use of com.jme3.util.TempVars in project jmonkeyengine by jMonkeyEngine.
the class BoundingVolume method collideWith.
public int collideWith(Collidable other) {
TempVars tempVars = TempVars.get();
try {
CollisionResults tempResults = tempVars.collisionResults;
tempResults.clear();
return collideWith(other, tempResults);
} finally {
tempVars.release();
}
}
use of com.jme3.util.TempVars in project jmonkeyengine by jMonkeyEngine.
the class Intersection method intersect.
// private boolean axisTest(float a, float b, float fa, float fb, Vector3f v0, Vector3f v1, )
// private boolean axisTestX01(float a, float b, float fa, float fb,
// Vector3f center, Vector3f ext,
// Vector3f v1, Vector3f v2, Vector3f v3){
// float p0 = a * v0.y - b * v0.z;
// float p2 = a * v2.y - b * v2.z;
// if(p0 < p2){
// min = p0;
// max = p2;
// } else {
// min = p2;
// max = p0;
// }
// float rad = fa * boxhalfsize.y + fb * boxhalfsize.z;
// if(min > rad || max < -rad)
// return false;
// }
public static boolean intersect(BoundingBox bbox, Vector3f v1, Vector3f v2, Vector3f v3) {
// use separating axis theorem to test overlap between triangle and box
// need to test for overlap in these directions:
// 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle
// we do not even need to test these)
// 2) normal of the triangle
// 3) crossproduct(edge from tri, {x,y,z}-directin)
// this gives 3x3=9 more tests
TempVars vars = TempVars.get();
Vector3f tmp0 = vars.vect1, tmp1 = vars.vect2, tmp2 = vars.vect3;
Vector3f e0 = vars.vect4, e1 = vars.vect5, e2 = vars.vect6;
Vector3f center = bbox.getCenter();
Vector3f extent = bbox.getExtent(null);
// float min,max,p0,p1,p2,rad,fex,fey,fez;
// float normal[3]
// This is the fastest branch on Sun
// move everything so that the boxcenter is in (0,0,0)
v1.subtract(center, tmp0);
v2.subtract(center, tmp1);
v3.subtract(center, tmp2);
// compute triangle edges
// tri edge 0
tmp1.subtract(tmp0, e0);
// tri edge 1
tmp2.subtract(tmp1, e1);
// tri edge 2
tmp0.subtract(tmp2, e2);
// Bullet 3:
// test the 9 tests first (this was faster)
float min, max;
float p0, p1, p2, rad;
float fex = FastMath.abs(e0.x);
float fey = FastMath.abs(e0.y);
float fez = FastMath.abs(e0.z);
//AXISTEST_X01(e0[Z], e0[Y], fez, fey);
p0 = e0.z * tmp0.y - e0.y * tmp0.z;
p2 = e0.z * tmp2.y - e0.y * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.y + fey * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Y02(e0[Z], e0[X], fez, fex);
p0 = -e0.z * tmp0.x + e0.x * tmp0.z;
p2 = -e0.z * tmp2.x + e0.x * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.x + fex * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Z12(e0[Y], e0[X], fey, fex);
p1 = e0.y * tmp1.x - e0.x * tmp1.y;
p2 = e0.y * tmp2.x - e0.x * tmp2.y;
min = min(p1, p2);
max = max(p1, p2);
rad = fey * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
fex = FastMath.abs(e1.x);
fey = FastMath.abs(e1.y);
fez = FastMath.abs(e1.z);
// AXISTEST_X01(e1[Z], e1[Y], fez, fey);
p0 = e1.z * tmp0.y - e1.y * tmp0.z;
p2 = e1.z * tmp2.y - e1.y * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.y + fey * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Y02(e1[Z], e1[X], fez, fex);
p0 = -e1.z * tmp0.x + e1.x * tmp0.z;
p2 = -e1.z * tmp2.x + e1.x * tmp2.z;
min = min(p0, p2);
max = max(p0, p2);
rad = fez * extent.x + fex * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Z0(e1[Y], e1[X], fey, fex);
p0 = e1.y * tmp0.x - e1.x * tmp0.y;
p1 = e1.y * tmp1.x - e1.x * tmp1.y;
min = min(p0, p1);
max = max(p0, p1);
rad = fey * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
//
fex = FastMath.abs(e2.x);
fey = FastMath.abs(e2.y);
fez = FastMath.abs(e2.z);
// AXISTEST_X2(e2[Z], e2[Y], fez, fey);
p0 = e2.z * tmp0.y - e2.y * tmp0.z;
p1 = e2.z * tmp1.y - e2.y * tmp1.z;
min = min(p0, p1);
max = max(p0, p1);
rad = fez * extent.y + fey * extent.z;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Y1(e2[Z], e2[X], fez, fex);
p0 = -e2.z * tmp0.x + e2.x * tmp0.z;
p1 = -e2.z * tmp1.x + e2.x * tmp1.z;
min = min(p0, p1);
max = max(p0, p1);
rad = fez * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// AXISTEST_Z12(e2[Y], e2[X], fey, fex);
p1 = e2.y * tmp1.x - e2.x * tmp1.y;
p2 = e2.y * tmp2.x - e2.x * tmp2.y;
min = min(p1, p2);
max = max(p1, p2);
rad = fey * extent.x + fex * extent.y;
