use of org.hipparchus.geometry.euclidean.threed.Rotation in project Orekit by CS-SI.
the class ImpulseManeuverTest method testAdditionalStateNumerical.
@Test
public void testAdditionalStateNumerical() throws OrekitException {
final double mu = CelestialBodyFactory.getEarth().getGM();
final double initialX = 7100e3;
final double initialY = 0.0;
final double initialZ = 1300e3;
final double initialVx = 0;
final double initialVy = 8000;
final double initialVz = 1000;
final Vector3D position = new Vector3D(initialX, initialY, initialZ);
final Vector3D velocity = new Vector3D(initialVx, initialVy, initialVz);
final AbsoluteDate epoch = new AbsoluteDate(2010, 1, 1, 0, 0, 0, TimeScalesFactory.getUTC());
final TimeStampedPVCoordinates pv = new TimeStampedPVCoordinates(epoch, position, velocity, Vector3D.ZERO);
final Orbit initialOrbit = new CartesianOrbit(pv, FramesFactory.getEME2000(), mu);
final double totalPropagationTime = 10.0;
final double deltaX = 0.01;
final double deltaY = 0.02;
final double deltaZ = 0.03;
final double isp = 300;
final Vector3D deltaV = new Vector3D(deltaX, deltaY, deltaZ);
final AttitudeProvider attitudeProvider = new LofOffset(initialOrbit.getFrame(), LOFType.VNC);
final Attitude initialAttitude = attitudeProvider.getAttitude(initialOrbit, initialOrbit.getDate(), initialOrbit.getFrame());
double[][] tolerances = NumericalPropagator.tolerances(10.0, initialOrbit, initialOrbit.getType());
DormandPrince853Integrator integrator = new DormandPrince853Integrator(1.0e-3, 60, tolerances[0], tolerances[1]);
NumericalPropagator propagator = new NumericalPropagator(integrator);
propagator.setOrbitType(initialOrbit.getType());
PartialDerivativesEquations pde = new PartialDerivativesEquations("derivatives", propagator);
final SpacecraftState initialState = pde.setInitialJacobians(new SpacecraftState(initialOrbit, initialAttitude));
propagator.resetInitialState(initialState);
DateDetector dateDetector = new DateDetector(epoch.shiftedBy(0.5 * totalPropagationTime));
InertialProvider attitudeOverride = new InertialProvider(new Rotation(RotationOrder.XYX, RotationConvention.VECTOR_OPERATOR, 0, 0, 0));
ImpulseManeuver<DateDetector> burnAtEpoch = new ImpulseManeuver<DateDetector>(dateDetector, attitudeOverride, deltaV, isp).withThreshold(1.0e-3);
propagator.addEventDetector(burnAtEpoch);
SpacecraftState finalState = propagator.propagate(epoch.shiftedBy(totalPropagationTime));
Assert.assertEquals(1, finalState.getAdditionalStates().size());
Assert.assertEquals(36, finalState.getAdditionalState("derivatives").length);
double[][] stateTransitionMatrix = new double[6][6];
pde.getMapper().getStateJacobian(finalState, stateTransitionMatrix);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 6; ++j) {
double sIJ = stateTransitionMatrix[i][j];
if (j == i) {
// dPi/dPj and dVi/dVj are roughly 1 for small propagation times
Assert.assertEquals(1.0, sIJ, 2.0e-4);
} else if (j == i + 3) {
// dVi/dPi is roughly the propagation time for small propagation times
Assert.assertEquals(totalPropagationTime, sIJ, 4.0e-5 * totalPropagationTime);
} else {
// other derivatives are almost zero for small propagation times
Assert.assertEquals(0, sIJ, 1.0e-4);
}
}
}
}
use of org.hipparchus.geometry.euclidean.threed.Rotation in project Orekit by CS-SI.
the class ImpulseManeuverTest method testInertialManeuver.
