use of org.apache.commons.math3.stat.descriptive.moment.Mean in project GDSC-SMLM by aherbert.
the class BaseFunctionSolverTest method canFitSingleGaussianBetter.
void canFitSingleGaussianBetter(FunctionSolver solver, boolean applyBounds, FunctionSolver solver2, boolean applyBounds2, String name, String name2, NoiseModel noiseModel) {
double[] noise = getNoise(noiseModel);
if (solver.isWeighted())
solver.setWeights(getWeights(noiseModel));
int LOOPS = 5;
randomGenerator.setSeed(seed);
StoredDataStatistics[] stats = new StoredDataStatistics[6];
String[] statName = { "Signal", "X", "Y" };
int[] betterPrecision = new int[3];
int[] totalPrecision = new int[3];
int[] betterAccuracy = new int[3];
int[] totalAccuracy = new int[3];
int i1 = 0, i2 = 0;
for (double s : signal) {
double[] expected = createParams(1, s, 0, 0, 1);
double[] lower = null, upper = null;
if (applyBounds || applyBounds2) {
lower = createParams(0, s * 0.5, -0.2, -0.2, 0.8);
upper = createParams(3, s * 2, 0.2, 0.2, 1.2);
}
if (applyBounds)
solver.setBounds(lower, upper);
if (applyBounds2)
solver2.setBounds(lower, upper);
for (int loop = LOOPS; loop-- > 0; ) {
double[] data = drawGaussian(expected, noise, noiseModel);
for (int i = 0; i < stats.length; i++) stats[i] = new StoredDataStatistics();
for (double db : base) for (double dx : shift) for (double dy : shift) for (double dsx : factor) {
double[] p = createParams(db, s, dx, dy, dsx);
double[] fp = fitGaussian(solver, data, p, expected);
i1 += solver.getEvaluations();
double[] fp2 = fitGaussian(solver2, data, p, expected);
i2 += solver2.getEvaluations();
// Get the mean and sd (the fit precision)
compare(fp, expected, fp2, expected, Gaussian2DFunction.SIGNAL, stats[0], stats[1]);
compare(fp, expected, fp2, expected, Gaussian2DFunction.X_POSITION, stats[2], stats[3]);
compare(fp, expected, fp2, expected, Gaussian2DFunction.Y_POSITION, stats[4], stats[5]);
// Use the distance
//stats[2].add(distance(fp, expected));
//stats[3].add(distance(fp2, expected2));
}
// two sided
double alpha = 0.05;
for (int i = 0; i < stats.length; i += 2) {
double u1 = stats[i].getMean();
double u2 = stats[i + 1].getMean();
double sd1 = stats[i].getStandardDeviation();
double sd2 = stats[i + 1].getStandardDeviation();
TTest tt = new TTest();
boolean diff = tt.tTest(stats[i].getValues(), stats[i + 1].getValues(), alpha);
int index = i / 2;
String msg = String.format("%s vs %s : %.1f (%s) %s %f +/- %f vs %f +/- %f (N=%d) %b", name2, name, s, noiseModel, statName[index], u2, sd2, u1, sd1, stats[i].getN(), diff);
if (diff) {
// Different means. Check they are roughly the same
if (DoubleEquality.almostEqualRelativeOrAbsolute(u1, u2, 0.1, 0)) {
// Basically the same. Check which is more precise
if (!DoubleEquality.almostEqualRelativeOrAbsolute(sd1, sd2, 0.05, 0)) {
if (sd2 < sd1) {
betterPrecision[index]++;
println(msg + " P*");
} else
println(msg + " P");
totalPrecision[index]++;
}
} else {
// Check which is more accurate (closer to zero)
u1 = Math.abs(u1);
u2 = Math.abs(u2);
if (u2 < u1) {
betterAccuracy[index]++;
println(msg + " A*");
} else
println(msg + " A");
totalAccuracy[index]++;
}
} else {
// The same means. Check that it is more precise
if (!DoubleEquality.almostEqualRelativeOrAbsolute(sd1, sd2, 0.05, 0)) {
if (sd2 < sd1) {
betterPrecision[index]++;
println(msg + " P*");
} else
println(msg + " P");
totalPrecision[index]++;
}
}
}
}
}
int better = 0, total = 0;
for (int index = 0; index < statName.length; index++) {
better += betterPrecision[index] + betterAccuracy[index];
total += totalPrecision[index] + totalAccuracy[index];
test(name2, name, statName[index] + " P", betterPrecision[index], totalPrecision[index], printBetterDetails);
test(name2, name, statName[index] + " A", betterAccuracy[index], totalAccuracy[index], printBetterDetails);
}
test(name2, name, String.format("All (eval [%d] [%d]) : ", i2, i1), better, total, true);
}
use of org.apache.commons.math3.stat.descriptive.moment.Mean in project lucene-solr by apache.
