbit.vcell.parser.Expression
* @param simContext cbit.vcell.mapping.SimulationContext
* @param membrane cbit.vcell.model.Membrane
*/
private static Expression getTotalMembraneCurrent(SimulationContext simContext, Membrane membrane, AbstractMathMapping mathMapping) throws ExpressionException {
MembraneMapping membraneMapping = (MembraneMapping) simContext.getGeometryContext().getStructureMapping(membrane);
if (!membraneMapping.getCalculateVoltage()) {
return new Expression(0.0);
}
//
// gather current terms
//
Expression currentExp = new Expression(0.0);
ReactionSpec[] reactionSpecs = simContext.getReactionContext().getReactionSpecs();
StructureMappingParameter sizeParameter = membraneMapping.getSizeParameter();
Expression area = null;
if (simContext.getGeometry().getDimension() == 0 && (sizeParameter.getExpression() == null || sizeParameter.getExpression().isZero())) {
System.out.println("size not set for membrane \"" + membrane.getName() + "\", refer to Structure Mapping in Application \"" + mathMapping.getSimulationContext().getName() + "\"");
area = membraneMapping.getNullSizeParameterValue();
} else {
area = new Expression(sizeParameter, mathMapping.getNameScope());
}
for (int i = 0; i < reactionSpecs.length; i++) {
//
if (reactionSpecs[i].isExcluded()) {
continue;
}
if (reactionSpecs[i].getReactionStep().getKinetics() instanceof DistributedKinetics) {
ReactionStep rs = reactionSpecs[i].getReactionStep();
DistributedKinetics distributedKinetics = (DistributedKinetics) rs.getKinetics();
if (rs.getStructure() == membrane) {
if (!distributedKinetics.getCurrentDensityParameter().getExpression().isZero()) {
//
// change sign convension from inward current to outward current (which is consistent with voltage convension)
//
currentExp = Expression.add(currentExp, Expression.negate(Expression.mult(new Expression(distributedKinetics.getCurrentDensityParameter(), mathMapping.getNameScope()), area)));
}
}
} else {
ReactionStep rs = reactionSpecs[i].getReactionStep();
LumpedKinetics lumpedKinetics = (LumpedKinetics) rs.getKinetics();
if (rs.getStructure() == membrane) {
if (!lumpedKinetics.getLumpedCurrentParameter().getExpression().isZero()) {
//
if (!(membraneMapping.getGeometryClass() instanceof CompartmentSubVolume)) {
throw new RuntimeException("math generation for total currents within spatial electrophysiology not yet implemented");
}
Expression lumpedCurrentSymbolExp = new Expression(lumpedKinetics.getLumpedCurrentParameter(), mathMapping.getNameScope());
currentExp = Expression.add(currentExp, Expression.negate(lumpedCurrentSymbolExp));
}
}
}
}
return currentExp.flatten();
}
use of cbit.vcell.model.LumpedKinetics in project vcell by virtualcell.
the class SBMLExporter method getAnnotationElement.
/**
* getAnnotationElement :
* For a flux reaction, we need to add an annotation specifying the structure, flux carrier, carrier valence and fluxOption.
* For a simple reaction, we need to add a annotation specifying the structure (useful for import)
* Using XML JDOM elements, so that it is convenient for libSBML setAnnotation (requires the annotation to be provided as an xml string).
*/
private Element getAnnotationElement(ReactionStep reactionStep) throws cbit.vcell.xml.XmlParseException {
Element sbmlImportRelatedElement = new Element(XMLTags.VCellRelatedInfoTag, sbml_vcml_ns);
Element rxnElement = null;
if (reactionStep instanceof FluxReaction) {
FluxReaction fluxRxn = (FluxReaction) reactionStep;
// Element for flux reaction. Write out the structure and flux carrier name.
rxnElement = new Element(XMLTags.FluxStepTag, sbml_vcml_ns);
rxnElement.setAttribute(XMLTags.StructureAttrTag, fluxRxn.getStructure().getName());
// Get the physics option value.
if (fluxRxn.getPhysicsOptions() == ReactionStep.PHYSICS_ELECTRICAL_ONLY) {
rxnElement.setAttribute(XMLTags.FluxOptionAttrTag, XMLTags.FluxOptionElectricalOnly);
} else if (fluxRxn.getPhysicsOptions() == ReactionStep.PHYSICS_MOLECULAR_AND_ELECTRICAL) {
rxnElement.setAttribute(XMLTags.FluxOptionAttrTag, XMLTags.FluxOptionMolecularAndElectrical);
} else if (fluxRxn.getPhysicsOptions() == ReactionStep.PHYSICS_MOLECULAR_ONLY) {
rxnElement.setAttribute(XMLTags.FluxOptionAttrTag, XMLTags.FluxOptionMolecularOnly);
}
} else if (reactionStep instanceof cbit.vcell.model.SimpleReaction) {
// Element for a simple reaction - just store structure name - will be useful while importing.
cbit.vcell.model.SimpleReaction simpleRxn = (cbit.vcell.model.SimpleReaction) reactionStep;
rxnElement = new org.jdom.Element(cbit.vcell.xml.XMLTags.SimpleReactionTag, sbml_vcml_ns);
rxnElement.setAttribute(cbit.vcell.xml.XMLTags.StructureAttrTag, simpleRxn.getStructure().getName());
}
// Add rate name as an element of annotation - this is especially useful when roundtripping VCell models, when the reaction
// rate parameters have been renamed by user.
Element rateElement = new Element(XMLTags.ReactionRateTag, sbml_vcml_ns);
if (reactionStep.getKinetics() instanceof DistributedKinetics) {
rateElement.setAttribute(XMLTags.NameAttrTag, ((DistributedKinetics) reactionStep.getKinetics()).getReactionRateParameter().getName());
} else if (reactionStep.getKinetics() instanceof LumpedKinetics) {
rateElement.setAttribute(XMLTags.NameAttrTag, ((LumpedKinetics) reactionStep.getKinetics()).getLumpedReactionRateParameter().getName());
} else {
throw new RuntimeException("unexpected kinetic type " + reactionStep.getKinetics().getClass().getName());
}
sbmlImportRelatedElement.addContent(rxnElement);
sbmlImportRelatedElement.addContent(rateElement);
return sbmlImportRelatedElement;
}
use of cbit.vcell.model.LumpedKinetics in project vcell by virtualcell.
the class KineticsAdapter method create.
/**
* @param k not null
* @return adapter for type
* @throws SbmlException if type not recognized
* @throws {@link NullPointerException} if k null
*/
public static KineticsAdapter create(Kinetics k) throws SbmlException {
DistributedKinetics dk = BeanUtils.downcast(DistributedKinetics.class, k);
if (dk != null) {
return new Distributed(dk);
}
LumpedKinetics lk = BeanUtils.downcast(LumpedKinetics.class, k);
if (lk != null) {
return new Lumped(lk);
}
throw new SbmlException("Unknown Kinetics subclass " + k.getClass().getName());
}
Aggregations