@Test
public void testInertialManeuver() throws OrekitException {
final double mu = CelestialBodyFactory.getEarth().getGM();
final double initialX = 7100e3;
final double initialY = 0.0;
final double initialZ = 1300e3;
final double initialVx = 0;
final double initialVy = 8000;
final double initialVz = 1000;
final Vector3D position = new Vector3D(initialX, initialY, initialZ);
final Vector3D velocity = new Vector3D(initialVx, initialVy, initialVz);
final AbsoluteDate epoch = new AbsoluteDate(2010, 1, 1, 0, 0, 0, TimeScalesFactory.getUTC());
final TimeStampedPVCoordinates state = new TimeStampedPVCoordinates(epoch, position, velocity, Vector3D.ZERO);
final Orbit initialOrbit = new CartesianOrbit(state, FramesFactory.getEME2000(), mu);
final double totalPropagationTime = 0.00001;
final double driftTimeInSec = totalPropagationTime / 2.0;
final double deltaX = 0.01;
final double deltaY = 0.02;
final double deltaZ = 0.03;
final double isp = 300;
final Vector3D deltaV = new Vector3D(deltaX, deltaY, deltaZ);
KeplerianPropagator propagator = new KeplerianPropagator(initialOrbit, new LofOffset(initialOrbit.getFrame(), LOFType.VNC));
DateDetector dateDetector = new DateDetector(epoch.shiftedBy(driftTimeInSec));
InertialProvider attitudeOverride = new InertialProvider(new Rotation(RotationOrder.XYX, RotationConvention.VECTOR_OPERATOR, 0, 0, 0));
ImpulseManeuver<DateDetector> burnAtEpoch = new ImpulseManeuver<DateDetector>(dateDetector, attitudeOverride, deltaV, isp).withThreshold(driftTimeInSec / 4);
propagator.addEventDetector(burnAtEpoch);
SpacecraftState finalState = propagator.propagate(epoch.shiftedBy(totalPropagationTime));
final double finalVxExpected = initialVx + deltaX;
final double finalVyExpected = initialVy + deltaY;
final double finalVzExpected = initialVz + deltaZ;
final double maneuverTolerance = 1e-4;
final Vector3D finalVelocity = finalState.getPVCoordinates().getVelocity();
Assert.assertEquals(finalVxExpected, finalVelocity.getX(), maneuverTolerance);
Assert.assertEquals(finalVyExpected, finalVelocity.getY(), maneuverTolerance);
Assert.assertEquals(finalVzExpected, finalVelocity.getZ(), maneuverTolerance);
}
use of org.hipparchus.geometry.euclidean.threed.Rotation in project Orekit by CS-SI.
the class ImpulseManeuverTest method testAdditionalStateKeplerian.
@Test
public void testAdditionalStateKeplerian() throws OrekitException {
final double mu = CelestialBodyFactory.getEarth().getGM();
final double initialX = 7100e3;
final double initialY = 0.0;
final double initialZ = 1300e3;
final double initialVx = 0;
final double initialVy = 8000;
final double initialVz = 1000;
final Vector3D position = new Vector3D(initialX, initialY, initialZ);
final Vector3D velocity = new Vector3D(initialVx, initialVy, initialVz);
final AbsoluteDate epoch = new AbsoluteDate(2010, 1, 1, 0, 0, 0, TimeScalesFactory.getUTC());
final TimeStampedPVCoordinates pv = new TimeStampedPVCoordinates(epoch, position, velocity, Vector3D.ZERO);
final Orbit initialOrbit = new CartesianOrbit(pv, FramesFactory.getEME2000(), mu);
final double totalPropagationTime = 10;
final double deltaX = 0.01;
final double deltaY = 0.02;
final double deltaZ = 0.03;
final double isp = 300;
final Vector3D deltaV = new Vector3D(deltaX, deltaY, deltaZ);
final AttitudeProvider attitudeProvider = new LofOffset(initialOrbit.getFrame(), LOFType.VNC);
final Attitude initialAttitude = attitudeProvider.getAttitude(initialOrbit, initialOrbit.getDate(), initialOrbit.getFrame());
final SpacecraftState initialState = new SpacecraftState(initialOrbit, initialAttitude);
KeplerianPropagator propagator = new KeplerianPropagator(initialOrbit);
propagator.resetInitialState(initialState.addAdditionalState("testOnly", -1.0));
DateDetector dateDetector = new DateDetector(epoch.shiftedBy(0.5 * totalPropagationTime));
InertialProvider attitudeOverride = new InertialProvider(new Rotation(RotationOrder.XYX, RotationConvention.VECTOR_OPERATOR, 0, 0, 0));
ImpulseManeuver<DateDetector> burnAtEpoch = new ImpulseManeuver<DateDetector>(dateDetector, attitudeOverride, deltaV, isp).withThreshold(1.0e-3);
propagator.addEventDetector(burnAtEpoch);
SpacecraftState finalState = propagator.propagate(epoch.shiftedBy(totalPropagationTime));
Assert.assertEquals(1, finalState.getAdditionalStates().size());
Assert.assertEquals(-1.0, finalState.getAdditionalState("testOnly")[0], 1.0e-15);
}
use of org.hipparchus.geometry.euclidean.threed.Rotation in project Orekit by CS-SI.
the class PolynomialParametricAccelerationTest method testEquivalentInertialManeuver.