the class DescribeEvaluator method evaluate.
public Tuple evaluate(Tuple tuple) throws IOException {
if (subEvaluators.size() != 1) {
throw new IOException("describe expects 1 column as a parameters");
}
StreamEvaluator colEval = subEvaluators.get(0);
List<Number> numbers = (List<Number>) colEval.evaluate(tuple);
DescriptiveStatistics descriptiveStatistics = new DescriptiveStatistics();
for (Number n : numbers) {
descriptiveStatistics.addValue(n.doubleValue());
}
Map map = new HashMap();
map.put("max", descriptiveStatistics.getMax());
map.put("mean", descriptiveStatistics.getMean());
map.put("min", descriptiveStatistics.getMin());
map.put("stdev", descriptiveStatistics.getStandardDeviation());
map.put("sum", descriptiveStatistics.getSum());
map.put("N", descriptiveStatistics.getN());
map.put("var", descriptiveStatistics.getVariance());
map.put("kurtosis", descriptiveStatistics.getKurtosis());
map.put("skewness", descriptiveStatistics.getSkewness());
map.put("popVar", descriptiveStatistics.getPopulationVariance());
map.put("geometricMean", descriptiveStatistics.getGeometricMean());
map.put("sumsq", descriptiveStatistics.getSumsq());
return new Tuple(map);
}
use of org.apache.commons.math3.stat.descriptive.moment.Mean in project GDSC-SMLM by aherbert.
the class PCPALMMolecules method runSimulation.
private void runSimulation(boolean resultsAvailable) {
if (resultsAvailable && !showSimulationDialog())
return;
startLog();
log("Simulation parameters");
if (blinkingDistribution == 3) {
log(" - Clusters = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Molecules/cluster = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
log(" - p-Value = %s", Utils.rounded(p, 4));
} else {
log(" - Molecules = %d", nMolecules);
log(" - Simulation size = %s um", Utils.rounded(simulationSize, 4));
log(" - Blinking rate = %s", Utils.rounded(blinkingRate, 4));
log(" - Blinking distribution = %s", BLINKING_DISTRIBUTION[blinkingDistribution]);
}
log(" - Average precision = %s nm", Utils.rounded(sigmaS, 4));
log(" - Clusters simulation = " + CLUSTER_SIMULATION[clusterSimulation]);
if (clusterSimulation > 0) {
log(" - Cluster number = %s +/- %s", Utils.rounded(clusterNumber, 4), Utils.rounded(clusterNumberSD, 4));
log(" - Cluster radius = %s nm", Utils.rounded(clusterRadius, 4));
}
final double nmPerPixel = 100;
double width = simulationSize * 1000.0;
// Allow a border of 3 x sigma for +/- precision
//if (blinkingRate > 1)
width -= 3 * sigmaS;
RandomGenerator randomGenerator = new Well19937c(System.currentTimeMillis() + System.identityHashCode(this));
RandomDataGenerator dataGenerator = new RandomDataGenerator(randomGenerator);
UniformDistribution dist = new UniformDistribution(null, new double[] { width, width, 0 }, randomGenerator.nextInt());
molecules = new ArrayList<Molecule>(nMolecules);
// Create some dummy results since the calibration is required for later analysis
results = new MemoryPeakResults();
results.setCalibration(new gdsc.smlm.results.Calibration(nmPerPixel, 1, 100));
results.setSource(new NullSource("Molecule Simulation"));
results.begin();
int count = 0;
// Generate a sequence of coordinates
ArrayList<double[]> xyz = new ArrayList<double[]>((int) (nMolecules * 1.1));
Statistics statsRadius = new Statistics();
Statistics statsSize = new Statistics();
String maskTitle = TITLE + " Cluster Mask";
ByteProcessor bp = null;
double maskScale = 0;
if (clusterSimulation > 0) {
// Simulate clusters.
