Search in sources :

Example 46 with ReadOnlyVector3

use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.

the class SolarRadiation method updateTextureCoords.

private void updateTextureCoords(final Mesh drawMesh) {
    final MeshDataStore data = onMesh.get(drawMesh);
    final ReadOnlyVector3 o = data.p0;
    final ReadOnlyVector3 u = data.u.multiply(Util.roundToPowerOfTwo(data.cols) * Scene.getInstance().getSolarStep(), null);
    final ReadOnlyVector3 v = data.v.multiply(Util.roundToPowerOfTwo(data.rows) * Scene.getInstance().getSolarStep(), null);
    final FloatBuffer vertexBuffer = drawMesh.getMeshData().getVertexBuffer();
    vertexBuffer.rewind();
    final FloatBuffer textureBuffer = drawMesh.getMeshData().getTextureBuffer(0);
    if (textureBuffer != null) {
        textureBuffer.rewind();
        while (vertexBuffer.hasRemaining()) {
            final ReadOnlyVector3 p = drawMesh.localToWorld(new Vector3(vertexBuffer.get(), vertexBuffer.get(), vertexBuffer.get()), null);
            final Vector3 uP = Util.closestPoint(o, u, p, v.negate(null));
            final Vector3 vP = Util.closestPoint(o, v, p, u.negate(null));
            if (uP != null && vP != null) {
                final float uScale = (float) (uP.distance(o) / u.length());
                final float vScale = (float) (vP.distance(o) / v.length());
                textureBuffer.put(uScale).put(vScale);
            }
        }
    }
}
Also used : ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) FloatBuffer(java.nio.FloatBuffer) ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) Vector3(com.ardor3d.math.Vector3)

Example 47 with ReadOnlyVector3

use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.

the class SolarRadiation method computeOnMirror.