@Test
public void testEquivalentInertialManeuver() throws OrekitException {
final double delta = FastMath.toRadians(-7.4978);
final double alpha = FastMath.toRadians(351);
final Vector3D direction = new Vector3D(alpha, delta);
final double mass = 2500;
final double isp = Double.POSITIVE_INFINITY;
final double duration = 4000;
final double f = 400;
final AttitudeProvider maneuverLaw = new InertialProvider(new Rotation(direction, Vector3D.PLUS_I));
ConstantThrustManeuver maneuver = new ConstantThrustManeuver(initialOrbit.getDate().shiftedBy(-10.0), duration, f, isp, Vector3D.PLUS_I);
final AttitudeProvider accelerationLaw = new InertialProvider(new Rotation(direction, Vector3D.PLUS_K));
final PolynomialParametricAcceleration inertialAcceleration = new PolynomialParametricAcceleration(direction, true, "", AbsoluteDate.J2000_EPOCH, 0);
Assert.assertTrue(inertialAcceleration.dependsOnPositionOnly());
inertialAcceleration.getParametersDrivers()[0].setValue(f / mass);
doTestEquivalentManeuver(mass, maneuverLaw, maneuver, accelerationLaw, inertialAcceleration, 1.0e-15);
}
use of org.hipparchus.geometry.euclidean.threed.Rotation in project Orekit by CS-SI.
the class RangeAnalytic method theoreticalEvaluationValidation.
/**
* Added for validation
* Compares directly numeric and analytic computations
* @param iteration
* @param evaluation
* @param state
* @return
* @throws OrekitException
*/
protected EstimatedMeasurement<Range> theoreticalEvaluationValidation(final int iteration, final int evaluation, final SpacecraftState state) throws OrekitException {
// Station & DSFactory attributes from parent Range class
final GroundStation groundStation = getStation();
// get the number of parameters used for derivation
int nbParams = 6;
final Map<String, Integer> indices = new HashMap<>();
for (ParameterDriver driver : getParametersDrivers()) {
if (driver.isSelected()) {
indices.put(driver.getName(), nbParams++);
}
}
final DSFactory dsFactory = new DSFactory(nbParams, 1);
final Field<DerivativeStructure> field = dsFactory.getDerivativeField();
final FieldVector3D<DerivativeStructure> zero = FieldVector3D.getZero(field);
// Range derivatives are computed with respect to spacecraft state in inertial frame
// and station position in station's offset frame
// -------
//
// Parameters:
// - 0..2 - Px, Py, Pz : Position of the spacecraft in inertial frame
// - 3..5 - Vx, Vy, Vz : Velocity of the spacecraft in inertial frame
// - 6..8 - QTx, QTy, QTz: Position of the station in station's offset frame
// Coordinates of the spacecraft expressed as a derivative structure
final TimeStampedFieldPVCoordinates<DerivativeStructure> pvaDS = getCoordinates(state, 0, dsFactory);
// transform between station and inertial frame, expressed as a derivative structure
// The components of station's position in offset frame are the 3 last derivative parameters
final AbsoluteDate downlinkDate = getDate();
final FieldAbsoluteDate<DerivativeStructure> downlinkDateDS = new FieldAbsoluteDate<>(field, downlinkDate);
final FieldTransform<DerivativeStructure> offsetToInertialDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDateDS, dsFactory, indices);
// Station position in inertial frame at end of the downlink leg
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationDownlink = offsetToInertialDownlink.transformPVCoordinates(new TimeStampedFieldPVCoordinates<>(downlinkDateDS, zero, zero, zero));
// Compute propagation times
// (if state has already been set up to pre-compensate propagation delay,
// we will have offset == downlinkDelay and transitState will be
// the same as state)
// Downlink delay
final DerivativeStructure tauD = signalTimeOfFlight(pvaDS, stationDownlink.getPosition(), downlinkDateDS);
// Transit state
final double delta = downlinkDate.durationFrom(state.getDate());
final DerivativeStructure tauDMDelta = tauD.negate().add(delta);
final SpacecraftState transitState = state.shiftedBy(tauDMDelta.getValue());
// Transit state position (re)computed with derivative structures
final TimeStampedFieldPVCoordinates<DerivativeStructure> transitStateDS = pvaDS.shiftedBy(tauDMDelta);
// Station at transit state date (derivatives of tauD taken into account)
final TimeStampedFieldPVCoordinates<DerivativeStructure> stationAtTransitDate = stationDownlink.shiftedBy(tauD.negate());
// Uplink delay
final DerivativeStructure tauU = signalTimeOfFlight(stationAtTransitDate, transitStateDS.getPosition(), transitStateDS.getDate());
// Prepare the evaluation
final EstimatedMeasurement<Range> estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation, new SpacecraftState[] { transitState }, null);