// Note: In the Veatch et al. paper (Plos 1, e31457) correlation functions are built using circles
// with small radii of 4-8 Arbitrary Units (AU) or large radii of 10-30 AU. A fluctuations model is
// created at T = 1.075 Tc. It is not clear exactly how the particles are distributed.
// It may be that a mask is created first using the model. The particles are placed on the mask using
// a specified density. This simulation produces a figure to show either a damped cosine function
// (circles) or an exponential (fluctuations). The number of particles in each circle may be randomly
// determined just by density. The figure does not discuss the derivation of the cluster size
// statistic.
//
// If this plugin simulation is run with a uniform distribution and blinking rate of 1 then the damped
// cosine function is reproduced. The curve crosses g(r)=1 at a value equivalent to the average
// distance to the centre-of-mass of each drawn cluster, not the input cluster radius parameter (which
// is a hard upper limit on the distance to centre).
final int maskSize = lowResolutionImageSize;
int[] mask = null;
// scale is in nm/pixel
maskScale = width / maskSize;
ArrayList<double[]> clusterCentres = new ArrayList<double[]>();
int totalSteps = 1 + (int) Math.ceil(nMolecules / clusterNumber);
if (clusterSimulation == 2 || clusterSimulation == 3) {
// Clusters are non-overlapping circles
// Ensure the circles do not overlap by using an exclusion mask that accumulates
// out-of-bounds pixels by drawing the last cluster (plus some border) on an image. When no
// more pixels are available then stop generating molecules.
// This is done by cumulatively filling a mask and using the MaskDistribution to select
// a new point. This may be slow but it works.
// TODO - Allow clusters of different sizes...
mask = new int[maskSize * maskSize];
Arrays.fill(mask, 255);
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
double[] centre;
IJ.showStatus("Computing clusters mask");
int roiRadius = (int) Math.round((clusterRadius * 2) / maskScale);
if (clusterSimulation == 3) {
// Generate a mask of circles then sample from that.
// If we want to fill the mask completely then adjust the total steps to be the number of
// circles that can fit inside the mask.
totalSteps = (int) (maskSize * maskSize / (Math.PI * Math.pow(clusterRadius / maskScale, 2)));
}
while ((centre = maskDistribution.next()) != null && clusterCentres.size() < totalSteps) {
IJ.showProgress(clusterCentres.size(), totalSteps);
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
clusterCentres.add(centre);
// Fill in the mask around the centre to exclude any more circles that could overlap
double cx = centre[0] / maskScale;
double cy = centre[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 0);
//Utils.display("Mask", new ColorProcessor(maskSize, maskSize, mask));
try {
maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
} catch (IllegalArgumentException e) {
// This can happen when there are no more non-zero pixels
log("WARNING: No more room for clusters on the mask area (created %d of estimated %d)", clusterCentres.size(), totalSteps);
break;
}
}
IJ.showProgress(1);
IJ.showStatus("");
} else {
// Pick centres randomly from the distribution
while (clusterCentres.size() < totalSteps) clusterCentres.add(dist.next());
}
if (showClusterMask || clusterSimulation == 3) {
// Show the mask for the clusters
if (mask == null)
mask = new int[maskSize * maskSize];
else
Arrays.fill(mask, 0);
int roiRadius = (int) Math.round((clusterRadius) / maskScale);
for (double[] c : clusterCentres) {
double cx = c[0] / maskScale;
double cy = c[1] / maskScale;
fillMask(mask, maskSize, (int) cx, (int) cy, roiRadius, 1);
}
if (clusterSimulation == 3) {
// We have the mask. Now pick points at random from the mask.
