use of com.jme3.effect.ParticleMesh.Type in project jmonkeyengine by jMonkeyEngine.
the class AnimationFactory method interpolate.
/**
* Interpolates over the key frames for the given keyFrame array and the given type of transform
* @param keyFrames the keyFrames array
* @param type the type of transforms
*/
private void interpolate(Object[] keyFrames, Type type) {
int i = 0;
while (i < totalFrames) {
//fetching the next keyFrame index transform in the array
int key = getNextKeyFrame(i, keyFrames);
if (key != -1) {
//computing the frame span to interpolate over
int span = key - i;
//interating over the frames
for (int j = i; j <= key; j++) {
// computing interpolation value
float val = (float) (j - i) / (float) span;
//interpolationg depending on the transform type
switch(type) {
case Translation:
translations[j] = FastMath.interpolateLinear(val, (Vector3f) keyFrames[i], (Vector3f) keyFrames[key]);
break;
case Rotation:
Quaternion rot = new Quaternion();
rotations[j] = rot.slerp(((Rotation) keyFrames[i]).rotation, ((Rotation) keyFrames[key]).rotation, val);
break;
case Scale:
scales[j] = FastMath.interpolateLinear(val, (Vector3f) keyFrames[i], (Vector3f) keyFrames[key]);
break;
}
}
//jumping to the next keyFrame
i = key;
} else {
//No more key frame, filling the array witht he last transform computed.
for (int j = i; j < totalFrames; j++) {
switch(type) {
case Translation:
translations[j] = ((Vector3f) keyFrames[i]).clone();
break;
case Rotation:
rotations[j] = ((Quaternion) ((Rotation) keyFrames[i]).rotation).clone();
break;
case Scale:
scales[j] = ((Vector3f) keyFrames[i]).clone();
break;
}
}
//we're done
i = totalFrames;
}
}
}
use of com.jme3.effect.ParticleMesh.Type in project jmonkeyengine by jMonkeyEngine.
the class SinglePassAndImageBasedLightingLogic method updateLightListUniforms.
/**
* Uploads the lights in the light list as two uniform arrays.<br/><br/> *
* <p>
* <code>uniform vec4 g_LightColor[numLights];</code><br/> //
* g_LightColor.rgb is the diffuse/specular color of the light.<br/> //
* g_Lightcolor.a is the type of light, 0 = Directional, 1 = Point, <br/> //
* 2 = Spot. <br/> <br/>
* <code>uniform vec4 g_LightPosition[numLights];</code><br/> //
* g_LightPosition.xyz is the position of the light (for point lights)<br/>
* // or the direction of the light (for directional lights).<br/> //
* g_LightPosition.w is the inverse radius (1/r) of the light (for
* attenuation) <br/> </p>
*/
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex, int lastTexUnit) {
if (numLights == 0) {
// this shader does not do lighting, ignore.