// Range value
final DerivativeStructure tau = tauD.add(tauU);
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
final DerivativeStructure range = tau.multiply(cOver2);
estimated.setEstimatedValue(range.getValue());
// Range partial derivatives with respect to state
final double[] derivatives = range.getAllDerivatives();
estimated.setStateDerivatives(0, Arrays.copyOfRange(derivatives, 1, 7));
// (beware element at index 0 is the value, not a derivative)
for (final ParameterDriver driver : getParametersDrivers()) {
final Integer index = indices.get(driver.getName());
if (index != null) {
estimated.setParameterDerivatives(driver, derivatives[index + 1]);
}
}
// ----------
// VALIDATION
// -----------
// Computation of the value without DS
// ----------------------------------
// Time difference between t (date of the measurement) and t' (date tagged in spacecraft state)
// Station position at signal arrival
final Transform topoToInertDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDate);
final PVCoordinates QDownlink = topoToInertDownlink.transformPVCoordinates(PVCoordinates.ZERO);
// Downlink time of flight from spacecraft to station
final double td = signalTimeOfFlight(state.getPVCoordinates(), QDownlink.getPosition(), downlinkDate);
final double dt = delta - td;
// Transit state position
final AbsoluteDate transitT = state.getDate().shiftedBy(dt);
final SpacecraftState transit = state.shiftedBy(dt);
final Vector3D transitP = transitState.getPVCoordinates().getPosition();
// Station position at signal departure
// First guess
// AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-getObservedValue()[0] / cOver2);
// final Transform topoToInertUplink =
// station.getOffsetFrame().getTransformTo(state.getFrame(), uplinkDate);
// TimeStampedPVCoordinates QUplink = topoToInertUplink.
// transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Station position at transit state date
final Transform topoToInertAtTransitDate = groundStation.getOffsetToInertial(state.getFrame(), transitT);
TimeStampedPVCoordinates QAtTransitDate = topoToInertAtTransitDate.transformPVCoordinates(new TimeStampedPVCoordinates(transitT, PVCoordinates.ZERO));
// Uplink time of flight
final double tu = signalTimeOfFlight(QAtTransitDate, transitP, transitT);
// Total time of flight
final double t = td + tu;
// Real date and position of station at signal departure
AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-t);
TimeStampedPVCoordinates QUplink = topoToInertDownlink.shiftedBy(-t).transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Range value
double r = t * cOver2;
double dR = r - range.getValue();
// td derivatives / state
// -----------------------
// Qt = Master station position at tmeas = t = signal arrival at master station
final Vector3D vel = state.getPVCoordinates().getVelocity();
final Vector3D Qt_V = QDownlink.getVelocity();
final Vector3D Ptr = transit.getPVCoordinates().getPosition();
final Vector3D Ptr_Qt = QDownlink.getPosition().subtract(Ptr);
final double dDown = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * td - Vector3D.dotProduct(Ptr_Qt, vel);
// Derivatives of the downlink time of flight
final double dtddPx = -Ptr_Qt.getX() / dDown;
final double dtddPy = -Ptr_Qt.getY() / dDown;
final double dtddPz = -Ptr_Qt.getZ() / dDown;
final double dtddVx = dtddPx * dt;
final double dtddVy = dtddPy * dt;
final double dtddVz = dtddPz * dt;
// From the DS
final double dtddPxDS = tauD.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
final double dtddPyDS = tauD.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
final double dtddPzDS = tauD.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
final double dtddVxDS = tauD.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
final double dtddVyDS = tauD.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
final double dtddVzDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Difference
final double d_dtddPx = dtddPxDS - dtddPx;
final double d_dtddPy = dtddPyDS - dtddPy;
final double d_dtddPz = dtddPzDS - dtddPz;
final double d_dtddVx = dtddVxDS - dtddVx;
final double d_dtddVy = dtddVyDS - dtddVy;
final double d_dtddVz = dtddVzDS - dtddVz;
// tu derivatives / state
// -----------------------
final Vector3D Qt2_Ptr = Ptr.subtract(QUplink.getPosition());
final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tu - Vector3D.dotProduct(Qt2_Ptr, Qt_V);
// test
// // Speed of the station at tmeas-t
// // Note: Which one to use in the calculation of dUp ???