// unlike PV solar panels, no indirect (ambient or diffuse) radiation should be included in reflection calculation
private void computeOnMirror(final int minute, final ReadOnlyVector3 directionTowardSun, final Mirror mirror) {
    final int nx = Scene.getInstance().getMirrorNx();
    final int ny = Scene.getInstance().getMirrorNy();
    final Foundation target = mirror.getReceiver();
    if (target != null) {
        final Calendar calendar = Heliodon.getInstance().getCalendar();
        calendar.set(Calendar.HOUR_OF_DAY, (int) ((double) minute / (double) SolarRadiation.MINUTES_OF_DAY * 24.0));
        calendar.set(Calendar.MINUTE, minute % 60);
        mirror.draw();
    }
    // nx*ny*60: nx*ny is to get the unit cell area of the nx*ny grid; 60 is to convert the unit of timeStep from minute to kWh
    final double a = mirror.getMirrorWidth() * mirror.getMirrorHeight() * Scene.getInstance().getTimeStep() / (nx * ny * 60.0);
    final ReadOnlyVector3 normal = mirror.getNormal();
    if (normal == null) {
        throw new RuntimeException("Normal is null");
    }
    final Mesh mesh = mirror.getRadiationMesh();
    MeshDataStore data = onMesh.get(mesh);
    if (data == null) {
        data = initMeshTextureDataOnRectangle(mesh, nx, ny);
    }
    final ReadOnlyVector3 offset = directionTowardSun.multiply(1, null);
    final double dot = normal.dot(directionTowardSun);
    double directRadiation = 0;
    if (dot > 0) {
        directRadiation += calculateDirectRadiation(directionTowardSun, normal);
    }
    final FloatBuffer vertexBuffer = mesh.getMeshData().getVertexBuffer();
    // (0, 0)
    final Vector3 p0 = new Vector3(vertexBuffer.get(3), vertexBuffer.get(4), vertexBuffer.get(5));
    // (1, 0)
    final Vector3 p1 = new Vector3(vertexBuffer.get(6), vertexBuffer.get(7), vertexBuffer.get(8));
    // (0, 1)
    final Vector3 p2 = new Vector3(vertexBuffer.get(0), vertexBuffer.get(1), vertexBuffer.get(2));
    // final Vector3 q0 = drawMesh.localToWorld(p0, null);
    // final Vector3 q1 = drawMesh.localToWorld(p1, null);
    // final Vector3 q2 = drawMesh.localToWorld(p2, null);
    // System.out.println("***" + q0.distance(q1) * Scene.getInstance().getAnnotationScale() + "," + q0.distance(q2) * Scene.getInstance().getAnnotationScale());
    // this is the longer side (supposed to be y)
    final Vector3 u = p1.subtract(p0, null).normalizeLocal();
    // this is the shorter side (supposed to be x)
    final Vector3 v = p2.subtract(p0, null).normalizeLocal();
    // x and y must be swapped to have correct heat map texture, because nx represents rows and ny columns as we call initMeshTextureDataOnRectangle(mesh, nx, ny)
    final double xSpacing = p1.distance(p0) / nx;
    final double ySpacing = p2.distance(p0) / ny;
    final Vector3 receiver = target != null ? target.getSolarReceiverCenter() : null;
    List<Mesh> towerCollisionMeshes = null;
    if (target != null) {
        towerCollisionMeshes = new ArrayList<Mesh>();
        for (final HousePart child : target.getChildren()) {
            towerCollisionMeshes.add((Mesh) child.getRadiationCollisionSpatial());
        }
        final List<Roof> roofs = target.getRoofs();
        if (!roofs.isEmpty()) {
            for (final Roof r : roofs) {
                for (final Spatial roofPart : r.getRoofPartsRoot().getChildren()) {
                    towerCollisionMeshes.add((Mesh) ((Node) roofPart).getChild(6));
                }
            }
        }
    }
    final int iMinute = minute / Scene.getInstance().getTimeStep();
    final boolean reflectionMapOnly = Scene.getInstance().getOnlyReflectedEnergyInMirrorSolarMap();
    for (int x = 0; x < nx; x++) {
        for (int y = 0; y < ny; y++) {
            if (EnergyPanel.getInstance().isCancelled()) {
                throw new CancellationException();
            }
            final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
            final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
            final ReadOnlyVector3 p = mesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
            final Ray3 pickRay = new Ray3(p, directionTowardSun);
            if (dot > 0) {
                final PickResults pickResults = new PrimitivePickResults();
                for (final Spatial spatial : collidables) {
                    if (spatial != mesh) {
                        PickingUtil.findPick(spatial, pickRay, pickResults, false);
                        if (pickResults.getNumber() != 0) {
                            break;
                        }
                    }
                }
                if (pickResults.getNumber() == 0) {
                    // for heat map generation
                    if (!reflectionMapOnly) {
                        data.dailySolarIntensity[x][y] += directRadiation;
                    }
                    if (receiver != null) {
                        // for concentrated energy calculation
                        final Vector3 toReceiver = receiver.subtract(p, null);
                        final Ray3 rayToReceiver = new Ray3(p, toReceiver.normalize(null));
                        final PickResults pickResultsToReceiver = new PrimitivePickResults();
                        for (final Spatial spatial : collidables) {
                            if (spatial != mesh) {
                                if (towerCollisionMeshes == null || (towerCollisionMeshes != null && !towerCollisionMeshes.contains(spatial))) {
                                    PickingUtil.findPick(spatial, rayToReceiver, pickResultsToReceiver, false);
                                    if (pickResultsToReceiver.getNumber() != 0) {
                                        break;
                                    }
                                }
                            }
                        }
                        if (pickResultsToReceiver.getNumber() == 0) {
                            final double r = directRadiation * Atmosphere.getTransmittance(toReceiver.length() * Scene.getInstance().getAnnotationScale() * 0.001, false);
                            mirror.getSolarPotential()[iMinute] += r * a;
                            if (reflectionMapOnly) {
                                data.dailySolarIntensity[x][y] += r;
                            }
                        }
                    }
                }
            }
        }
    }
}
Also used : Calendar(java.util.Calendar) Node(com.ardor3d.scenegraph.Node) Mesh(com.ardor3d.scenegraph.Mesh) FloatBuffer(java.nio.FloatBuffer) ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) Vector3(com.ardor3d.math.Vector3) CullHint(com.ardor3d.scenegraph.hint.CullHint) TPoint(org.poly2tri.triangulation.point.TPoint) Point(org.poly2tri.geometry.primitives.Point) Ray3(com.ardor3d.math.Ray3) PrimitivePickResults(com.ardor3d.intersection.PrimitivePickResults) ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) Roof(org.concord.energy3d.model.Roof) Spatial(com.ardor3d.scenegraph.Spatial) CancellationException(java.util.concurrent.CancellationException) Foundation(org.concord.energy3d.model.Foundation) PrimitivePickResults(com.ardor3d.intersection.PrimitivePickResults) PickResults(com.ardor3d.intersection.PickResults) HousePart(org.concord.energy3d.model.HousePart)

