use of org.apache.commons.math3.exception.TooManyEvaluationsException in project GDSC-SMLM by aherbert.
the class PoissonGammaGaussianFunction method likelihood.
/**
* Compute the likelihood
*
* @param o
* The observed count
* @param e
* The expected count
* @return The likelihood
*/
public double likelihood(final double o, final double e) {
// Use the same variables as the Python code
final double cij = o;
// convert to photons
final double eta = alpha * e;
if (sigma == 0) {
// No convolution with a Gaussian. Simply evaluate for a Poisson-Gamma distribution.
final double p;
// Any observed count above zero
if (cij > 0.0) {
// The observed count converted to photons
final double nij = alpha * cij;
// The limit on eta * nij is therefore (709/2)^2 = 125670.25
if (eta * nij > 10000) {
// Approximate Bessel function i1(x) when using large x:
// i1(x) ~ exp(x)/sqrt(2*pi*x)
// However the entire equation is logged (creating transform),
// evaluated then raised to e to prevent overflow error on
// large exp(x)
final double transform = 0.5 * Math.log(alpha * eta / cij) - nij - eta + 2 * Math.sqrt(eta * nij) - Math.log(twoSqrtPi * Math.pow(eta * nij, 0.25));
p = FastMath.exp(transform);
} else {
// Second part of equation 135
p = Math.sqrt(alpha * eta / cij) * FastMath.exp(-nij - eta) * Bessel.I1(2 * Math.sqrt(eta * nij));
}
} else if (cij == 0.0) {
p = FastMath.exp(-eta);
} else {
p = 0;
}
return (p > minimumProbability) ? p : minimumProbability;
} else if (useApproximation) {
return mortensenApproximation(cij, eta);
} else {
// This code is the full evaluation of equation 7 from the supplementary information
// of the paper Chao, et al (2013) Nature Methods 10, 335-338.
// It is the full evaluation of a Poisson-Gamma-Gaussian convolution PMF.
// Read noise
final double sk = sigma;
// Gain
final double g = 1.0 / alpha;
// Observed pixel value
final double z = o;
// Expected number of photons
final double vk = eta;
// Compute the integral to infinity of:
// exp( -((z-u)/(sqrt(2)*s)).^2 - u/g ) * sqrt(vk*u/g) .* besseli(1, 2 * sqrt(vk*u/g)) ./ u;
// vk / g
final double vk_g = vk * alpha;
final double sqrt2sigma = Math.sqrt(2) * sk;
// Specify the function to integrate
UnivariateFunction f = new UnivariateFunction() {
public double value(double u) {
return eval(sqrt2sigma, z, vk_g, g, u);
}
};
// Integrate to infinity is not necessary. The convolution of the function with the
// Gaussian should be adequately sampled using a nxSD around the maximum.
// Find a bracket containing the maximum
double lower, upper;
double maxU = Math.max(1, o);
double rLower = maxU;
double rUpper = maxU + 1;
double f1 = f.value(rLower);
double f2 = f.value(rUpper);
// Calculate the simple integral and the range
double sum = f1 + f2;
boolean searchUp = f2 > f1;
if (searchUp) {
while (f2 > f1) {
f1 = f2;
rUpper += 1;
f2 = f.value(rUpper);
sum += f2;
}
maxU = rUpper - 1;
} else {
// Ensure that u stays above zero
while (f1 > f2 && rLower > 1) {
f2 = f1;
rLower -= 1;
f1 = f.value(rLower);
sum += f1;
}
maxU = (rLower > 1) ? rLower + 1 : rLower;
}
lower = Math.max(0, maxU - 5 * sk);
upper = maxU + 5 * sk;
if (useSimpleIntegration && lower > 0) {
// remaining points in the range
for (double u = rLower - 1; u >= lower; u -= 1) {
sum += f.value(u);
}
for (double u = rUpper + 1; u <= upper; u += 1) {
sum += f.value(u);
}
} else {
// Use Legendre-Gauss integrator
try {
final double relativeAccuracy = 1e-4;
final double absoluteAccuracy = 1e-8;
final int minimalIterationCount = 3;
final int maximalIterationCount = 32;
final int integrationPoints = 16;
// Use an integrator that does not use the boundary since u=0 is undefined (divide by zero)
UnivariateIntegrator i = new IterativeLegendreGaussIntegrator(integrationPoints, relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount);
sum = i.integrate(2000, f, lower, upper);
} catch (TooManyEvaluationsException ex) {
return mortensenApproximation(cij, eta);
}
}
// Compute the final probability
//final double
f1 = z / sqrt2sigma;
final double p = (FastMath.exp(-vk) / (sqrt2pi * sk)) * (FastMath.exp(-(f1 * f1)) + sum);
return (p > minimumProbability) ? p : minimumProbability;
}
}
use of org.apache.commons.math3.exception.TooManyEvaluationsException in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method getFunction.