// final Vector3D Qt2_V = QUplink.getVelocity();
// final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tu -
// Vector3D.dotProduct(Qt2_Ptr, Qt2_V);
// test
// tu derivatives
final double dtudPx = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_I.add((Qt_V.subtract(vel)).scalarMultiply(dtddPx)));
final double dtudPy = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_J.add((Qt_V.subtract(vel)).scalarMultiply(dtddPy)));
final double dtudPz = 1. / dUp * Qt2_Ptr.dotProduct(Vector3D.PLUS_K.add((Qt_V.subtract(vel)).scalarMultiply(dtddPz)));
final double dtudVx = dtudPx * dt;
final double dtudVy = dtudPy * dt;
final double dtudVz = dtudPz * dt;
// From the DS
final double dtudPxDS = tauU.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
final double dtudPyDS = tauU.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
final double dtudPzDS = tauU.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
final double dtudVxDS = tauU.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
final double dtudVyDS = tauU.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
final double dtudVzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Difference
final double d_dtudPx = dtudPxDS - dtudPx;
final double d_dtudPy = dtudPyDS - dtudPy;
final double d_dtudPz = dtudPzDS - dtudPz;
final double d_dtudVx = dtudVxDS - dtudVx;
final double d_dtudVy = dtudVyDS - dtudVy;
final double d_dtudVz = dtudVzDS - dtudVz;
// Range derivatives / state
// -----------------------
// R = Range
double dRdPx = (dtddPx + dtudPx) * cOver2;
double dRdPy = (dtddPy + dtudPy) * cOver2;
double dRdPz = (dtddPz + dtudPz) * cOver2;
double dRdVx = (dtddVx + dtudVx) * cOver2;
double dRdVy = (dtddVy + dtudVy) * cOver2;
double dRdVz = (dtddVz + dtudVz) * cOver2;
// With DS
double dRdPxDS = range.getPartialDerivative(1, 0, 0, 0, 0, 0, 0, 0, 0);
double dRdPyDS = range.getPartialDerivative(0, 1, 0, 0, 0, 0, 0, 0, 0);
double dRdPzDS = range.getPartialDerivative(0, 0, 1, 0, 0, 0, 0, 0, 0);
double dRdVxDS = range.getPartialDerivative(0, 0, 0, 1, 0, 0, 0, 0, 0);
double dRdVyDS = range.getPartialDerivative(0, 0, 0, 0, 1, 0, 0, 0, 0);
double dRdVzDS = range.getPartialDerivative(0, 0, 0, 0, 0, 1, 0, 0, 0);
// Diff
final double d_dRdPx = dRdPxDS - dRdPx;
final double d_dRdPy = dRdPyDS - dRdPy;
final double d_dRdPz = dRdPzDS - dRdPz;
final double d_dRdVx = dRdVxDS - dRdVx;
final double d_dRdVy = dRdVyDS - dRdVy;
final double d_dRdVz = dRdVzDS - dRdVz;
// td derivatives / station
// -----------------------
final AngularCoordinates ac = topoToInertDownlink.getAngular().revert();
final Rotation rotTopoToInert = ac.getRotation();
final Vector3D omega = ac.getRotationRate();
final Vector3D dtddQI = Ptr_Qt.scalarMultiply(1. / dDown);
final double dtddQIx = dtddQI.getX();
final double dtddQIy = dtddQI.getY();
final double dtddQIz = dtddQI.getZ();
final Vector3D dtddQ = rotTopoToInert.applyTo(dtddQI);
// With DS
double dtddQxDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dtddQyDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dtddQzDS = tauD.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dtddQx = dtddQxDS - dtddQ.getX();
final double d_dtddQy = dtddQyDS - dtddQ.getY();
final double d_dtddQz = dtddQzDS - dtddQ.getZ();
// tu derivatives / station
// -----------------------
// Inertial frame
final double dtudQIx = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_I.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIx)).subtract(Vector3D.PLUS_I.crossProduct(omega).scalarMultiply(t)));
final double dtudQIy = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_J.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIy)).subtract(Vector3D.PLUS_J.crossProduct(omega).scalarMultiply(t)));