MaskDistribution maskDistribution = new MaskDistribution(mask, maskSize, maskSize, 0, maskScale, maskScale, randomGenerator);
// Allocate each molecule position to a parent circle so defining clusters.
int[][] clusters = new int[clusterCentres.size()][];
int[] clusterSize = new int[clusters.length];
for (int i = 0; i < nMolecules; i++) {
double[] centre = maskDistribution.next();
// The mask returns the coordinates with the centre of the image at 0,0
centre[0] += width / 2;
centre[1] += width / 2;
xyz.add(centre);
// Output statistics on cluster size and number.
// TODO - Finding the closest cluster could be done better than an all-vs-all comparison
double max = distance2(centre, clusterCentres.get(0));
int cluster = 0;
for (int j = 1; j < clusterCentres.size(); j++) {
double d2 = distance2(centre, clusterCentres.get(j));
if (d2 < max) {
max = d2;
cluster = j;
}
}
// Assign point i to cluster
centre[2] = cluster;
if (clusterSize[cluster] == 0) {
clusters[cluster] = new int[10];
}
if (clusters[cluster].length <= clusterSize[cluster]) {
clusters[cluster] = Arrays.copyOf(clusters[cluster], (int) (clusters[cluster].length * 1.5));
}
clusters[cluster][clusterSize[cluster]++] = i;
}
// Generate real cluster size statistics
for (int j = 0; j < clusterSize.length; j++) {
final int size = clusterSize[j];
if (size == 0)
continue;
statsSize.add(size);
if (size == 1) {
statsRadius.add(0);
continue;
}
// Find centre of cluster and add the distance to each point
double[] com = new double[2];
for (int n = 0; n < size; n++) {
double[] xy = xyz.get(clusters[j][n]);
for (int k = 0; k < 2; k++) com[k] += xy[k];
}
for (int k = 0; k < 2; k++) com[k] /= size;
for (int n = 0; n < size; n++) {
double dx = xyz.get(clusters[j][n])[0] - com[0];
double dy = xyz.get(clusters[j][n])[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
}
}
}
if (showClusterMask) {
bp = new ByteProcessor(maskSize, maskSize);
for (int i = 0; i < mask.length; i++) if (mask[i] != 0)
bp.set(i, 128);
Utils.display(maskTitle, bp);
}
}
// Use the simulated cluster centres to create clusters of the desired size
if (clusterSimulation == 1 || clusterSimulation == 2) {
for (double[] clusterCentre : clusterCentres) {
int clusterN = (int) Math.round((clusterNumberSD > 0) ? dataGenerator.nextGaussian(clusterNumber, clusterNumberSD) : clusterNumber);
if (clusterN < 1)
continue;
//double[] clusterCentre = dist.next();
if (clusterN == 1) {
// No need for a cluster around a point
xyz.add(clusterCentre);
statsRadius.add(0);
statsSize.add(1);
} else {
// Generate N random points within a circle of the chosen cluster radius.
// Locate the centre-of-mass and the average distance to the centre.
double[] com = new double[3];
int j = 0;
while (j < clusterN) {
// Generate a random point within a circle uniformly
// http://stackoverflow.com/questions/5837572/generate-a-random-point-within-a-circle-uniformly
double t = 2.0 * Math.PI * randomGenerator.nextDouble();
double u = randomGenerator.nextDouble() + randomGenerator.nextDouble();
double r = clusterRadius * ((u > 1) ? 2 - u : u);
double x = r * Math.cos(t);
double y = r * Math.sin(t);
double[] xy = new double[] { clusterCentre[0] + x, clusterCentre[1] + y };
xyz.add(xy);
for (int k = 0; k < 2; k++) com[k] += xy[k];
j++;
}
// Add the distance of the points from the centre of the cluster.
