Search in sources :

Example 6 with GroundStation

use of org.orekit.estimation.measurements.GroundStation in project Orekit by CS-SI.

the class KalmanOrbitDeterminationTest method createStationsData.

/**
 * Set up stations.
 * @param parser input file parser
 * @param body central body
 * @return name to station data map
 * @exception OrekitException if some frame transforms cannot be computed
 * @throws NoSuchElementException if input parameters are missing
 */
private Map<String, StationData> createStationsData(final KeyValueFileParser<ParameterKey> parser, final OneAxisEllipsoid body) throws OrekitException, NoSuchElementException {
    final Map<String, StationData> stations = new HashMap<String, StationData>();
    final String[] stationNames = parser.getStringArray(ParameterKey.GROUND_STATION_NAME);
    final double[] stationLatitudes = parser.getAngleArray(ParameterKey.GROUND_STATION_LATITUDE);
    final double[] stationLongitudes = parser.getAngleArray(ParameterKey.GROUND_STATION_LONGITUDE);
    final double[] stationAltitudes = parser.getDoubleArray(ParameterKey.GROUND_STATION_ALTITUDE);
    final boolean[] stationPositionEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_POSITION_ESTIMATED);
    final double[] stationRangeSigma = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_SIGMA);
    final double[] stationRangeBias = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS);
    final double[] stationRangeBiasMin = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS_MIN);
    final double[] stationRangeBiasMax = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS_MAX);
    final boolean[] stationRangeBiasEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_BIAS_ESTIMATED);
    final double[] stationRangeRateSigma = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_SIGMA);
    final double[] stationRangeRateBias = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS);
    final double[] stationRangeRateBiasMin = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_MIN);
    final double[] stationRangeRateBiasMax = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_MAX);
    final boolean[] stationRangeRateBiasEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_ESTIMATED);
    final double[] stationAzimuthSigma = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_SIGMA);
    final double[] stationAzimuthBias = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS);
    final double[] stationAzimuthBiasMin = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS_MIN);
    final double[] stationAzimuthBiasMax = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS_MAX);
    final double[] stationElevationSigma = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_SIGMA);
    final double[] stationElevationBias = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS);
    final double[] stationElevationBiasMin = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS_MIN);
    final double[] stationElevationBiasMax = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS_MAX);
    final boolean[] stationAzElBiasesEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_AZ_EL_BIASES_ESTIMATED);
    final boolean[] stationElevationRefraction = parser.getBooleanArray(ParameterKey.GROUND_STATION_ELEVATION_REFRACTION_CORRECTION);
    final boolean[] stationRangeTropospheric = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_TROPOSPHERIC_CORRECTION);
    for (int i = 0; i < stationNames.length; ++i) {
        // the station itself
        final GeodeticPoint position = new GeodeticPoint(stationLatitudes[i], stationLongitudes[i], stationAltitudes[i]);
        final TopocentricFrame topo = new TopocentricFrame(body, position, stationNames[i]);
        final GroundStation station = new GroundStation(topo);
        station.getEastOffsetDriver().setSelected(stationPositionEstimated[i]);
        station.getNorthOffsetDriver().setSelected(stationPositionEstimated[i]);
        station.getZenithOffsetDriver().setSelected(stationPositionEstimated[i]);
        // range
        final double rangeSigma = stationRangeSigma[i];
        final Bias<Range> rangeBias;
        if (FastMath.abs(stationRangeBias[i]) >= Precision.SAFE_MIN || stationRangeBiasEstimated[i]) {
            rangeBias = new Bias<Range>(new String[] { stationNames[i] + "/range bias" }, new double[] { stationRangeBias[i] }, new double[] { rangeSigma }, new double[] { stationRangeBiasMin[i] }, new double[] { stationRangeBiasMax[i] });
            rangeBias.getParametersDrivers().get(0).setSelected(stationRangeBiasEstimated[i]);
        } else {
            // bias fixed to zero, we don't need to create a modifier for this
            rangeBias = null;
        }
        // range rate
        final double rangeRateSigma = stationRangeRateSigma[i];