Example 48 with ReadOnlyVector3

use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.

the class SolarRadiation method computeOnImportedMesh.

private void computeOnImportedMesh(final int minute, final ReadOnlyVector3 directionTowardSun, final Foundation foundation, final Mesh mesh) {
    final UserData userData = (UserData) mesh.getUserData();
    if (!userData.isReachable()) {
        return;
    }
    final ReadOnlyVector3 normal = userData.getRotatedNormal() == null ? userData.getNormal() : userData.getRotatedNormal();
    final MeshDataStore data = onMesh.get(mesh);
    final int timeStep = Scene.getInstance().getTimeStep();
    final int iMinute = minute / timeStep;
    final double dot = normal.dot(directionTowardSun);
    final double directRadiation = dot > 0 ? calculateDirectRadiation(directionTowardSun, normal) : 0;
    final double indirectRadiation = calculateDiffuseAndReflectedRadiation(directionTowardSun, normal);
    final double solarStep = Scene.getInstance().getSolarStep();
    final double annotationScale = Scene.getInstance().getAnnotationScale();
    final double scaleFactor = annotationScale * annotationScale / 60 * timeStep;
    final float absorption = 1 - foundation.getAlbedo();
    for (int col = 0; col < data.cols; col++) {
        // final double w = col == data.cols - 1 ? data.p2.distance(data.u.multiply(col * solarStep, null).addLocal(data.p0)) : solarStep;
        final double w = col == data.cols - 1 ? data.p2.distance(data.p0) - col * solarStep : solarStep;
        final ReadOnlyVector3 pU = data.u.multiply(col * solarStep + 0.5 * w, null).addLocal(data.p0);
        for (int row = 0; row < data.rows; row++) {
            if (EnergyPanel.getInstance().isCancelled()) {
                throw new CancellationException();
            }
            if (data.dailySolarIntensity[row][col] == -1) {
                continue;
            }
            final double h = row == data.rows - 1 ? data.p1.distance(data.p0) - row * solarStep : solarStep;
            // cannot do offset as in computeOnMesh
            final ReadOnlyVector3 p = data.v.multiply(row * solarStep + 0.5 * h, null).addLocal(pU);
            final Ray3 pickRay = new Ray3(p, directionTowardSun);
            final PickResults pickResults = new PrimitivePickResults();
            // assuming that indirect (ambient or diffuse) radiation can always reach a grid point
            double radiation = indirectRadiation;
            final double scaledArea = w * h * scaleFactor;
            if (dot > 0) {
                for (final Spatial spatial : collidables) {
                    if (EnergyPanel.getInstance().isCancelled()) {
                        throw new CancellationException();
                    }
                    if (spatial != mesh) {
                        PickingUtil.findPick(spatial, pickRay, pickResults, false);
                        if (pickResults.getNumber() != 0) {
                            break;
                        }
                    }
                }
                if (pickResults.getNumber() == 0) {
                    radiation += directRadiation;
                }
            }
            data.dailySolarIntensity[row][col] += Scene.getInstance().getOnlyAbsorptionInSolarMap() ? absorption * radiation : radiation;
            if (data.solarPotential != null) {
                data.solarPotential[iMinute] += radiation * scaledArea;
            }
            // sum all the solar energy up over all meshes and store in the foundation's solar potential array
            foundation.getSolarPotential()[iMinute] += radiation * scaledArea;
        }
    }
}
Also used : PrimitivePickResults(com.ardor3d.intersection.PrimitivePickResults) ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) UserData(org.concord.energy3d.model.UserData) CancellationException(java.util.concurrent.CancellationException) Spatial(com.ardor3d.scenegraph.Spatial) PrimitivePickResults(com.ardor3d.intersection.PrimitivePickResults) PickResults(com.ardor3d.intersection.PickResults) CullHint(com.ardor3d.scenegraph.hint.CullHint) TPoint(org.poly2tri.triangulation.point.TPoint) Point(org.poly2tri.geometry.primitives.Point) Ray3(com.ardor3d.math.Ray3)