private MultivariateFunction getFunction(final int[] limits, final double[] y, final int max, final int maxEval) {
MultivariateFunction fun = new MultivariateFunction() {
int eval = 0;
public double value(double[] point) {
IJ.showProgress(++eval, maxEval);
if (Utils.isInterrupted())
throw new TooManyEvaluationsException(maxEval);
// Compute the sum of squares between the two functions
double photons = point[0];
double gain = point[1];
double noise = point[2];
int bias = (int) Math.round(point[3]);
//System.out.printf("[%d] = %s\n", eval, Arrays.toString(point));
final double[] g = pdf(max, photons, gain, noise, bias);
double ss = 0;
for (int c = limits[0]; c <= limits[1]; c++) {
final double d = g[c] - y[c];
ss += d * d;
}
return ss;
}
};
return fun;
}
use of org.apache.commons.math3.exception.TooManyEvaluationsException in project GDSC-SMLM by aherbert.
the class EMGainAnalysis method fit.
/**
* Fit the EM-gain distribution (Gaussian * Gamma)
*
* @param h
* The distribution
*/
private void fit(int[] h) {
final int[] limits = limits(h);
final double[] x = getX(limits);
final double[] y = getY(h, limits);
Plot2 plot = new Plot2(TITLE, "ADU", "Frequency");
double yMax = Maths.max(y);
plot.setLimits(limits[0], limits[1], 0, yMax);
plot.setColor(Color.black);
plot.addPoints(x, y, Plot2.DOT);
Utils.display(TITLE, plot);
// Estimate remaining parameters.
// Assuming a gamma_distribution(shape,scale) then mean = shape * scale
// scale = gain
// shape = Photons = mean / gain
double mean = getMean(h) - bias;
// Note: if the bias is too high then the mean will be negative. Just move the bias.
while (mean < 0) {
bias -= 1;
mean += 1;
}
double photons = mean / gain;
if (simulate)
Utils.log("Simulated bias=%d, gain=%s, noise=%s, photons=%s", (int) _bias, Utils.rounded(_gain), Utils.rounded(_noise), Utils.rounded(_photons));
Utils.log("Estimate bias=%d, gain=%s, noise=%s, photons=%s", (int) bias, Utils.rounded(gain), Utils.rounded(noise), Utils.rounded(photons));
final int max = (int) x[x.length - 1];
double[] g = pdf(max, photons, gain, noise, (int) bias);
plot.setColor(Color.blue);
plot.addPoints(x, g, Plot2.LINE);
Utils.display(TITLE, plot);
// Perform a fit
CustomPowellOptimizer o = new CustomPowellOptimizer(1e-6, 1e-16, 1e-6, 1e-16);
double[] startPoint = new double[] { photons, gain, noise, bias };
int maxEval = 3000;
String[] paramNames = { "Photons", "Gain", "Noise", "Bias" };
// Set bounds
double[] lower = new double[] { 0, 0.5 * gain, 0, bias - noise };
double[] upper = new double[] { 2 * photons, 2 * gain, gain, bias + noise };
// Restart until converged.
// TODO - Maybe fix this with a better optimiser. This needs to be tested on real data.