if (min > rad || max < -rad) {
vars.release();
return false;
}
// Bullet 1:
// first test overlap in the {x,y,z}-directions
// find min, max of the triangle each direction, and test for overlap in
// that direction -- this is equivalent to testing a minimal AABB around
// the triangle against the AABB
Vector3f minMax = vars.vect7;
// test in X-direction
findMinMax(tmp0.x, tmp1.x, tmp2.x, minMax);
if (minMax.x > extent.x || minMax.y < -extent.x) {
vars.release();
return false;
}
// test in Y-direction
findMinMax(tmp0.y, tmp1.y, tmp2.y, minMax);
if (minMax.x > extent.y || minMax.y < -extent.y) {
vars.release();
return false;
}
// test in Z-direction
findMinMax(tmp0.z, tmp1.z, tmp2.z, minMax);
if (minMax.x > extent.z || minMax.y < -extent.z) {
vars.release();
return false;
}
// // Bullet 2:
// // test if the box intersects the plane of the triangle
// // compute plane equation of triangle: normal * x + d = 0
// Vector3f normal = new Vector3f();
// e0.cross(e1, normal);
Plane p = vars.plane;
p.setPlanePoints(v1, v2, v3);
if (bbox.whichSide(p) == Plane.Side.Negative) {
vars.release();
return false;
}
//
// if(!planeBoxOverlap(normal,v0,boxhalfsize)) return false;
vars.release();
return true;
/* box and triangle overlaps */
}
use of com.jme3.util.TempVars in project jmonkeyengine by jMonkeyEngine.
the class BIHNode method intersectWhere.
public final int intersectWhere(Ray r, Matrix4f worldMatrix, BIHTree tree, float sceneMin, float sceneMax, CollisionResults results) {
TempVars vars = TempVars.get();
ArrayList<BIHStackData> stack = vars.bihStack;
stack.clear();
// float tHit = Float.POSITIVE_INFINITY;
Vector3f o = vars.vect1.set(r.getOrigin());
Vector3f d = vars.vect2.set(r.getDirection());
Matrix4f inv = vars.tempMat4.set(worldMatrix).invertLocal();
inv.mult(r.getOrigin(), r.getOrigin());
// Fixes rotation collision bug
inv.multNormal(r.getDirection(), r.getDirection());
// inv.multNormalAcross(r.getDirection(), r.getDirection());
float[] origins = { r.getOrigin().x, r.getOrigin().y, r.getOrigin().z };
float[] invDirections = { 1f / r.getDirection().x, 1f / r.getDirection().y, 1f / r.getDirection().z };
r.getDirection().normalizeLocal();
Vector3f v1 = vars.vect3, v2 = vars.vect4, v3 = vars.vect5;
int cols = 0;
stack.add(new BIHStackData(this, sceneMin, sceneMax));
stackloop: while (stack.size() > 0) {
BIHStackData data = stack.remove(stack.size() - 1);
BIHNode node = data.node;
float tMin = data.min, tMax = data.max;
if (tMax < tMin) {
continue;
}
leafloop: while (node.axis != 3) {
// while node is not a leaf
int a = node.axis;
// find the origin and direction value for the given axis
float origin = origins[a];
float invDirection = invDirections[a];
float tNearSplit, tFarSplit;
BIHNode nearNode, farNode;
tNearSplit = (node.leftPlane - origin) * invDirection;
tFarSplit = (node.rightPlane - origin) * invDirection;
nearNode = node.left;
farNode = node.right;
if (invDirection < 0) {
float tmpSplit = tNearSplit;
tNearSplit = tFarSplit;
tFarSplit = tmpSplit;
BIHNode tmpNode = nearNode;
nearNode = farNode;
farNode = tmpNode;
}
if (tMin > tNearSplit && tMax < tFarSplit) {
continue stackloop;
}
if (tMin > tNearSplit) {
tMin = max(tMin, tFarSplit);
node = farNode;
} else if (tMax < tFarSplit) {
tMax = min(tMax, tNearSplit);
node = nearNode;
} else {
stack.add(new BIHStackData(farNode, max(tMin, tFarSplit), tMax));
tMax = min(tMax, tNearSplit);
node = nearNode;
}
}
// a leaf
for (int i = node.leftIndex; i <= node.rightIndex; i++) {
tree.getTriangle(i, v1, v2, v3);
float t = r.intersects(v1, v2, v3);
if (!Float.isInfinite(t)) {
if (worldMatrix != null) {
worldMatrix.mult(v1, v1);
worldMatrix.mult(v2, v2);
worldMatrix.mult(v3, v3);
float t_world = new Ray(o, d).intersects(v1, v2, v3);
t = t_world;
}
Vector3f contactNormal = Triangle.computeTriangleNormal(v1, v2, v3, null);
Vector3f contactPoint = new Vector3f(d).multLocal(t).addLocal(o);
float worldSpaceDist = o.distance(contactPoint);
CollisionResult cr = new CollisionResult(contactPoint, worldSpaceDist);
cr.setContactNormal(contactNormal);
cr.setTriangleIndex(tree.getTriangleIndex(i));
results.addCollision(cr);
cols++;
}
}
}
vars.release();
r.setOrigin(o);
r.setDirection(d);
return cols;
}
use of com.jme3.util.TempVars in project jmonkeyengine by jMonkeyEngine.