Example 49 with ReadOnlyVector3

use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.

the class SolarRadiation method computeOnFresnelReflector.

// unlike PV solar panels, no indirect (ambient or diffuse) radiation should be included in reflection calculation
private void computeOnFresnelReflector(final int minute, final ReadOnlyVector3 directionTowardSun, final FresnelReflector reflector) {
    final int nx = reflector.getNSectionLength();
    final int ny = reflector.getNSectionWidth();
    final Foundation target = reflector.getReceiver();
    if (target != null) {
        final Calendar calendar = Heliodon.getInstance().getCalendar();
        calendar.set(Calendar.HOUR_OF_DAY, (int) ((double) minute / (double) SolarRadiation.MINUTES_OF_DAY * 24.0));
        calendar.set(Calendar.MINUTE, minute % 60);
        reflector.draw();
    }
    // nx*ny*60: nx*ny is to get the unit cell area of the nx*ny grid; 60 is to convert the unit of timeStep from minute to kWh
    final double a = reflector.getModuleWidth() * reflector.getLength() * Scene.getInstance().getTimeStep() / (nx * ny * 60.0);
    final ReadOnlyVector3 normal = reflector.getNormal();
    if (normal == null) {
        throw new RuntimeException("Normal is null");
    }
    final Mesh mesh = reflector.getRadiationMesh();
    MeshDataStore data = onMesh.get(mesh);
    if (data == null) {
        data = initMeshTextureDataOnRectangle(mesh, nx, ny);
    }
    final ReadOnlyVector3 offset = directionTowardSun.multiply(1, null);
    final double dot = normal.dot(directionTowardSun);
    double directRadiation = 0;
    if (dot > 0) {
        directRadiation += calculateDirectRadiation(directionTowardSun, normal);
    }
    final FloatBuffer vertexBuffer = mesh.getMeshData().getVertexBuffer();
    // (0, 0)
    final Vector3 p0 = new Vector3(vertexBuffer.get(3), vertexBuffer.get(4), vertexBuffer.get(5));
    // (1, 0)
    final Vector3 p1 = new Vector3(vertexBuffer.get(6), vertexBuffer.get(7), vertexBuffer.get(8));
    // (0, 1)
    final Vector3 p2 = new Vector3(vertexBuffer.get(0), vertexBuffer.get(1), vertexBuffer.get(2));
    // final Vector3 q0 = mesh.localToWorld(p0, null);
    // final Vector3 q1 = mesh.localToWorld(p1, null);
    // final Vector3 q2 = mesh.localToWorld(p2, null);
    // System.out.println("***" + q0.distance(q1) * Scene.getInstance().getAnnotationScale() + "," + q0.distance(q2) * Scene.getInstance().getAnnotationScale());
    // this is the longer side (supposed to be y)
    final Vector3 u = p1.subtract(p0, null).normalizeLocal();
    // this is the shorter side (supposed to be x)
    final Vector3 v = p2.subtract(p0, null).normalizeLocal();
    // x and y must be swapped to have correct heat map texture, because nx represents rows and ny columns as we call initMeshTextureDataOnRectangle(mesh, nx, ny)
    final double xSpacing = p1.distance(p0) / nx;
    final double ySpacing = p2.distance(p0) / ny;
    final Vector3 absorber = target != null ? target.getSolarReceiverCenter() : null;
    List<Mesh> absorberCollisionMeshes = null;
    if (target != null) {
        absorberCollisionMeshes = new ArrayList<Mesh>();
        for (final HousePart child : target.getChildren()) {
            absorberCollisionMeshes.add((Mesh) child.getRadiationCollisionSpatial());
        }
        final List<Roof> roofs = target.getRoofs();
        if (!roofs.isEmpty()) {
            for (final Roof r : roofs) {
                for (final Spatial roofPart : r.getRoofPartsRoot().getChildren()) {
                    absorberCollisionMeshes.add((Mesh) ((Node) roofPart).getChild(6));
                }
            }
        }
    }
    final int iMinute = minute / Scene.getInstance().getTimeStep();
    final boolean reflectionMapOnly = Scene.getInstance().getOnlyReflectedEnergyInMirrorSolarMap();
    for (int x = 0; x < nx; x++) {
        for (int y = 0; y < ny; y++) {
            if (EnergyPanel.getInstance().isCancelled()) {