// Note this does not account for the movement due to precision.
statsSize.add(j);
if (j == 1) {
statsRadius.add(0);
} else {
for (int k = 0; k < 2; k++) com[k] /= j;
while (j > 0) {
double dx = xyz.get(xyz.size() - j)[0] - com[0];
double dy = xyz.get(xyz.size() - j)[1] - com[1];
statsRadius.add(Math.sqrt(dx * dx + dy * dy));
j--;
}
}
}
}
}
} else {
// Random distribution
for (int i = 0; i < nMolecules; i++) xyz.add(dist.next());
}
// The Gaussian sigma should be applied so the overall distance from the centre
// ( sqrt(x^2+y^2) ) has a standard deviation of sigmaS?
final double sigma1D = sigmaS / Math.sqrt(2);
// Show optional histograms
StoredDataStatistics intraDistances = null;
StoredData blinks = null;
if (showHistograms) {
int capacity = (int) (xyz.size() * blinkingRate);
intraDistances = new StoredDataStatistics(capacity);
blinks = new StoredData(capacity);
}
Statistics statsSigma = new Statistics();
for (int i = 0; i < xyz.size(); i++) {
int nOccurrences = getBlinks(dataGenerator, blinkingRate);
if (showHistograms)
blinks.add(nOccurrences);
final int size = molecules.size();
// Get coordinates in nm
final double[] moleculeXyz = xyz.get(i);
if (bp != null && nOccurrences > 0) {
bp.putPixel((int) Math.round(moleculeXyz[0] / maskScale), (int) Math.round(moleculeXyz[1] / maskScale), 255);
}
while (nOccurrences-- > 0) {
final double[] localisationXy = Arrays.copyOf(moleculeXyz, 2);
// Add random precision
if (sigma1D > 0) {
final double dx = dataGenerator.nextGaussian(0, sigma1D);
final double dy = dataGenerator.nextGaussian(0, sigma1D);
localisationXy[0] += dx;
localisationXy[1] += dy;
if (!dist.isWithinXY(localisationXy))
continue;
// Calculate mean-squared displacement
statsSigma.add(dx * dx + dy * dy);
}
final double x = localisationXy[0];
final double y = localisationXy[1];
molecules.add(new Molecule(x, y, i, 1));
// Store in pixels
float[] params = new float[7];
params[Gaussian2DFunction.X_POSITION] = (float) (x / nmPerPixel);
params[Gaussian2DFunction.Y_POSITION] = (float) (y / nmPerPixel);
results.addf(i + 1, (int) x, (int) y, 0, 0, 0, params, null);
}
if (molecules.size() > size) {
count++;
if (showHistograms) {
int newCount = molecules.size() - size;
if (newCount == 1) {
//intraDistances.add(0);
continue;
}
// Get the distance matrix between these molecules
double[][] matrix = new double[newCount][newCount];
for (int ii = size, x = 0; ii < molecules.size(); ii++, x++) {
for (int jj = size + 1, y = 1; jj < molecules.size(); jj++, y++) {
final double d2 = molecules.get(ii).distance2(molecules.get(jj));
matrix[x][y] = matrix[y][x] = d2;
}
}
// Get the maximum distance for particle linkage clustering of this molecule
double max = 0;
for (int x = 0; x < newCount; x++) {
// Compare to all-other molecules and get the minimum distance
// needed to join at least one
double linkDistance = Double.POSITIVE_INFINITY;
for (int y = 0; y < newCount; y++) {
if (x == y)
continue;
if (matrix[x][y] < linkDistance)
linkDistance = matrix[x][y];
}
// Check if this is larger
if (max < linkDistance)
max = linkDistance;
}
intraDistances.add(Math.sqrt(max));
}
}
}
results.end();
if (bp != null)
Utils.display(maskTitle, bp);
// Used for debugging
//System.out.printf(" * Molecules = %d (%d activated)\n", xyz.size(), count);
//if (clusterSimulation > 0)
// System.out.printf(" * Cluster number = %s +/- %s. Radius = %s +/- %s\n",
// Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4),
// Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
log("Simulation results");
log(" * Molecules = %d (%d activated)", xyz.size(), count);
log(" * Blinking rate = %s", Utils.rounded((double) molecules.size() / xyz.size(), 4));
log(" * Precision (Mean-displacement) = %s nm", (statsSigma.getN() > 0) ? Utils.rounded(Math.sqrt(statsSigma.getMean()), 4) : "0");
if (showHistograms) {
if (intraDistances.getN() == 0) {
log(" * Mean Intra-Molecule particle linkage distance = 0 nm");
log(" * Fraction of inter-molecule particle linkage @ 0 nm = 0 %%");
} else {
plot(blinks, "Blinks/Molecule", true);
