use of com.jme3.scene.VertexBuffer in project jmonkeyengine by jMonkeyEngine.
the class TextureAtlas method applyCoords.
/**
* Applies the texture coordinates to the given output mesh
* if the DiffuseMap or ColorMap of the input geometry exist in the atlas.
* @param geom The geometry to change the texture coordinate buffer on.
* @param offset Target buffer offset.
* @param outMesh The mesh to set the coords in (can be same as input).
* @return true if texture has been found and coords have been changed, false otherwise.
*/
public boolean applyCoords(Geometry geom, int offset, Mesh outMesh) {
Mesh inMesh = geom.getMesh();
geom.computeWorldMatrix();
VertexBuffer inBuf = inMesh.getBuffer(Type.TexCoord);
VertexBuffer outBuf = outMesh.getBuffer(Type.TexCoord);
if (inBuf == null || outBuf == null) {
throw new IllegalStateException("Geometry mesh has no texture coordinate buffer.");
}
Texture tex = getMaterialTexture(geom, "DiffuseMap");
if (tex == null) {
tex = getMaterialTexture(geom, "ColorMap");
}
if (tex != null) {
TextureAtlasTile tile = getAtlasTile(tex);
if (tile != null) {
FloatBuffer inPos = (FloatBuffer) inBuf.getData();
FloatBuffer outPos = (FloatBuffer) outBuf.getData();
tile.transformTextureCoords(inPos, offset, outPos);
return true;
} else {
return false;
}
} else {
throw new IllegalStateException("Geometry has no proper texture.");
}
}
use of com.jme3.scene.VertexBuffer in project jmonkeyengine by jMonkeyEngine.
the class MeshBuffers method getPositionsBuffer.
/**
* @return positions buffer
*/
public VertexBuffer getPositionsBuffer() {
VertexBuffer positionBuffer = new VertexBuffer(Type.Position);
Vector3f[] data = verts.toArray(new Vector3f[verts.size()]);
positionBuffer.setupData(Usage.Static, 3, Format.Float, BufferUtils.createFloatBuffer(data));
return positionBuffer;
}
use of com.jme3.scene.VertexBuffer in project jmonkeyengine by jMonkeyEngine.
the class MaterialContext method applyMaterial.
/**
* Applies material to a given geometry.
*
* @param geometry
* the geometry
* @param geometriesOMA
* the geometries OMA
* @param userDefinedUVCoordinates
* UV coords defined by user
* @param blenderContext
* the blender context
*/
public void applyMaterial(Geometry geometry, Long geometriesOMA, Map<String, List<Vector2f>> userDefinedUVCoordinates, BlenderContext blenderContext) {
Material material = null;
if (shadeless) {
material = new Material(blenderContext.getAssetManager(), "Common/MatDefs/Misc/Unshaded.j3md");
if (!transparent) {
diffuseColor.a = 1;
}
material.setColor("Color", diffuseColor);
} else {
material = new Material(blenderContext.getAssetManager(), "Common/MatDefs/Light/Lighting.j3md");
material.setBoolean("UseMaterialColors", Boolean.TRUE);
// setting the colors
if (!transparent) {
diffuseColor.a = 1;
}
material.setColor("Diffuse", diffuseColor);
material.setColor("Specular", specularColor);
material.setFloat("Shininess", shininess);
material.setColor("Ambient", new ColorRGBA(ambientFactor, ambientFactor, ambientFactor, 1f));
}
// applying textures
int textureIndex = 0;
if (loadedTextures != null && loadedTextures.size() > 0) {
if (loadedTextures.size() > TextureHelper.TEXCOORD_TYPES.length) {
LOGGER.log(Level.WARNING, "The blender file has defined more than {0} different textures. JME supports only {0} UV mappings.", TextureHelper.TEXCOORD_TYPES.length);
}
for (CombinedTexture combinedTexture : loadedTextures) {
if (textureIndex < TextureHelper.TEXCOORD_TYPES.length) {
String usedUserUVSet = combinedTexture.flatten(geometry, geometriesOMA, userDefinedUVCoordinates, blenderContext);
this.setTexture(material, combinedTexture.getMappingType(), combinedTexture.getResultTexture());
List<Vector2f> uvs = combinedTexture.getResultUVS();
if (uvs != null && uvs.size() > 0) {
VertexBuffer uvCoordsBuffer = new VertexBuffer(TextureHelper.TEXCOORD_TYPES[textureIndex++]);
uvCoordsBuffer.setupData(Usage.Static, 2, Format.Float, BufferUtils.createFloatBuffer(uvs.toArray(new Vector2f[uvs.size()])));
geometry.getMesh().setBuffer(uvCoordsBuffer);
}
if (usedUserUVSet != null) {
userDefinedUVCoordinates = new HashMap<>(userDefinedUVCoordinates);
