use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.
the class SolarRadiation method updateTextureCoords.
private void updateTextureCoords(final Mesh drawMesh) {
final MeshDataStore data = onMesh.get(drawMesh);
final ReadOnlyVector3 o = data.p0;
final ReadOnlyVector3 u = data.u.multiply(Util.roundToPowerOfTwo(data.cols) * Scene.getInstance().getSolarStep(), null);
final ReadOnlyVector3 v = data.v.multiply(Util.roundToPowerOfTwo(data.rows) * Scene.getInstance().getSolarStep(), null);
final FloatBuffer vertexBuffer = drawMesh.getMeshData().getVertexBuffer();
vertexBuffer.rewind();
final FloatBuffer textureBuffer = drawMesh.getMeshData().getTextureBuffer(0);
if (textureBuffer != null) {
textureBuffer.rewind();
while (vertexBuffer.hasRemaining()) {
final ReadOnlyVector3 p = drawMesh.localToWorld(new Vector3(vertexBuffer.get(), vertexBuffer.get(), vertexBuffer.get()), null);
final Vector3 uP = Util.closestPoint(o, u, p, v.negate(null));
final Vector3 vP = Util.closestPoint(o, v, p, u.negate(null));
if (uP != null && vP != null) {
final float uScale = (float) (uP.distance(o) / u.length());
final float vScale = (float) (vP.distance(o) / v.length());
textureBuffer.put(uScale).put(vScale);
}
}
}
}
use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.
the class SolarRadiation method computeOnMirror.
// unlike PV solar panels, no indirect (ambient or diffuse) radiation should be included in reflection calculation
private void computeOnMirror(final int minute, final ReadOnlyVector3 directionTowardSun, final Mirror mirror) {
final int nx = Scene.getInstance().getMirrorNx();
final int ny = Scene.getInstance().getMirrorNy();
final Foundation target = mirror.getReceiver();
if (target != null) {
final Calendar calendar = Heliodon.getInstance().getCalendar();
calendar.set(Calendar.HOUR_OF_DAY, (int) ((double) minute / (double) SolarRadiation.MINUTES_OF_DAY * 24.0));
calendar.set(Calendar.MINUTE, minute % 60);
mirror.draw();
}
// nx*ny*60: nx*ny is to get the unit cell area of the nx*ny grid; 60 is to convert the unit of timeStep from minute to kWh
final double a = mirror.getMirrorWidth() * mirror.getMirrorHeight() * Scene.getInstance().getTimeStep() / (nx * ny * 60.0);
final ReadOnlyVector3 normal = mirror.getNormal();
if (normal == null) {
throw new RuntimeException("Normal is null");
}
final Mesh mesh = mirror.getRadiationMesh();
MeshDataStore data = onMesh.get(mesh);
if (data == null) {
data = initMeshTextureDataOnRectangle(mesh, nx, ny);
}
final ReadOnlyVector3 offset = directionTowardSun.multiply(1, null);
final double dot = normal.dot(directionTowardSun);
double directRadiation = 0;
if (dot > 0) {
directRadiation += calculateDirectRadiation(directionTowardSun, normal);
}
final FloatBuffer vertexBuffer = mesh.getMeshData().getVertexBuffer();
// (0, 0)
final Vector3 p0 = new Vector3(vertexBuffer.get(3), vertexBuffer.get(4), vertexBuffer.get(5));
// (1, 0)
final Vector3 p1 = new Vector3(vertexBuffer.get(6), vertexBuffer.get(7), vertexBuffer.get(8));
// (0, 1)
final Vector3 p2 = new Vector3(vertexBuffer.get(0), vertexBuffer.get(1), vertexBuffer.get(2));
// final Vector3 q0 = drawMesh.localToWorld(p0, null);
// final Vector3 q1 = drawMesh.localToWorld(p1, null);
// final Vector3 q2 = drawMesh.localToWorld(p2, null);
// System.out.println("***" + q0.distance(q1) * Scene.getInstance().getAnnotationScale() + "," + q0.distance(q2) * Scene.getInstance().getAnnotationScale());
// this is the longer side (supposed to be y)
final Vector3 u = p1.subtract(p0, null).normalizeLocal();
// this is the shorter side (supposed to be x)
final Vector3 v = p2.subtract(p0, null).normalizeLocal();
// x and y must be swapped to have correct heat map texture, because nx represents rows and ny columns as we call initMeshTextureDataOnRectangle(mesh, nx, ny)
final double xSpacing = p1.distance(p0) / nx;
final double ySpacing = p2.distance(p0) / ny;
final Vector3 receiver = target != null ? target.getSolarReceiverCenter() : null;
List<Mesh> towerCollisionMeshes = null;
if (target != null) {
towerCollisionMeshes = new ArrayList<Mesh>();
for (final HousePart child : target.getChildren()) {
towerCollisionMeshes.add((Mesh) child.getRadiationCollisionSpatial());
}
final List<Roof> roofs = target.getRoofs();
if (!roofs.isEmpty()) {
for (final Roof r : roofs) {
for (final Spatial roofPart : r.getRoofPartsRoot().getChildren()) {