return 0;
}
Uniform lightData = shader.getUniform("g_LightData");
//8 lights * max 3
lightData.setVector4Length(numLights * 3);
Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
Uniform lightProbeData = shader.getUniform("g_LightProbeData");
lightProbeData.setVector4Length(1);
Uniform lightProbeIrrMap = shader.getUniform("g_IrradianceMap");
Uniform lightProbePemMap = shader.getUniform("g_PrefEnvMap");
lightProbe = null;
if (startIndex != 0) {
// apply additive blending for 2nd and future passes
rm.getRenderer().applyRenderState(ADDITIVE_LIGHT);
ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
} else {
lightProbe = extractIndirectLights(lightList, true);
ambientColor.setValue(VarType.Vector4, ambientLightColor);
}
//If there is a lightProbe in the list we force it's render on the first pass
if (lightProbe != null) {
BoundingSphere s = (BoundingSphere) lightProbe.getBounds();
lightProbeData.setVector4InArray(lightProbe.getPosition().x, lightProbe.getPosition().y, lightProbe.getPosition().z, 1f / s.getRadius(), 0);
//assigning new texture indexes
int irrUnit = lastTexUnit++;
int pemUnit = lastTexUnit++;
rm.getRenderer().setTexture(irrUnit, lightProbe.getIrradianceMap());
lightProbeIrrMap.setValue(VarType.Int, irrUnit);
rm.getRenderer().setTexture(pemUnit, lightProbe.getPrefilteredEnvMap());
lightProbePemMap.setValue(VarType.Int, pemUnit);
} else {
//Disable IBL for this pass
lightProbeData.setVector4InArray(0, 0, 0, -1, 0);
}
int lightDataIndex = 0;
TempVars vars = TempVars.get();
Vector4f tmpVec = vars.vect4f1;
int curIndex;
int endIndex = numLights + startIndex;
for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
Light l = lightList.get(curIndex);
if (l.getType() == Light.Type.Ambient) {
endIndex++;
continue;
}
ColorRGBA color = l.getColor();
if (l.getType() != Light.Type.Probe) {
lightData.setVector4InArray(color.getRed(), color.getGreen(), color.getBlue(), l.getType().getId(), lightDataIndex);
lightDataIndex++;
}
switch(l.getType()) {
case Directional:
DirectionalLight dl = (DirectionalLight) l;
Vector3f dir = dl.getDirection();
//Data directly sent in view space to avoid a matrix mult for each pixel
tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
lightDataIndex++;
break;
case Point:
PointLight pl = (PointLight) l;
Vector3f pos = pl.getPosition();
float invRadius = pl.getInvRadius();
tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
lightDataIndex++;
break;
case Spot:
SpotLight sl = (SpotLight) l;
Vector3f pos2 = sl.getPosition();
Vector3f dir2 = sl.getDirection();
float invRange = sl.getInvSpotRange();
float spotAngleCos = sl.getPackedAngleCos();
tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
lightDataIndex++;
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
lightDataIndex++;
break;
default:
throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
}
}
vars.release();
//Padding of unsued buffer space
while (lightDataIndex < numLights * 3) {
lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
lightDataIndex++;
}
return curIndex;
}
use of com.jme3.effect.ParticleMesh.Type in project jmonkeyengine by jMonkeyEngine.
the class SinglePassLightingLogic method updateLightListUniforms.
/**
* Uploads the lights in the light list as two uniform arrays.<br/><br/> *
* <p>
* <code>uniform vec4 g_LightColor[numLights];</code><br/> //
* g_LightColor.rgb is the diffuse/specular color of the light.<br/> //
* g_Lightcolor.a is the type of light, 0 = Directional, 1 = Point, <br/> //
* 2 = Spot. <br/> <br/>
* <code>uniform vec4 g_LightPosition[numLights];</code><br/> //
* g_LightPosition.xyz is the position of the light (for point lights)<br/>
* // or the direction of the light (for directional lights).<br/> //
* g_LightPosition.w is the inverse radius (1/r) of the light (for
* attenuation) <br/> </p>
*/
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex) {
if (numLights == 0) {
// this shader does not do lighting, ignore.