userDefinedUVCoordinates.remove(usedUserUVSet);
}
} else {
LOGGER.log(Level.WARNING, "The texture could not be applied because JME only supports up to {0} different UV's.", TextureHelper.TEXCOORD_TYPES.length);
}
}
}
if (userDefinedUVCoordinates != null && userDefinedUVCoordinates.size() > 0) {
LOGGER.fine("Storing unused, user defined UV coordinates sets.");
if (userDefinedUVCoordinates.size() > TextureHelper.TEXCOORD_TYPES.length) {
LOGGER.log(Level.WARNING, "The blender file has defined more than {0} different UV coordinates for the mesh. JME supports only {0} UV coordinates buffers.", TextureHelper.TEXCOORD_TYPES.length);
}
for (Entry<String, List<Vector2f>> entry : userDefinedUVCoordinates.entrySet()) {
if (textureIndex < TextureHelper.TEXCOORD_TYPES.length) {
List<Vector2f> uvs = entry.getValue();
VertexBuffer uvCoordsBuffer = new VertexBuffer(TextureHelper.TEXCOORD_TYPES[textureIndex++]);
uvCoordsBuffer.setupData(Usage.Static, 2, Format.Float, BufferUtils.createFloatBuffer(uvs.toArray(new Vector2f[uvs.size()])));
geometry.getMesh().setBuffer(uvCoordsBuffer);
} else {
LOGGER.log(Level.WARNING, "The user's UV set named: '{0}' could not be stored because JME only supports up to {1} different UV's.", new Object[] { entry.getKey(), TextureHelper.TEXCOORD_TYPES.length });
}
}
}
// applying additional data
material.setName(name);
if (vertexColor) {
material.setBoolean(shadeless ? "VertexColor" : "UseVertexColor", true);
}
material.getAdditionalRenderState().setFaceCullMode(faceCullMode != null ? faceCullMode : blenderContext.getBlenderKey().getFaceCullMode());
if (transparent) {
material.setTransparent(true);
material.getAdditionalRenderState().setBlendMode(BlendMode.Alpha);
geometry.setQueueBucket(Bucket.Transparent);
}
geometry.setMaterial(material);
}
use of com.jme3.scene.VertexBuffer in project jmonkeyengine by jMonkeyEngine.
the class TestCustomAnim method simpleInitApp.
@Override
public void simpleInitApp() {
AmbientLight al = new AmbientLight();
rootNode.addLight(al);
DirectionalLight dl = new DirectionalLight();
dl.setDirection(Vector3f.UNIT_XYZ.negate());
rootNode.addLight(dl);
Box box = new Box(1, 1, 1);
VertexBuffer weightsHW = new VertexBuffer(Type.HWBoneWeight);
VertexBuffer indicesHW = new VertexBuffer(Type.HWBoneIndex);
indicesHW.setUsage(Usage.CpuOnly);
weightsHW.setUsage(Usage.CpuOnly);
box.setBuffer(weightsHW);
box.setBuffer(indicesHW);
// Setup bone weight buffer
FloatBuffer weights = FloatBuffer.allocate(box.getVertexCount() * 4);
VertexBuffer weightsBuf = new VertexBuffer(Type.BoneWeight);
weightsBuf.setupData(Usage.CpuOnly, 4, Format.Float, weights);
box.setBuffer(weightsBuf);
// Setup bone index buffer
ByteBuffer indices = ByteBuffer.allocate(box.getVertexCount() * 4);
VertexBuffer indicesBuf = new VertexBuffer(Type.BoneIndex);
indicesBuf.setupData(Usage.CpuOnly, 4, Format.UnsignedByte, indices);
box.setBuffer(indicesBuf);
// Create bind pose buffers
box.generateBindPose(true);
// Create skeleton
bone = new Bone("root");
bone.setBindTransforms(Vector3f.ZERO, Quaternion.IDENTITY, Vector3f.UNIT_XYZ);
bone.setUserControl(true);
skeleton = new Skeleton(new Bone[] { bone });
// Assign all verticies to bone 0 with weight 1
for (int i = 0; i < box.getVertexCount() * 4; i += 4) {
// assign vertex to bone index 0
indices.array()[i + 0] = 0;
indices.array()[i + 1] = 0;
indices.array()[i + 2] = 0;
indices.array()[i + 3] = 0;
// set weight to 1 only for first entry
weights.array()[i + 0] = 1;
weights.array()[i + 1] = 0;
weights.array()[i + 2] = 0;
weights.array()[i + 3] = 0;
}
// Maximum number of weights per bone is 1
box.setMaxNumWeights(1);
// Create model
Geometry geom = new Geometry("box", box);
geom.setMaterial(assetManager.loadMaterial("Textures/Terrain/BrickWall/BrickWall.j3m"));
Node model = new Node("model");
model.attachChild(geom);
// Create skeleton control
SkeletonControl skeletonControl = new SkeletonControl(skeleton);
model.addControl(skeletonControl);
rootNode.attachChild(model);
}
use of com.jme3.scene.VertexBuffer in project jmonkeyengine by jMonkeyEngine.
