use of org.hipparchus.geometry.euclidean.threed.Line in project Orekit by CS-SI.
the class OneAxisEllipsoidTest method testLineIntersection.
@Test
public void testLineIntersection() throws OrekitException {
AbsoluteDate date = AbsoluteDate.J2000_EPOCH;
Frame frame = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
OneAxisEllipsoid model = new OneAxisEllipsoid(100.0, 0.9, frame);
Vector3D point = new Vector3D(0.0, 93.7139699, 3.5930796);
Vector3D direction = new Vector3D(0.0, 1.0, 1.0);
Line line = new Line(point, point.add(direction), 1.0e-10);
GeodeticPoint gp = model.getIntersectionPoint(line, point, frame, date);
Assert.assertEquals(gp.getAltitude(), 0.0, 1.0e-12);
Assert.assertTrue(line.contains(model.transform(gp)));
model = new OneAxisEllipsoid(100.0, 0.9, frame);
point = new Vector3D(0.0, -93.7139699, -3.5930796);
direction = new Vector3D(0.0, -1.0, -1.0);
line = new Line(point, point.add(direction), 1.0e-10).revert();
gp = model.getIntersectionPoint(line, point, frame, date);
Assert.assertTrue(line.contains(model.transform(gp)));
model = new OneAxisEllipsoid(100.0, 0.9, frame);
point = new Vector3D(0.0, -93.7139699, 3.5930796);
direction = new Vector3D(0.0, -1.0, 1.0);
line = new Line(point, point.add(direction), 1.0e-10);
gp = model.getIntersectionPoint(line, point, frame, date);
Assert.assertTrue(line.contains(model.transform(gp)));
model = new OneAxisEllipsoid(100.0, 0.9, frame);
point = new Vector3D(-93.7139699, 0.0, 3.5930796);
direction = new Vector3D(-1.0, 0.0, 1.0);
line = new Line(point, point.add(direction), 1.0e-10);
gp = model.getIntersectionPoint(line, point, frame, date);
Assert.assertTrue(line.contains(model.transform(gp)));
Assert.assertFalse(line.contains(new Vector3D(0, 0, 7000000)));
point = new Vector3D(0.0, 0.0, 110);
direction = new Vector3D(0.0, 0.0, 1.0);
line = new Line(point, point.add(direction), 1.0e-10);
gp = model.getIntersectionPoint(line, point, frame, date);
Assert.assertEquals(gp.getLatitude(), FastMath.PI / 2, 1.0e-12);
point = new Vector3D(0.0, 110, 0);
direction = new Vector3D(0.0, 1.0, 0.0);
line = new Line(point, point.add(direction), 1.0e-10);
gp = model.getIntersectionPoint(line, point, frame, date);
Assert.assertEquals(gp.getLatitude(), 0, 1.0e-12);
}
use of org.hipparchus.geometry.euclidean.threed.Line in project Orekit by CS-SI.
the class YawCompensationTest method testAlignment.
/**
* Test that pointed target motion is along -X sat axis
*/
@Test
public void testAlignment() throws OrekitException {
GroundPointing notCompensated = new NadirPointing(circOrbit.getFrame(), earthShape);
YawCompensation compensated = new YawCompensation(circOrbit.getFrame(), notCompensated);
Attitude att0 = compensated.getAttitude(circOrbit, circOrbit.getDate(), circOrbit.getFrame());
// ground point in satellite Z direction
Vector3D satInert = circOrbit.getPVCoordinates().getPosition();
Vector3D zInert = att0.getRotation().applyInverseTo(Vector3D.PLUS_K);
GeodeticPoint gp = earthShape.getIntersectionPoint(new Line(satInert, satInert.add(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, zInert), 1.0e-10), satInert, circOrbit.getFrame(), circOrbit.getDate());
PVCoordinates pEarth = new PVCoordinates(earthShape.transform(gp), Vector3D.ZERO, Vector3D.ZERO);
double minYWithoutCompensation = Double.POSITIVE_INFINITY;
double maxYWithoutCompensation = Double.NEGATIVE_INFINITY;
double minYDotWithoutCompensation = Double.POSITIVE_INFINITY;
double maxYDotWithoutCompensation = Double.NEGATIVE_INFINITY;
double minYWithCompensation = Double.POSITIVE_INFINITY;
double maxYWithCompensation = Double.NEGATIVE_INFINITY;
double minYDotWithCompensation = Double.POSITIVE_INFINITY;
double maxYDotWithCompensation = Double.NEGATIVE_INFINITY;
for (double dt = -0.2; dt < 0.2; dt += 0.002) {