PointValuePair solution = null;
for (int iter = 0; iter < 3; iter++) {
IJ.showStatus("Fitting histogram ... Iteration " + iter);
try {
// Basic Powell optimiser
MultivariateFunction fun = getFunction(limits, y, max, maxEval);
PointValuePair optimum = o.optimize(new MaxEval(maxEval), new ObjectiveFunction(fun), GoalType.MINIMIZE, new InitialGuess((solution == null) ? startPoint : solution.getPointRef()));
if (solution == null || optimum.getValue() < solution.getValue()) {
double[] point = optimum.getPointRef();
// Check the bounds
for (int i = 0; i < point.length; i++) {
if (point[i] < lower[i] || point[i] > upper[i]) {
throw new RuntimeException(String.format("Fit out of of estimated range: %s %f", paramNames[i], point[i]));
}
}
solution = optimum;
}
} catch (Exception e) {
IJ.log("Powell error: " + e.getMessage());
if (e instanceof TooManyEvaluationsException) {
maxEval = (int) (maxEval * 1.5);
}
}
try {
// Bounded Powell optimiser
MultivariateFunction fun = getFunction(limits, y, max, maxEval);
MultivariateFunctionMappingAdapter adapter = new MultivariateFunctionMappingAdapter(fun, lower, upper);
PointValuePair optimum = o.optimize(new MaxEval(maxEval), new ObjectiveFunction(adapter), GoalType.MINIMIZE, new InitialGuess(adapter.boundedToUnbounded((solution == null) ? startPoint : solution.getPointRef())));
double[] point = adapter.unboundedToBounded(optimum.getPointRef());
optimum = new PointValuePair(point, optimum.getValue());
if (solution == null || optimum.getValue() < solution.getValue()) {
solution = optimum;
}
} catch (Exception e) {
IJ.log("Bounded Powell error: " + e.getMessage());
if (e instanceof TooManyEvaluationsException) {
maxEval = (int) (maxEval * 1.5);
}
}
}
IJ.showStatus("");
IJ.showProgress(1);
if (solution == null) {
Utils.log("Failed to fit the distribution");
return;
}
double[] point = solution.getPointRef();
photons = point[0];
gain = point[1];
noise = point[2];
bias = (int) Math.round(point[3]);
String label = String.format("Fitted bias=%d, gain=%s, noise=%s, photons=%s", (int) bias, Utils.rounded(gain), Utils.rounded(noise), Utils.rounded(photons));
Utils.log(label);
if (simulate) {
Utils.log("Relative Error bias=%s, gain=%s, noise=%s, photons=%s", Utils.rounded(relativeError(bias, _bias)), Utils.rounded(relativeError(gain, _gain)), Utils.rounded(relativeError(noise, _noise)), Utils.rounded(relativeError(photons, _photons)));
}
// Show the PoissonGammaGaussian approximation
double[] f = null;
if (showApproximation) {
f = new double[x.length];
PoissonGammaGaussianFunction fun = new PoissonGammaGaussianFunction(1.0 / gain, noise);
final double expected = photons * gain;
for (int i = 0; i < f.length; i++) {
f[i] = fun.likelihood(x[i] - bias, expected);
//System.out.printf("x=%d, g=%f, f=%f, error=%f\n", (int) x[i], g[i], f[i],
// gdsc.smlm.fitting.utils.DoubleEquality.relativeError(g[i], f[i]));
}
yMax = Maths.maxDefault(yMax, f);
}
// Replot
g = pdf(max, photons, gain, noise, (int) bias);
plot = new Plot2(TITLE, "ADU", "Frequency");
plot.setLimits(limits[0], limits[1], 0, yMax * 1.05);
plot.setColor(Color.black);
plot.addPoints(x, y, Plot2.DOT);
plot.setColor(Color.red);
plot.addPoints(x, g, Plot2.LINE);
plot.addLabel(0, 0, label);
if (showApproximation) {
plot.setColor(Color.blue);
plot.addPoints(x, f, Plot2.LINE);
}
Utils.display(TITLE, plot);
}
use of org.apache.commons.math3.exception.TooManyEvaluationsException in project gatk by broadinstitute.
the class RobustBrentSolver method doSolve.
@Override
protected double doSolve() throws TooManyEvaluationsException, NoBracketingException {
final double min = getMin();
final double max = getMax();
final double[] xSearchGrid = createHybridSearchGrid(min, max, numBisections, depth);
final double[] fSearchGrid = Arrays.stream(xSearchGrid).map(this::computeObjectiveValue).toArray();
/* find bracketing intervals on the search grid */
final List<Bracket> bracketsList = detectBrackets(xSearchGrid, fSearchGrid);
if (bracketsList.isEmpty()) {
throw new NoBracketingException(min, max, fSearchGrid[0], fSearchGrid[fSearchGrid.length - 1]);
}
final BrentSolver solver = new BrentSolver(getRelativeAccuracy(), getAbsoluteAccuracy(), getFunctionValueAccuracy());
final List<Double> roots = bracketsList.stream().map(b -> solver.solve(getMaxEvaluations(), this::computeObjectiveValue, b.min, b.max, 0.5 * (b.min + b.max))).collect(Collectors.toList());
if (roots.size() == 1 || meritFunc == null) {
return roots.get(0);
}
final double[] merits = roots.stream().mapToDouble(meritFunc::value).toArray();
final int bestRootIndex = IntStream.range(0, roots.size()).boxed().max((i, j) -> (int) (merits[i] - merits[j])).get();
return roots.get(bestRootIndex);
}
use of org.apache.commons.math3.exception.TooManyEvaluationsException in project gatk by broadinstitute.
the class CoverageModelEMComputeBlock method cloneWithUpdatedTargetUnexplainedVarianceTargetResolved.