the class Cylinder method updateGeometry.
/**
* Rebuilds the cylinder based on a new set of parameters.
*
* @param axisSamples the number of samples along the axis.
* @param radialSamples the number of samples around the radial.
* @param radius the radius of the bottom of the cylinder.
* @param radius2 the radius of the top of the cylinder.
* @param height the cylinder's height.
* @param closed should the cylinder have top and bottom surfaces.
* @param inverted is the cylinder is meant to be viewed from the inside.
*/
public void updateGeometry(int axisSamples, int radialSamples, float radius, float radius2, float height, boolean closed, boolean inverted) {
this.axisSamples = axisSamples;
this.radialSamples = radialSamples;
this.radius = radius;
this.radius2 = radius2;
this.height = height;
this.closed = closed;
this.inverted = inverted;
// VertexBuffer pvb = getBuffer(Type.Position);
// VertexBuffer nvb = getBuffer(Type.Normal);
// VertexBuffer tvb = getBuffer(Type.TexCoord);
axisSamples += (closed ? 2 : 0);
// Vertices
int vertCount = axisSamples * (radialSamples + 1) + (closed ? 2 : 0);
setBuffer(Type.Position, 3, createVector3Buffer(getFloatBuffer(Type.Position), vertCount));
// Normals
setBuffer(Type.Normal, 3, createVector3Buffer(getFloatBuffer(Type.Normal), vertCount));
// Texture co-ordinates
setBuffer(Type.TexCoord, 2, createVector2Buffer(vertCount));
int triCount = ((closed ? 2 : 0) + 2 * (axisSamples - 1)) * radialSamples;
setBuffer(Type.Index, 3, createShortBuffer(getShortBuffer(Type.Index), 3 * triCount));
// generate geometry
float inverseRadial = 1.0f / radialSamples;
float inverseAxisLess = 1.0f / (closed ? axisSamples - 3 : axisSamples - 1);
float inverseAxisLessTexture = 1.0f / (axisSamples - 1);
float halfHeight = 0.5f * height;
// Generate points on the unit circle to be used in computing the mesh
// points on a cylinder slice.