towerCollisionMeshes.add((Mesh) ((Node) roofPart).getChild(6));
}
}
}
}
final int iMinute = minute / Scene.getInstance().getTimeStep();
final boolean reflectionMapOnly = Scene.getInstance().getOnlyReflectedEnergyInMirrorSolarMap();
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
final ReadOnlyVector3 p = mesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
if (dot > 0) {
final PickResults pickResults = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != mesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
// for heat map generation
if (!reflectionMapOnly) {
data.dailySolarIntensity[x][y] += directRadiation;
}
if (receiver != null) {
// for concentrated energy calculation
final Vector3 toReceiver = receiver.subtract(p, null);
final Ray3 rayToReceiver = new Ray3(p, toReceiver.normalize(null));
final PickResults pickResultsToReceiver = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != mesh) {
if (towerCollisionMeshes == null || (towerCollisionMeshes != null && !towerCollisionMeshes.contains(spatial))) {
PickingUtil.findPick(spatial, rayToReceiver, pickResultsToReceiver, false);
if (pickResultsToReceiver.getNumber() != 0) {
break;
}
}
}
}
if (pickResultsToReceiver.getNumber() == 0) {
final double r = directRadiation * Atmosphere.getTransmittance(toReceiver.length() * Scene.getInstance().getAnnotationScale() * 0.001, false);
mirror.getSolarPotential()[iMinute] += r * a;
if (reflectionMapOnly) {
data.dailySolarIntensity[x][y] += r;
}
}
}
}
}
}
}
}
use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.
the class SolarRadiation method computeOnImportedMesh.
private void computeOnImportedMesh(final int minute, final ReadOnlyVector3 directionTowardSun, final Foundation foundation, final Mesh mesh) {
final UserData userData = (UserData) mesh.getUserData();
if (!userData.isReachable()) {
return;
}
final ReadOnlyVector3 normal = userData.getRotatedNormal() == null ? userData.getNormal() : userData.getRotatedNormal();
final MeshDataStore data = onMesh.get(mesh);
final int timeStep = Scene.getInstance().getTimeStep();
final int iMinute = minute / timeStep;
final double dot = normal.dot(directionTowardSun);
final double directRadiation = dot > 0 ? calculateDirectRadiation(directionTowardSun, normal) : 0;
final double indirectRadiation = calculateDiffuseAndReflectedRadiation(directionTowardSun, normal);
final double solarStep = Scene.getInstance().getSolarStep();
final double annotationScale = Scene.getInstance().getAnnotationScale();
final double scaleFactor = annotationScale * annotationScale / 60 * timeStep;
final float absorption = 1 - foundation.getAlbedo();
for (int col = 0; col < data.cols; col++) {
// final double w = col == data.cols - 1 ? data.p2.distance(data.u.multiply(col * solarStep, null).addLocal(data.p0)) : solarStep;
final double w = col == data.cols - 1 ? data.p2.distance(data.p0) - col * solarStep : solarStep;
final ReadOnlyVector3 pU = data.u.multiply(col * solarStep + 0.5 * w, null).addLocal(data.p0);
for (int row = 0; row < data.rows; row++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
if (data.dailySolarIntensity[row][col] == -1) {
continue;
}
final double h = row == data.rows - 1 ? data.p1.distance(data.p0) - row * solarStep : solarStep;
// cannot do offset as in computeOnMesh
final ReadOnlyVector3 p = data.v.multiply(row * solarStep + 0.5 * h, null).addLocal(pU);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
final PickResults pickResults = new PrimitivePickResults();
// assuming that indirect (ambient or diffuse) radiation can always reach a grid point
double radiation = indirectRadiation;
final double scaledArea = w * h * scaleFactor;
if (dot > 0) {
for (final Spatial spatial : collidables) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
if (spatial != mesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
radiation += directRadiation;
}
}
data.dailySolarIntensity[row][col] += Scene.getInstance().getOnlyAbsorptionInSolarMap() ? absorption * radiation : radiation;
if (data.solarPotential != null) {
data.solarPotential[iMinute] += radiation * scaledArea;
}
// sum all the solar energy up over all meshes and store in the foundation's solar potential array
foundation.getSolarPotential()[iMinute] += radiation * scaledArea;
}
}
}
use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.