/**
* Performs the M-step for target-specific unexplained variance and clones the compute block
* with the updated value.
*
* @param maxIters maximum number of iterations
* @param psiUpperLimit upper limit for the unexplained variance
* @param absTol absolute error tolerance (used in root finding)
* @param relTol relative error tolerance (used in root finding)
* @param numBisections number of bisections (used in root finding)
* @param refinementDepth depth of search (used in root finding)
*
* @return a new instance of {@link CoverageModelEMComputeBlock}
*/
@QueriesICG
public CoverageModelEMComputeBlock cloneWithUpdatedTargetUnexplainedVarianceTargetResolved(final int maxIters, final double psiUpperLimit, final double absTol, final double relTol, final int numBisections, final int refinementDepth, final int numThreads) {
Utils.validateArg(maxIters > 0, "At least one iteration is required");
Utils.validateArg(psiUpperLimit >= 0, "The upper limit must be non-negative");
Utils.validateArg(absTol >= 0, "The absolute error tolerance must be non-negative");
Utils.validateArg(relTol >= 0, "The relative error tolerance must be non-negative");
Utils.validateArg(numBisections >= 0, "The number of bisections must be non-negative");
Utils.validateArg(refinementDepth >= 0, "The refinement depth must be non-negative");
Utils.validateArg(numThreads > 0, "Number of execution threads must be positive");
/* fetch the required caches */
final INDArray Psi_t = getINDArrayFromCache(CoverageModelICGCacheNode.Psi_t);
final INDArray M_st = getINDArrayFromCache(CoverageModelICGCacheNode.M_st);
final INDArray Sigma_st = getINDArrayFromCache(CoverageModelICGCacheNode.Sigma_st);
final INDArray gamma_s = getINDArrayFromCache(CoverageModelICGCacheNode.gamma_s);
final INDArray B_st = getINDArrayFromCache(CoverageModelICGCacheNode.B_st);
final ForkJoinPool forkJoinPool = new ForkJoinPool(numThreads);
final List<ImmutablePair<Double, Integer>> res;
try {
res = forkJoinPool.submit(() -> {
return IntStream.range(0, numTargets).parallel().mapToObj(ti -> {
final UnivariateFunction objFunc = psi -> calculateTargetSpecificVarianceSolverObjectiveFunction(ti, psi, M_st, Sigma_st, gamma_s, B_st);
final UnivariateFunction meritFunc = psi -> calculateTargetSpecificVarianceSolverMeritFunction(ti, psi, M_st, Sigma_st, gamma_s, B_st);
final RobustBrentSolver solver = new RobustBrentSolver(relTol, absTol, CoverageModelGlobalConstants.DEFAULT_FUNCTION_EVALUATION_ACCURACY, meritFunc, numBisections, refinementDepth);
double newPsi;
try {
newPsi = solver.solve(maxIters, objFunc, 0, psiUpperLimit);
} catch (NoBracketingException | TooManyEvaluationsException e) {
newPsi = Psi_t.getDouble(ti);
}
return new ImmutablePair<>(newPsi, solver.getEvaluations());
}).collect(Collectors.toList());
}).get();
} catch (InterruptedException | ExecutionException ex) {
throw new RuntimeException("Failure in concurrent update of target-specific unexplained variance");
}
final INDArray newPsi_t = Nd4j.create(res.stream().mapToDouble(p -> p.left).toArray(), Psi_t.shape());
final int maxIterations = Collections.max(res.stream().mapToInt(p -> p.right).boxed().collect(Collectors.toList()));
final double errNormInfinity = CoverageModelEMWorkspaceMathUtils.getINDArrayNormInfinity(newPsi_t.sub(Psi_t));
return cloneWithUpdatedPrimitiveAndSignal(CoverageModelICGCacheNode.Psi_t, newPsi_t, SubroutineSignal.builder().put(StandardSubroutineSignals.RESIDUAL_ERROR_NORM, errNormInfinity).put(StandardSubroutineSignals.ITERATIONS, maxIterations).build());
}
Aggregations