                throw new CancellationException();
            }
            final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
            final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
            final ReadOnlyVector3 p = mesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
            final Ray3 pickRay = new Ray3(p, directionTowardSun);
            if (dot > 0) {
                final PickResults pickResults = new PrimitivePickResults();
                for (final Spatial spatial : collidables) {
                    if (spatial != mesh) {
                        PickingUtil.findPick(spatial, pickRay, pickResults, false);
                        if (pickResults.getNumber() != 0) {
                            break;
                        }
                    }
                }
                if (pickResults.getNumber() == 0) {
                    // for heat map generation
                    if (!reflectionMapOnly) {
                        data.dailySolarIntensity[x][y] += directRadiation;
                    }
                    // TODO: Edge losses are not considered yet
                    if (absorber != null) {
                        // TODO: This calculation is not exactly accurate as the collision detection assumes that the ray emits from a grid point on the reflector to
                        // the parallel position on the absorber tube -- without considering the actual direction of the reflected light
                        final Vector3 toAbsorber = absorber.subtract(p, null);
                        toAbsorber.setY(0);
                        final Ray3 rayToAbsorber = new Ray3(p, toAbsorber.normalize(null));
                        final PickResults pickResultsToAbsorber = new PrimitivePickResults();
                        for (final Spatial spatial : collidables) {
                            if (spatial != mesh) {
                                if (absorberCollisionMeshes == null || (absorberCollisionMeshes != null && !absorberCollisionMeshes.contains(spatial))) {
                                    PickingUtil.findPick(spatial, rayToAbsorber, pickResultsToAbsorber, false);
                                    if (pickResultsToAbsorber.getNumber() != 0) {
                                        // FIXME: how to stop the ray when it hits the absorber?
                                        break;
                                    }
                                }
                            }
                        }
                        if (pickResultsToAbsorber.getNumber() == 0) {
                            final double r = directRadiation * Atmosphere.getTransmittance(toAbsorber.length() * Scene.getInstance().getAnnotationScale() * 0.001, false);
                            reflector.getSolarPotential()[iMinute] += r * a;
                            if (reflectionMapOnly) {
                                data.dailySolarIntensity[x][y] += r;
                            }
                        }
                    }
                }
            }
        }
    }
}
Also used : Calendar(java.util.Calendar) Node(com.ardor3d.scenegraph.Node) Mesh(com.ardor3d.scenegraph.Mesh) FloatBuffer(java.nio.FloatBuffer) ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) Vector3(com.ardor3d.math.Vector3) CullHint(com.ardor3d.scenegraph.hint.CullHint) TPoint(org.poly2tri.triangulation.point.TPoint) Point(org.poly2tri.geometry.primitives.Point) Ray3(com.ardor3d.math.Ray3) PrimitivePickResults(com.ardor3d.intersection.PrimitivePickResults) ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) Roof(org.concord.energy3d.model.Roof) Spatial(com.ardor3d.scenegraph.Spatial) CancellationException(java.util.concurrent.CancellationException) Foundation(org.concord.energy3d.model.Foundation) PrimitivePickResults(com.ardor3d.intersection.PrimitivePickResults) PickResults(com.ardor3d.intersection.PickResults) HousePart(org.concord.energy3d.model.HousePart)