the class SolarRadiation method computeOnFresnelReflector.
// unlike PV solar panels, no indirect (ambient or diffuse) radiation should be included in reflection calculation
private void computeOnFresnelReflector(final int minute, final ReadOnlyVector3 directionTowardSun, final FresnelReflector reflector) {
final int nx = reflector.getNSectionLength();
final int ny = reflector.getNSectionWidth();
final Foundation target = reflector.getReceiver();
if (target != null) {
final Calendar calendar = Heliodon.getInstance().getCalendar();
calendar.set(Calendar.HOUR_OF_DAY, (int) ((double) minute / (double) SolarRadiation.MINUTES_OF_DAY * 24.0));
calendar.set(Calendar.MINUTE, minute % 60);
reflector.draw();
}
// nx*ny*60: nx*ny is to get the unit cell area of the nx*ny grid; 60 is to convert the unit of timeStep from minute to kWh
final double a = reflector.getModuleWidth() * reflector.getLength() * Scene.getInstance().getTimeStep() / (nx * ny * 60.0);
final ReadOnlyVector3 normal = reflector.getNormal();
if (normal == null) {
throw new RuntimeException("Normal is null");
}
final Mesh mesh = reflector.getRadiationMesh();
MeshDataStore data = onMesh.get(mesh);
if (data == null) {
data = initMeshTextureDataOnRectangle(mesh, nx, ny);
}
final ReadOnlyVector3 offset = directionTowardSun.multiply(1, null);
final double dot = normal.dot(directionTowardSun);
double directRadiation = 0;
if (dot > 0) {
directRadiation += calculateDirectRadiation(directionTowardSun, normal);
}
final FloatBuffer vertexBuffer = mesh.getMeshData().getVertexBuffer();
// (0, 0)
final Vector3 p0 = new Vector3(vertexBuffer.get(3), vertexBuffer.get(4), vertexBuffer.get(5));
// (1, 0)
final Vector3 p1 = new Vector3(vertexBuffer.get(6), vertexBuffer.get(7), vertexBuffer.get(8));
// (0, 1)
final Vector3 p2 = new Vector3(vertexBuffer.get(0), vertexBuffer.get(1), vertexBuffer.get(2));
// final Vector3 q0 = mesh.localToWorld(p0, null);
// final Vector3 q1 = mesh.localToWorld(p1, null);
// final Vector3 q2 = mesh.localToWorld(p2, null);
// System.out.println("***" + q0.distance(q1) * Scene.getInstance().getAnnotationScale() + "," + q0.distance(q2) * Scene.getInstance().getAnnotationScale());
// this is the longer side (supposed to be y)
final Vector3 u = p1.subtract(p0, null).normalizeLocal();
// this is the shorter side (supposed to be x)
final Vector3 v = p2.subtract(p0, null).normalizeLocal();
// x and y must be swapped to have correct heat map texture, because nx represents rows and ny columns as we call initMeshTextureDataOnRectangle(mesh, nx, ny)
final double xSpacing = p1.distance(p0) / nx;
final double ySpacing = p2.distance(p0) / ny;
final Vector3 absorber = target != null ? target.getSolarReceiverCenter() : null;
List<Mesh> absorberCollisionMeshes = null;
if (target != null) {
absorberCollisionMeshes = new ArrayList<Mesh>();
for (final HousePart child : target.getChildren()) {
absorberCollisionMeshes.add((Mesh) child.getRadiationCollisionSpatial());
}
final List<Roof> roofs = target.getRoofs();
if (!roofs.isEmpty()) {
for (final Roof r : roofs) {
for (final Spatial roofPart : r.getRoofPartsRoot().getChildren()) {
absorberCollisionMeshes.add((Mesh) ((Node) roofPart).getChild(6));
}
}
}
}
final int iMinute = minute / Scene.getInstance().getTimeStep();
final boolean reflectionMapOnly = Scene.getInstance().getOnlyReflectedEnergyInMirrorSolarMap();