return 0;
}
Uniform lightData = shader.getUniform("g_LightData");
//8 lights * max 3
lightData.setVector4Length(numLights * 3);
Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
if (startIndex != 0) {
// apply additive blending for 2nd and future passes
rm.getRenderer().applyRenderState(ADDITIVE_LIGHT);
ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
} else {
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, true, ambientLightColor));
}
int lightDataIndex = 0;
TempVars vars = TempVars.get();
Vector4f tmpVec = vars.vect4f1;
int curIndex;
int endIndex = numLights + startIndex;
for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
Light l = lightList.get(curIndex);
if (l.getType() == Light.Type.Ambient) {
endIndex++;
continue;
}
ColorRGBA color = l.getColor();
//Color
lightData.setVector4InArray(color.getRed(), color.getGreen(), color.getBlue(), l.getType().getId(), lightDataIndex);
lightDataIndex++;
switch(l.getType()) {
case Directional:
DirectionalLight dl = (DirectionalLight) l;
Vector3f dir = dl.getDirection();
//Data directly sent in view space to avoid a matrix mult for each pixel
tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
// tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
lightDataIndex++;
break;
case Point:
PointLight pl = (PointLight) l;
Vector3f pos = pl.getPosition();
float invRadius = pl.getInvRadius();
tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
//tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
lightDataIndex++;
break;
case Spot:
SpotLight sl = (SpotLight) l;
Vector3f pos2 = sl.getPosition();
Vector3f dir2 = sl.getDirection();
float invRange = sl.getInvSpotRange();
float spotAngleCos = sl.getPackedAngleCos();
tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
lightDataIndex++;
//We transform the spot direction in view space here to save 5 varying later in the lighting shader
//one vec4 less and a vec4 that becomes a vec3
//the downside is that spotAngleCos decoding happens now in the frag shader.
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
lightDataIndex++;
break;
case Probe:
break;
default:
throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
}
}
vars.release();
//Padding of unsued buffer space
while (lightDataIndex < numLights * 3) {
lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
lightDataIndex++;
}
return curIndex;
}
use of com.jme3.effect.ParticleMesh.Type in project jmonkeyengine by jMonkeyEngine.
the class TechniqueDef method loadShader.
private Shader loadShader(AssetManager assetManager, EnumSet<Caps> rendererCaps, DefineList defines) {
StringBuilder sb = new StringBuilder();
sb.append(shaderPrologue);
defines.generateSource(sb, defineNames, defineTypes);
String definesSourceCode = sb.toString();
Shader shader;
if (isUsingShaderNodes()) {
ShaderGenerator shaderGenerator = assetManager.getShaderGenerator(rendererCaps);
if (shaderGenerator == null) {
throw new UnsupportedOperationException("ShaderGenerator was not initialized, " + "make sure assetManager.getGenerator(caps) has been called");
}
shaderGenerator.initialize(this);
shader = shaderGenerator.generateShader(definesSourceCode);
} else {
shader = new Shader();
for (ShaderType type : ShaderType.values()) {
String language = shaderLanguages.get(type);
String shaderSourceAssetName = shaderNames.get(type);
if (language == null || shaderSourceAssetName == null) {
continue;
}
String shaderSourceCode = (String) assetManager.loadAsset(shaderSourceAssetName);
shader.addSource(type, shaderSourceAssetName, shaderSourceCode, definesSourceCode, language);
}
}
if (getWorldBindings() != null) {
for (UniformBinding binding : getWorldBindings()) {
shader.addUniformBinding(binding);
}
}
return shader;
}
use of com.jme3.effect.ParticleMesh.Type in project jmonkeyengine by jMonkeyEngine.
the class Spatial method clone.
/**
* @return A clone of this Spatial, the scene graph in its entirety
* is cloned and can be altered independently of the original scene graph.
*
* Note that meshes of geometries are not cloned explicitly, they
* are shared if static, or specially cloned if animated.
*
* @see Mesh#cloneForAnim()
*/
public Spatial clone(boolean cloneMaterial) {
// Setup the cloner for the type of cloning we want to do.
Cloner cloner = new Cloner();
// First, we definitely do not want to clone our own parent
cloner.setClonedValue(parent, null);
// aren't cloned also
if (!cloneMaterial) {
cloner.setCloneFunction(Material.class, new IdentityCloneFunction<Material>());
}
// By default the meshes are not cloned. The geometry
// may choose to selectively force them to be cloned but
// normally they will be shared
cloner.setCloneFunction(Mesh.class, new IdentityCloneFunction<Mesh>());
// Clone it!
Spatial clone = cloner.clone(this);
// Because we've nulled the parent out we need to make sure
// the transforms and stuff get refreshed.
clone.setTransformRefresh();
clone.setLightListRefresh();
clone.setMatParamOverrideRefresh();
return clone;
}
Aggregations