Example 50 with ReadOnlyVector3

use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.

the class SolarRadiation method setupImportedMeshes.

private void setupImportedMeshes() {
    for (final HousePart part : Scene.getInstance().getParts()) {
        if (part instanceof Foundation) {
            final Foundation foundation = (Foundation) part;
            final boolean nonZeroAz = !Util.isZero(foundation.getAzimuth());
            final List<Node> importedNodes = foundation.getImportedNodes();
            if (importedNodes != null) {
                for (final Node node : importedNodes) {
                    for (final Spatial s : node.getChildren()) {
                        final Mesh m = (Mesh) s;
                        final UserData ud = (UserData) m.getUserData();
                        ReadOnlyVector3 normal = ud.getNormal();
                        if (nonZeroAz) {
                            // if the foundation is rotated, rotate the imported meshes, too, but this doesn't alter their original normals
                            // this must be recalculated in case the foundation has been rotated after loading
                            ud.setRotatedNormal(node.getRotation().applyPost(normal, null));
                            normal = ud.getRotatedNormal();
                        }
                        MeshDataStore data = onMesh.get(m);
                        if (data == null) {
                            // initialize mesh solar data and texture
                            data = initMeshTextureData(m, m, normal, true);
                            data.solarPotential = new double[MINUTES_OF_DAY / Scene.getInstance().getTimeStep()];
                        }
                    }
                }
            }
        }
    }
}
Also used : ReadOnlyVector3(com.ardor3d.math.type.ReadOnlyVector3) Spatial(com.ardor3d.scenegraph.Spatial) UserData(org.concord.energy3d.model.UserData) Node(com.ardor3d.scenegraph.Node) Mesh(com.ardor3d.scenegraph.Mesh) Foundation(org.concord.energy3d.model.Foundation) HousePart(org.concord.energy3d.model.HousePart)

Aggregations

ReadOnlyVector3 (com.ardor3d.math.type.ReadOnlyVector3)125 Vector3 (com.ardor3d.math.Vector3)88 CullHint (com.ardor3d.scenegraph.hint.CullHint)60 FloatBuffer (java.nio.FloatBuffer)45 TPoint (org.poly2tri.triangulation.point.TPoint)44 Point (org.poly2tri.geometry.primitives.Point)34 PolygonPoint (org.poly2tri.geometry.polygon.PolygonPoint)32 Mesh (com.ardor3d.scenegraph.Mesh)25 Spatial (com.ardor3d.scenegraph.Spatial)25 ArrayList (java.util.ArrayList)23 Node (com.ardor3d.scenegraph.Node)18 PickingHint (com.ardor3d.scenegraph.hint.PickingHint)18 Ray3 (com.ardor3d.math.Ray3)16 PickResults (com.ardor3d.intersection.PickResults)15 PrimitivePickResults (com.ardor3d.intersection.PrimitivePickResults)15 ArdorVector3Point (org.poly2tri.triangulation.point.ardor3d.ArdorVector3Point)15 TriangulationPoint (org.poly2tri.triangulation.TriangulationPoint)13 Matrix3 (com.ardor3d.math.Matrix3)10 CancellationException (java.util.concurrent.CancellationException)10 Vector2 (com.ardor3d.math.Vector2)9