for (int x = 0; x < nx; x++) {
for (int y = 0; y < ny; y++) {
if (EnergyPanel.getInstance().isCancelled()) {
throw new CancellationException();
}
final Vector3 u2 = u.multiply(xSpacing * (x + 0.5), null);
final Vector3 v2 = v.multiply(ySpacing * (y + 0.5), null);
final ReadOnlyVector3 p = mesh.getWorldTransform().applyForward(p0.add(v2, null).addLocal(u2)).addLocal(offset);
final Ray3 pickRay = new Ray3(p, directionTowardSun);
if (dot > 0) {
final PickResults pickResults = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != mesh) {
PickingUtil.findPick(spatial, pickRay, pickResults, false);
if (pickResults.getNumber() != 0) {
break;
}
}
}
if (pickResults.getNumber() == 0) {
// for heat map generation
if (!reflectionMapOnly) {
data.dailySolarIntensity[x][y] += directRadiation;
}
// TODO: Edge losses are not considered yet
if (absorber != null) {
// TODO: This calculation is not exactly accurate as the collision detection assumes that the ray emits from a grid point on the reflector to
// the parallel position on the absorber tube -- without considering the actual direction of the reflected light
final Vector3 toAbsorber = absorber.subtract(p, null);
toAbsorber.setY(0);
final Ray3 rayToAbsorber = new Ray3(p, toAbsorber.normalize(null));
final PickResults pickResultsToAbsorber = new PrimitivePickResults();
for (final Spatial spatial : collidables) {
if (spatial != mesh) {
if (absorberCollisionMeshes == null || (absorberCollisionMeshes != null && !absorberCollisionMeshes.contains(spatial))) {
PickingUtil.findPick(spatial, rayToAbsorber, pickResultsToAbsorber, false);
if (pickResultsToAbsorber.getNumber() != 0) {
// FIXME: how to stop the ray when it hits the absorber?
break;
}
}
}
}
if (pickResultsToAbsorber.getNumber() == 0) {
final double r = directRadiation * Atmosphere.getTransmittance(toAbsorber.length() * Scene.getInstance().getAnnotationScale() * 0.001, false);
reflector.getSolarPotential()[iMinute] += r * a;
if (reflectionMapOnly) {
data.dailySolarIntensity[x][y] += r;
}
}
}
}
}
}
}
}
use of com.ardor3d.math.type.ReadOnlyVector3 in project energy3d by concord-consortium.
the class SolarRadiation method setupImportedMeshes.
private void setupImportedMeshes() {
for (final HousePart part : Scene.getInstance().getParts()) {
if (part instanceof Foundation) {
final Foundation foundation = (Foundation) part;
final boolean nonZeroAz = !Util.isZero(foundation.getAzimuth());
final List<Node> importedNodes = foundation.getImportedNodes();
if (importedNodes != null) {
for (final Node node : importedNodes) {
for (final Spatial s : node.getChildren()) {
final Mesh m = (Mesh) s;
final UserData ud = (UserData) m.getUserData();
ReadOnlyVector3 normal = ud.getNormal();
if (nonZeroAz) {
// if the foundation is rotated, rotate the imported meshes, too, but this doesn't alter their original normals
// this must be recalculated in case the foundation has been rotated after loading
ud.setRotatedNormal(node.getRotation().applyPost(normal, null));
normal = ud.getRotatedNormal();
}
MeshDataStore data = onMesh.get(m);
if (data == null) {
// initialize mesh solar data and texture
data = initMeshTextureData(m, m, normal, true);
data.solarPotential = new double[MINUTES_OF_DAY / Scene.getInstance().getTimeStep()];
}
}
}
}
}
}
}
Aggregations