float[] sin = new float[radialSamples + 1];
float[] cos = new float[radialSamples + 1];
for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
float angle = FastMath.TWO_PI * inverseRadial * radialCount;
cos[radialCount] = FastMath.cos(angle);
sin[radialCount] = FastMath.sin(angle);
}
sin[radialSamples] = sin[0];
cos[radialSamples] = cos[0];
// calculate normals
Vector3f[] vNormals = null;
Vector3f vNormal = Vector3f.UNIT_Z;
if ((height != 0.0f) && (radius != radius2)) {
vNormals = new Vector3f[radialSamples];
Vector3f vHeight = Vector3f.UNIT_Z.mult(height);
Vector3f vRadial = new Vector3f();
for (int radialCount = 0; radialCount < radialSamples; radialCount++) {
vRadial.set(cos[radialCount], sin[radialCount], 0.0f);
Vector3f vRadius = vRadial.mult(radius);
Vector3f vRadius2 = vRadial.mult(radius2);
Vector3f vMantle = vHeight.subtract(vRadius2.subtract(vRadius));
Vector3f vTangent = vRadial.cross(Vector3f.UNIT_Z);
vNormals[radialCount] = vMantle.cross(vTangent).normalize();
}
}
FloatBuffer nb = getFloatBuffer(Type.Normal);
FloatBuffer pb = getFloatBuffer(Type.Position);
FloatBuffer tb = getFloatBuffer(Type.TexCoord);
// generate the cylinder itself
Vector3f tempNormal = new Vector3f();
for (int axisCount = 0, i = 0; axisCount < axisSamples; axisCount++, i++) {
float axisFraction;
float axisFractionTexture;
int topBottom = 0;
if (!closed) {
// in [0,1]
axisFraction = axisCount * inverseAxisLess;
axisFractionTexture = axisFraction;
} else {
if (axisCount == 0) {
// bottom
topBottom = -1;
axisFraction = 0;
axisFractionTexture = inverseAxisLessTexture;
} else if (axisCount == axisSamples - 1) {
// top
topBottom = 1;
axisFraction = 1;
axisFractionTexture = 1 - inverseAxisLessTexture;
} else {
axisFraction = (axisCount - 1) * inverseAxisLess;
axisFractionTexture = axisCount * inverseAxisLessTexture;
}
}
// compute center of slice
float z = -halfHeight + height * axisFraction;
Vector3f sliceCenter = new Vector3f(0, 0, z);
// compute slice vertices with duplication at end point
int save = i;
for (int radialCount = 0; radialCount < radialSamples; radialCount++, i++) {
// in [0,1)
float radialFraction = radialCount * inverseRadial;
tempNormal.set(cos[radialCount], sin[radialCount], 0.0f);
if (vNormals != null) {
vNormal = vNormals[radialCount];
} else if (radius == radius2) {
vNormal = tempNormal;
}
if (topBottom == 0) {
if (!inverted)
nb.put(vNormal.x).put(vNormal.y).put(vNormal.z);
else
nb.put(-vNormal.x).put(-vNormal.y).put(-vNormal.z);
} else {
nb.put(0).put(0).put(topBottom * (inverted ? -1 : 1));
}
tempNormal.multLocal((radius - radius2) * axisFraction + radius2).addLocal(sliceCenter);
pb.put(tempNormal.x).put(tempNormal.y).put(tempNormal.z);
tb.put((inverted ? 1 - radialFraction : radialFraction)).put(axisFractionTexture);
}
BufferUtils.copyInternalVector3(pb, save, i);
BufferUtils.copyInternalVector3(nb, save, i);
tb.put((inverted ? 0.0f : 1.0f)).put(axisFractionTexture);
}
if (closed) {
// bottom center
pb.put(0).put(0).put(-halfHeight);
nb.put(0).put(0).put(-1 * (inverted ? -1 : 1));
tb.put(0.5f).put(0);
// top center
pb.put(0).put(0).put(halfHeight);
nb.put(0).put(0).put(1 * (inverted ? -1 : 1));
tb.put(0.5f).put(1);
}
IndexBuffer ib = getIndexBuffer();
int index = 0;
// Connectivity
for (int axisCount = 0, axisStart = 0; axisCount < axisSamples - 1; axisCount++) {
int i0 = axisStart;
int i1 = i0 + 1;
axisStart += radialSamples + 1;
int i2 = axisStart;
int i3 = i2 + 1;
for (int i = 0; i < radialSamples; i++) {
if (closed && axisCount == 0) {
if (!inverted) {
ib.put(index++, i0++);
ib.put(index++, vertCount - 2);
ib.put(index++, i1++);
} else {
ib.put(index++, i0++);
ib.put(index++, i1++);
ib.put(index++, vertCount - 2);
}
} else if (closed && axisCount == axisSamples - 2) {
ib.put(index++, i2++);
ib.put(index++, inverted ? vertCount - 1 : i3++);
ib.put(index++, inverted ? i3++ : vertCount - 1);
} else {
ib.put(index++, i0++);
ib.put(index++, inverted ? i2 : i1);
ib.put(index++, inverted ? i1 : i2);
ib.put(index++, i1++);
ib.put(index++, inverted ? i2++ : i3++);
ib.put(index++, inverted ? i3++ : i2++);
}
}
}
updateBound();
setStatic();
}
Aggregations