final double dtudQIz = 1 / dUp * Qt2_Ptr.dotProduct(Vector3D.MINUS_K.add((Qt_V.subtract(vel)).scalarMultiply(dtddQIz)).subtract(Vector3D.PLUS_K.crossProduct(omega).scalarMultiply(t)));
// // test
// final double dtudQIx = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_I);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIx));
// .dotProduct(Vector3D.MINUS_I.crossProduct(omega).scalarMultiply(t));
// final double dtudQIy = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_J);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIy));
// .dotProduct(Vector3D.MINUS_J.crossProduct(omega).scalarMultiply(t));
// final double dtudQIz = 1/dUp*Qt2_Ptr
// // .dotProduct(Vector3D.MINUS_K);
// // .dotProduct((Qt_V.subtract(vel)).scalarMultiply(dtddQIz));
// .dotProduct(Vector3D.MINUS_K.crossProduct(omega).scalarMultiply(t));
//
// double dtu_dQxDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
// double dtu_dQyDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
// double dtu_dQzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// final Vector3D dtudQDS = new Vector3D(dtu_dQxDS, dtu_dQyDS, dtu_dQzDS);
// final Vector3D dtudQIDS = rotTopoToInert.applyInverseTo(dtudQDS);
// double dtudQIxDS = dtudQIDS.getX();
// double dtudQIyDS = dtudQIDS.getY();
// double dtudQIxzS = dtudQIDS.getZ();
// // test
// Topocentric frame
final Vector3D dtudQI = new Vector3D(dtudQIx, dtudQIy, dtudQIz);
final Vector3D dtudQ = rotTopoToInert.applyTo(dtudQI);
// With DS
double dtudQxDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dtudQyDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dtudQzDS = tauU.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dtudQx = dtudQxDS - dtudQ.getX();
final double d_dtudQy = dtudQyDS - dtudQ.getY();
final double d_dtudQz = dtudQzDS - dtudQ.getZ();
// Range derivatives / station
// -----------------------
double dRdQx = (dtddQ.getX() + dtudQ.getX()) * cOver2;
double dRdQy = (dtddQ.getY() + dtudQ.getY()) * cOver2;
double dRdQz = (dtddQ.getZ() + dtudQ.getZ()) * cOver2;
// With DS
double dRdQxDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 1, 0, 0);
double dRdQyDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 1, 0);
double dRdQzDS = range.getPartialDerivative(0, 0, 0, 0, 0, 0, 0, 0, 1);
// Diff
final double d_dRdQx = dRdQxDS - dRdQx;
final double d_dRdQy = dRdQyDS - dRdQy;
final double d_dRdQz = dRdQzDS - dRdQz;
// Print results to avoid warning
final boolean printResults = false;
if (printResults) {
System.out.println("dR = " + dR);
System.out.println("d_dtddPx = " + d_dtddPx);
System.out.println("d_dtddPy = " + d_dtddPy);
System.out.println("d_dtddPz = " + d_dtddPz);
System.out.println("d_dtddVx = " + d_dtddVx);
System.out.println("d_dtddVy = " + d_dtddVy);
System.out.println("d_dtddVz = " + d_dtddVz);
System.out.println("d_dtudPx = " + d_dtudPx);
System.out.println("d_dtudPy = " + d_dtudPy);
System.out.println("d_dtudPz = " + d_dtudPz);
System.out.println("d_dtudVx = " + d_dtudVx);
System.out.println("d_dtudVy = " + d_dtudVy);
System.out.println("d_dtudVz = " + d_dtudVz);
System.out.println("d_dRdPx = " + d_dRdPx);
System.out.println("d_dRdPy = " + d_dRdPy);
System.out.println("d_dRdPz = " + d_dRdPz);
System.out.println("d_dRdVx = " + d_dRdVx);
System.out.println("d_dRdVy = " + d_dRdVy);
System.out.println("d_dRdVz = " + d_dRdVz);
System.out.println("d_dtddQx = " + d_dtddQx);
System.out.println("d_dtddQy = " + d_dtddQy);
System.out.println("d_dtddQz = " + d_dtddQz);
System.out.println("d_dtudQx = " + d_dtudQx);
System.out.println("d_dtudQy = " + d_dtudQy);
System.out.println("d_dtudQz = " + d_dtudQz);
System.out.println("d_dRdQx = " + d_dRdQx);
System.out.println("d_dRdQy = " + d_dRdQy);
System.out.println("d_dRdQz = " + d_dRdQz);
}
// Dummy return
return estimated;
}
Aggregations