PVCoordinates withoutCompensation = toSpacecraft(pEarth, circOrbit.shiftedBy(dt), notCompensated);
if (FastMath.abs(withoutCompensation.getPosition().getX()) <= 1000.0) {
minYWithoutCompensation = FastMath.min(minYWithoutCompensation, withoutCompensation.getPosition().getY());
maxYWithoutCompensation = FastMath.max(maxYWithoutCompensation, withoutCompensation.getPosition().getY());
minYDotWithoutCompensation = FastMath.min(minYDotWithoutCompensation, withoutCompensation.getVelocity().getY());
maxYDotWithoutCompensation = FastMath.max(maxYDotWithoutCompensation, withoutCompensation.getVelocity().getY());
}
PVCoordinates withCompensation = toSpacecraft(pEarth, circOrbit.shiftedBy(dt), compensated);
if (FastMath.abs(withCompensation.getPosition().getX()) <= 1000.0) {
minYWithCompensation = FastMath.min(minYWithCompensation, withCompensation.getPosition().getY());
maxYWithCompensation = FastMath.max(maxYWithCompensation, withCompensation.getPosition().getY());
minYDotWithCompensation = FastMath.min(minYDotWithCompensation, withCompensation.getVelocity().getY());
maxYDotWithCompensation = FastMath.max(maxYDotWithCompensation, withCompensation.getVelocity().getY());
}
}
// when the ground point is close to cross the push-broom line (i.e. when Δx decreases from +1000m to -1000m)
// it will drift along the Y axis if we don't apply compensation
// but will remain nearly at Δy=0 if we do apply compensation
// in fact, as the yaw compensation mode removes the linear drift,
// what remains is a parabola Δy = a uΔx²
Assert.assertEquals(-55.7056, minYWithoutCompensation, 0.0001);
Assert.assertEquals(+55.7056, maxYWithoutCompensation, 0.0001);
Assert.assertEquals(352.5667, minYDotWithoutCompensation, 0.0001);
Assert.assertEquals(352.5677, maxYDotWithoutCompensation, 0.0001);
Assert.assertEquals(0.0000, minYWithCompensation, 0.0001);
Assert.assertEquals(0.0008, maxYWithCompensation, 0.0001);
Assert.assertEquals(-0.0101, minYDotWithCompensation, 0.0001);
Assert.assertEquals(0.0102, maxYDotWithCompensation, 0.0001);
}
use of org.hipparchus.geometry.euclidean.threed.Line in project Orekit by CS-SI.
the class LofOffsetPointing method losIntersectionWithBody.
/**
* Compute line of sight intersection with body.
* @param scToBody transform from spacecraft frame to body frame
* @return intersection point in body frame (only the position is set!)
* @exception OrekitException if line of sight does not intersect body
*/
private TimeStampedPVCoordinates losIntersectionWithBody(final Transform scToBody) throws OrekitException {
// compute satellite pointing axis and position/velocity in body frame
final Vector3D pointingBodyFrame = scToBody.transformVector(satPointingVector);
final Vector3D pBodyFrame = scToBody.transformPosition(Vector3D.ZERO);
// Line from satellite following pointing direction
// we use arbitrarily the Earth radius as a scaling factor, it could be anything else
final Line pointingLine = new Line(pBodyFrame, pBodyFrame.add(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, pointingBodyFrame), 1.0e-10);
// Intersection with body shape
final GeodeticPoint gpIntersection = shape.getIntersectionPoint(pointingLine, pBodyFrame, shape.getBodyFrame(), scToBody.getDate());
final Vector3D pIntersection = (gpIntersection == null) ? null : shape.transform(gpIntersection);
// Check there is an intersection and it is not in the reverse pointing direction
if ((pIntersection == null) || (Vector3D.dotProduct(pIntersection.subtract(pBodyFrame), pointingBodyFrame) < 0)) {
throw new OrekitException(OrekitMessages.ATTITUDE_POINTING_LAW_DOES_NOT_POINT_TO_GROUND);
}
return new TimeStampedPVCoordinates(scToBody.getDate(), pIntersection, Vector3D.ZERO, Vector3D.ZERO);
}
use of org.hipparchus.geometry.euclidean.threed.Line in project Orekit by CS-SI.
the class FieldOfView method getFootprint.