the class BIHNode method intersectBrute.
public final int intersectBrute(Ray r, Matrix4f worldMatrix, BIHTree tree, float sceneMin, float sceneMax, CollisionResults results) {
float tHit = Float.POSITIVE_INFINITY;
TempVars vars = TempVars.get();
Vector3f v1 = vars.vect1, v2 = vars.vect2, v3 = vars.vect3;
int cols = 0;
ArrayList<BIHStackData> stack = vars.bihStack;
stack.clear();
stack.add(new BIHStackData(this, 0, 0));
stackloop: while (stack.size() > 0) {
BIHStackData data = stack.remove(stack.size() - 1);
BIHNode node = data.node;
leafloop: while (node.axis != 3) {
// while node is not a leaf
BIHNode nearNode, farNode;
nearNode = node.left;
farNode = node.right;
stack.add(new BIHStackData(farNode, 0, 0));
node = nearNode;
}
// a leaf
for (int i = node.leftIndex; i <= node.rightIndex; i++) {
tree.getTriangle(i, v1, v2, v3);
if (worldMatrix != null) {
worldMatrix.mult(v1, v1);
worldMatrix.mult(v2, v2);
worldMatrix.mult(v3, v3);
}
float t = r.intersects(v1, v2, v3);
if (t < tHit) {
tHit = t;
Vector3f contactPoint = new Vector3f(r.direction).multLocal(tHit).addLocal(r.origin);
CollisionResult cr = new CollisionResult(contactPoint, tHit);
cr.setTriangleIndex(tree.getTriangleIndex(i));
results.addCollision(cr);
cols++;
}
}
}
vars.release();
return cols;
}
use of com.jme3.util.TempVars in project jmonkeyengine by jMonkeyEngine.
the class BoneTrack method setTime.
/**
*
* Modify the bone which this track modifies in the skeleton to contain
* the correct animation transforms for a given time.
* The transforms can be interpolated in some method from the keyframes.
*
* @param time the current time of the animation
* @param weight the weight of the animation
* @param control
* @param channel
* @param vars
*/
public void setTime(float time, float weight, AnimControl control, AnimChannel channel, TempVars vars) {
BitSet affectedBones = channel.getAffectedBones();
if (affectedBones != null && !affectedBones.get(targetBoneIndex)) {
return;
}
Bone target = control.getSkeleton().getBone(targetBoneIndex);
Vector3f tempV = vars.vect1;
Vector3f tempS = vars.vect2;
Quaternion tempQ = vars.quat1;
Vector3f tempV2 = vars.vect3;
Vector3f tempS2 = vars.vect4;
Quaternion tempQ2 = vars.quat2;
int lastFrame = times.length - 1;
if (time < 0 || lastFrame == 0) {
rotations.get(0, tempQ);
translations.get(0, tempV);
if (scales != null) {
scales.get(0, tempS);
}
} else if (time >= times[lastFrame]) {
rotations.get(lastFrame, tempQ);
translations.get(lastFrame, tempV);
if (scales != null) {
scales.get(lastFrame, tempS);
}
} else {
int startFrame = 0;
int endFrame = 1;
// use lastFrame so we never overflow the array
int i;
for (i = 0; i < lastFrame && times[i] < time; i++) {
startFrame = i;
endFrame = i + 1;
}
float blend = (time - times[startFrame]) / (times[endFrame] - times[startFrame]);
rotations.get(startFrame, tempQ);
translations.get(startFrame, tempV);
if (scales != null) {
scales.get(startFrame, tempS);
}
rotations.get(endFrame, tempQ2);
translations.get(endFrame, tempV2);
if (scales != null) {
scales.get(endFrame, tempS2);
}
tempQ.nlerp(tempQ2, blend);
tempV.interpolateLocal(tempV2, blend);
tempS.interpolateLocal(tempS2, blend);
}
// if (weight != 1f) {
target.blendAnimTransforms(tempV, tempQ, scales != null ? tempS : null, weight);
// } else {
// target.setAnimTransforms(tempV, tempQ, scales != null ? tempS : null);
// }
}
Aggregations