double[][] intraHist = plot(intraDistances, "Intra-molecule particle linkage distance", false);
// Determine 95th and 99th percentile
int p99 = intraHist[0].length - 1;
double limit1 = 0.99 * intraHist[1][p99];
double limit2 = 0.95 * intraHist[1][p99];
while (intraHist[1][p99] > limit1 && p99 > 0) p99--;
int p95 = p99;
while (intraHist[1][p95] > limit2 && p95 > 0) p95--;
log(" * Mean Intra-Molecule particle linkage distance = %s nm (95%% = %s, 99%% = %s, 100%% = %s)", Utils.rounded(intraDistances.getMean(), 4), Utils.rounded(intraHist[0][p95], 4), Utils.rounded(intraHist[0][p99], 4), Utils.rounded(intraHist[0][intraHist[0].length - 1], 4));
if (distanceAnalysis) {
performDistanceAnalysis(intraHist, p99);
}
}
}
if (clusterSimulation > 0) {
log(" * Cluster number = %s +/- %s", Utils.rounded(statsSize.getMean(), 4), Utils.rounded(statsSize.getStandardDeviation(), 4));
log(" * Cluster radius = %s +/- %s nm (mean distance to centre-of-mass)", Utils.rounded(statsRadius.getMean(), 4), Utils.rounded(statsRadius.getStandardDeviation(), 4));
}
}
use of org.apache.commons.math3.stat.descriptive.moment.Mean in project GDSC-SMLM by aherbert.
the class PCPALMClusters method fitBinomial.
/**
* Fit a zero-truncated Binomial to the cumulative histogram
*
* @param histogramData
* @return
*/
private double[] fitBinomial(HistogramData histogramData) {
// Get the mean and sum of the input histogram
double mean;
double sum = 0;
count = 0;
for (int i = 0; i < histogramData.histogram[1].length; i++) {
count += histogramData.histogram[1][i];
sum += histogramData.histogram[1][i] * i;
}
mean = sum / count;
String name = "Zero-truncated Binomial distribution";
Utils.log("Mean cluster size = %s", Utils.rounded(mean));
Utils.log("Fitting cumulative " + name);
// Convert to a normalised double array for the binomial fitter
double[] histogram = new double[histogramData.histogram[1].length];
for (int i = 0; i < histogramData.histogram[1].length; i++) histogram[i] = histogramData.histogram[1][i] / count;
// Plot the cumulative histogram
String title = TITLE + " Cumulative Distribution";
Plot2 plot = null;
if (showCumulativeHistogram) {
// Create a cumulative histogram for fitting
double[] cumulativeHistogram = new double[histogram.length];
sum = 0;
for (int i = 0; i < histogram.length; i++) {
sum += histogram[i];
cumulativeHistogram[i] = sum;
}
double[] values = Utils.newArray(histogram.length, 0.0, 1.0);
plot = new Plot2(title, "N", "Cumulative Probability", values, cumulativeHistogram);
plot.setLimits(0, histogram.length - 1, 0, 1.05);
plot.addPoints(values, cumulativeHistogram, Plot2.CIRCLE);
Utils.display(title, plot);
}
// Do fitting for different N
double bestSS = Double.POSITIVE_INFINITY;
double[] parameters = null;
int worse = 0;
int N = histogram.length - 1;
int min = minN;
final boolean customRange = (minN > 1) || (maxN > 0);
if (min > N)
min = N;
if (maxN > 0 && N > maxN)
N = maxN;
Utils.log("Fitting N from %d to %d%s", min, N, (customRange) ? " (custom-range)" : "");
// Since varying the N should be done in integer steps do this
// for n=1,2,3,... until the SS peaks then falls off (is worse then the best
// score several times in succession)
BinomialFitter bf = new BinomialFitter(new IJLogger());
bf.setMaximumLikelihood(maximumLikelihood);
for (int n = min; n <= N; n++) {
PointValuePair solution = bf.fitBinomial(histogram, mean, n, true);
if (solution == null)
continue;
double p = solution.getPointRef()[0];
Utils.log("Fitted %s : N=%d, p=%s. SS=%g", name, n, Utils.rounded(p), solution.getValue());
if (bestSS > solution.getValue()) {
bestSS = solution.getValue();
parameters = new double[] { n, p };
worse = 0;
} else if (bestSS < Double.POSITIVE_INFINITY) {
if (++worse >= 3)
break;
}
if (showCumulativeHistogram)
addToPlot(n, p, title, plot, new Color((float) n / N, 0, 1f - (float) n / N));
}
// Add best it in magenta
if (showCumulativeHistogram && parameters != null)
addToPlot((int) parameters[0], parameters[1], title, plot, Color.magenta);
return parameters;
}
use of org.apache.commons.math3.stat.descriptive.moment.Mean in project gatk by broadinstitute.