/**
* Get the footprint of the field Of View on ground.
* <p>
* This method assumes the Field Of View is centered on some carrier,
* which will typically be a spacecraft or a ground station antenna.
* The points in the footprint boundary loops are all at altitude zero
* with respect to the ellipsoid, they correspond either to projection
* on ground of the edges of the Field Of View, or to points on the body
* limb if the Field Of View goes past horizon. The points on the limb
* see the carrier origin at zero elevation. If the Field Of View is so
* large it contains entirely the body, all points will correspond to
* points at limb. If the Field Of View looks away from body, the
* boundary loops will be an empty list. The points within footprint
* the loops are sorted in trigonometric order as seen from the carrier.
* This implies that someone traveling on ground from one point to the
* next one will have the points visible from the carrier on his left
* hand side, and the points not visible from the carrier on his right
* hand side.
* </p>
* <p>
* The truncation of Field Of View at limb can induce strange results
* for complex Fields Of View. If for example a Field Of View is a
* ring with a hole and part of the ring goes past horizon, then instead
* of having a single loop with a C-shaped boundary, the method will
* still return two loops truncated at the limb, one clockwise and one
* counterclockwise, hence "closing" the C-shape twice. This behavior
* is considered acceptable.
* </p>
* <p>
* If the carrier is a spacecraft, then the {@code fovToBody} transform
* can be computed from a {@link org.orekit.propagation.SpacecraftState}
* as follows:
* </p>
* <pre>
* Transform inertToBody = state.getFrame().getTransformTo(body.getBodyFrame(), state.getDate());
* Transform fovToBody = new Transform(state.getDate(),
* state.toTransform().getInverse(),
* inertToBody);
* </pre>
* <p>
* If the carrier is a ground station, located using a topocentric frame
* and managing its pointing direction using a transform between the
* dish frame and the topocentric frame, then the {@code fovToBody} transform
* can be computed as follows:
* </p>
* <pre>
* Transform topoToBody = topocentricFrame.getTransformTo(body.getBodyFrame(), date);
* Transform topoToDish = ...
* Transform fovToBody = new Transform(date,
* topoToDish.getInverse(),
* topoToBody);
* </pre>
* <p>
* Only the raw zone is used, the angular margin is ignored here.
* </p>
* @param fovToBody transform between the frame in which the Field Of View
* is defined and body frame.
* @param body body surface the Field Of View will be projected on
* @param angularStep step used for boundary loops sampling (radians)
* @return list footprint boundary loops (there may be several independent
* loops if the Field Of View shape is complex)
* @throws OrekitException if some frame conversion fails or if carrier is
* below body surface
*/
List<List<GeodeticPoint>> getFootprint(final Transform fovToBody, final OneAxisEllipsoid body, final double angularStep) throws OrekitException {
final Frame bodyFrame = body.getBodyFrame();
final Vector3D position = fovToBody.transformPosition(Vector3D.ZERO);
final double r = position.getNorm();
if (body.isInside(position)) {
throw new OrekitException(OrekitMessages.POINT_INSIDE_ELLIPSOID);
}
final List<List<GeodeticPoint>> footprint = new ArrayList<List<GeodeticPoint>>();
final List<Vertex> boundary = zone.getBoundaryLoops();
for (final Vertex loopStart : boundary) {
int count = 0;
final List<GeodeticPoint> loop = new ArrayList<GeodeticPoint>();
boolean intersectionsFound = false;
for (Edge edge = loopStart.getOutgoing(); count == 0 || edge.getStart() != loopStart; edge = edge.getEnd().getOutgoing()) {
++count;
final int n = (int) FastMath.ceil(edge.getLength() / angularStep);
final double delta = edge.getLength() / n;
for (int i = 0; i < n; ++i) {
final Vector3D awaySC = new Vector3D(r, edge.getPointAt(i * delta));
final Vector3D awayBody = fovToBody.transformPosition(awaySC);
final Line lineOfSight = new Line(position, awayBody, 1.0e-3);
GeodeticPoint gp = body.getIntersectionPoint(lineOfSight, position, bodyFrame, null);
if (gp != null && Vector3D.dotProduct(awayBody.subtract(position), body.transform(gp).subtract(position)) < 0) {
// the intersection is in fact on the half-line pointing
// towards the back side, it is a spurious intersection
gp = null;
}
if (gp != null) {
// the line of sight does intersect the body
intersectionsFound = true;
} else {
// the line of sight does not intersect body
// we use a point on the limb
gp = body.transform(body.pointOnLimb(position, awayBody), bodyFrame, null);
}
// add the point in front of the list
// (to ensure the loop will be in trigonometric orientation)
loop.add(0, gp);
}
}
if (intersectionsFound) {
// at least some of the points did intersect the body,
// this loop contributes to the footprint
footprint.add(loop);
}
}
if (footprint.isEmpty()) {
// none of the Field Of View loops cross the body
// either the body is outside of Field Of View, or it is fully contained
// we check the center
final Vector3D bodyCenter = fovToBody.getInverse().transformPosition(Vector3D.ZERO);
if (zone.checkPoint(new S2Point(bodyCenter)) != Region.Location.OUTSIDE) {
// the body is fully contained in the Field Of View
// we use the full limb as the footprint
final Vector3D x = bodyCenter.orthogonal();
final Vector3D y = Vector3D.crossProduct(bodyCenter, x).normalize();
final double sinEta = body.getEquatorialRadius() / r;
final double sinEta2 = sinEta * sinEta;
final double cosAlpha = (FastMath.cos(angularStep) + sinEta2 - 1) / sinEta2;
final int n = (int) FastMath.ceil(MathUtils.TWO_PI / FastMath.acos(cosAlpha));
final double delta = MathUtils.TWO_PI / n;
final List<GeodeticPoint> loop = new ArrayList<GeodeticPoint>(n);
for (int i = 0; i < n; ++i) {
final Vector3D outside = new Vector3D(r * FastMath.cos(i * delta), x, r * FastMath.sin(i * delta), y);
loop.add(body.transform(body.pointOnLimb(position, outside), bodyFrame, null));
}
footprint.add(loop);
}
}
return footprint;
}
use of org.hipparchus.geometry.euclidean.threed.Line in project Orekit by CS-SI.
the class TargetPointingTest method testTargetInPointingDirection.
/**
* Test if defined target belongs to the direction pointed by the satellite
*/
@Test
public void testTargetInPointingDirection() throws OrekitException {
// Create computation date
AbsoluteDate date = new AbsoluteDate(new DateComponents(2008, 04, 07), TimeComponents.H00, TimeScalesFactory.getUTC());
// Reference frame = ITRF
Frame itrf = FramesFactory.getITRF(IERSConventions.IERS_2010, true);
// Elliptic earth shape
OneAxisEllipsoid earthShape = new OneAxisEllipsoid(6378136.460, 1 / 298.257222101, itrf);
// Create target pointing attitude provider
GeodeticPoint geoTarget = new GeodeticPoint(FastMath.toRadians(43.36), FastMath.toRadians(1.26), 600.);
TargetPointing targetAttitudeLaw = new TargetPointing(FramesFactory.getEME2000(), geoTarget, earthShape);
// Satellite position
// ********************
// Create satellite position as circular parameters
CircularOrbit circ = new CircularOrbit(7178000.0, 0.5e-4, -0.5e-4, FastMath.toRadians(50.), FastMath.toRadians(270.), FastMath.toRadians(5.300), PositionAngle.MEAN, FramesFactory.getEME2000(), date, mu);
// Transform satellite position to position/velocity parameters in EME2000 frame
PVCoordinates pvSatEME2000 = circ.getPVCoordinates();
// Pointing direction
// ********************
// Get satellite attitude rotation, i.e rotation from EME2000 frame to satellite frame
Rotation rotSatEME2000 = targetAttitudeLaw.getAttitude(circ, date, circ.getFrame()).getRotation();
// Transform Z axis from satellite frame to EME2000
Vector3D zSatEME2000 = rotSatEME2000.applyInverseTo(Vector3D.PLUS_K);
// Line containing satellite point and following pointing direction
Vector3D p = eme2000ToItrf.transformPosition(pvSatEME2000.getPosition());
Line pointingLine = new Line(p, p.add(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, eme2000ToItrf.transformVector(zSatEME2000)), 1.0e-10);
// Check that the line contains earth center
double distance = pointingLine.distance(earthShape.transform(geoTarget));
Assert.assertEquals(0, distance, 1.e-7);
}
Aggregations