the class ReCapSegCallerUnitTest method testMakeCalls.
@Test
public void testMakeCalls() {
final List<Target> targets = new ArrayList<>();
final List<String> columnNames = Arrays.asList("Sample");
final List<Double> coverage = new ArrayList<>();
//add amplification targets
for (int i = 0; i < 10; i++) {
final SimpleInterval interval = new SimpleInterval("chr", 100 + 2 * i, 101 + 2 * i);
targets.add(new Target(interval));
coverage.add(ParamUtils.log2(2.0));
}
//add deletion targets
for (int i = 0; i < 10; i++) {
final SimpleInterval interval = new SimpleInterval("chr", 300 + 2 * i, 301 + 2 * i);
targets.add(new Target(interval));
coverage.add(ParamUtils.log2(0.5));
}
//add targets that don't belong to a segment
for (int i = 1; i < 10; i++) {
final SimpleInterval interval = new SimpleInterval("chr", 400 + 2 * i, 401 + 2 * i);
targets.add(new Target(interval));
coverage.add(ParamUtils.log2(1.0));
}
//add obviously neutral targets with some small spread
for (int i = -5; i < 6; i++) {
final SimpleInterval interval = new SimpleInterval("chr", 500 + 2 * i, 501 + 2 * i);
targets.add(new Target(interval));
coverage.add(ParamUtils.log2(0.01 * i + 1));
}
//add spread-out targets to a neutral segment (mean near zero)
for (int i = -5; i < 6; i++) {
final SimpleInterval interval = new SimpleInterval("chr", 700 + 2 * i, 701 + 2 * i);
targets.add(new Target(interval));
coverage.add(ParamUtils.log2(0.1 * i + 1));
}
final RealMatrix coverageMatrix = new Array2DRowRealMatrix(targets.size(), 1);
coverageMatrix.setColumn(0, coverage.stream().mapToDouble(x -> x).toArray());
final int n = targets.size();
final int m = coverageMatrix.getRowDimension();
final ReadCountCollection counts = new ReadCountCollection(targets, columnNames, coverageMatrix);
List<ModeledSegment> segments = new ArrayList<>();
//amplification
segments.add(new ModeledSegment(new SimpleInterval("chr", 100, 200), 100, ParamUtils.log2(2.0)));
//deletion
segments.add(new ModeledSegment(new SimpleInterval("chr", 300, 400), 100, ParamUtils.log2(0.5)));
//neutral
segments.add(new ModeledSegment(new SimpleInterval("chr", 450, 550), 100, ParamUtils.log2(1)));
//neutral
segments.add(new ModeledSegment(new SimpleInterval("chr", 650, 750), 100, ParamUtils.log2(1)));
List<ModeledSegment> calls = ReCapSegCaller.makeCalls(counts, segments);
Assert.assertEquals(calls.get(0).getCall(), ReCapSegCaller.AMPLIFICATION_CALL);
Assert.assertEquals(calls.get(1).getCall(), ReCapSegCaller.DELETION_CALL);
Assert.assertEquals(calls.get(2).getCall(), ReCapSegCaller.NEUTRAL_CALL);
Assert.assertEquals(calls.get(3).getCall(), ReCapSegCaller.NEUTRAL_CALL);
}
Aggregations