        final Bias<RangeRate> rangeRateBias;
        if (FastMath.abs(stationRangeRateBias[i]) >= Precision.SAFE_MIN || stationRangeRateBiasEstimated[i]) {
            rangeRateBias = new Bias<RangeRate>(new String[] { stationNames[i] + "/range rate bias" }, new double[] { stationRangeRateBias[i] }, new double[] { rangeRateSigma }, new double[] { stationRangeRateBiasMin[i] }, new double[] { stationRangeRateBiasMax[i] });
            rangeRateBias.getParametersDrivers().get(0).setSelected(stationRangeRateBiasEstimated[i]);
        } else {
            // bias fixed to zero, we don't need to create a modifier for this
            rangeRateBias = null;
        }
        // angular biases
        final double[] azELSigma = new double[] { stationAzimuthSigma[i], stationElevationSigma[i] };
        final Bias<AngularAzEl> azELBias;
        if (FastMath.abs(stationAzimuthBias[i]) >= Precision.SAFE_MIN || FastMath.abs(stationElevationBias[i]) >= Precision.SAFE_MIN || stationAzElBiasesEstimated[i]) {
            azELBias = new Bias<AngularAzEl>(new String[] { stationNames[i] + "/az bias", stationNames[i] + "/el bias" }, new double[] { stationAzimuthBias[i], stationElevationBias[i] }, azELSigma, new double[] { stationAzimuthBiasMin[i], stationElevationBiasMin[i] }, new double[] { stationAzimuthBiasMax[i], stationElevationBiasMax[i] });
            azELBias.getParametersDrivers().get(0).setSelected(stationAzElBiasesEstimated[i]);
            azELBias.getParametersDrivers().get(1).setSelected(stationAzElBiasesEstimated[i]);
        } else {
            // bias fixed to zero, we don't need to create a modifier for this
            azELBias = null;
        }
        // Refraction correction
        final AngularRadioRefractionModifier refractionCorrection;
        if (stationElevationRefraction[i]) {
            final double altitude = station.getBaseFrame().getPoint().getAltitude();
            final AtmosphericRefractionModel refractionModel = new EarthITU453AtmosphereRefraction(altitude);
            refractionCorrection = new AngularRadioRefractionModifier(refractionModel);
        } else {
            refractionCorrection = null;
        }
        // Tropospheric correction
        final RangeTroposphericDelayModifier rangeTroposphericCorrection;
        if (stationRangeTropospheric[i]) {
            final SaastamoinenModel troposphericModel = SaastamoinenModel.getStandardModel();
            rangeTroposphericCorrection = new RangeTroposphericDelayModifier(troposphericModel);
        } else {
            rangeTroposphericCorrection = null;
        }
        stations.put(stationNames[i], new StationData(station, rangeSigma, rangeBias, rangeRateSigma, rangeRateBias, azELSigma, azELBias, refractionCorrection, rangeTroposphericCorrection));
    }
    return stations;
}
Also used : GroundStation(org.orekit.estimation.measurements.GroundStation) HashMap(java.util.HashMap) EarthITU453AtmosphereRefraction(org.orekit.models.earth.EarthITU453AtmosphereRefraction) TopocentricFrame(org.orekit.frames.TopocentricFrame) AngularRadioRefractionModifier(org.orekit.estimation.measurements.modifiers.AngularRadioRefractionModifier) AtmosphericRefractionModel(org.orekit.models.AtmosphericRefractionModel) Range(org.orekit.estimation.measurements.Range) RangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier) GeodeticPoint(org.orekit.bodies.GeodeticPoint) RangeRate(org.orekit.estimation.measurements.RangeRate) GeodeticPoint(org.orekit.bodies.GeodeticPoint) AngularAzEl(org.orekit.estimation.measurements.AngularAzEl) SaastamoinenModel(org.orekit.models.earth.SaastamoinenModel)

Example 7 with GroundStation

use of org.orekit.estimation.measurements.GroundStation in project Orekit by CS-SI.

the class EstimationTestUtils method geoStationnaryContext.

public static Context geoStationnaryContext(final String dataRoot) throws OrekitException {
    Utils.setDataRoot(dataRoot);
    Context context = new Context();
    context.conventions = IERSConventions.IERS_2010;
    context.utc = TimeScalesFactory.getUTC();
    context.ut1 = TimeScalesFactory.getUT1(context.conventions, true);
    context.displacements = new StationDisplacement[0];
    String Myframename = "MyEarthFrame";
    final AbsoluteDate datedef = new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc);
    final double omega = Constants.WGS84_EARTH_ANGULAR_VELOCITY;
    final Vector3D rotationRate = new Vector3D(0.0, 0.0, omega);
    TransformProvider MyEarthFrame = new TransformProvider() {

        private static final long serialVersionUID = 1L;

        public Transform getTransform(final AbsoluteDate date) {
            final double rotationduration = date.durationFrom(datedef);
            final Vector3D alpharot = new Vector3D(rotationduration, rotationRate);
            final Rotation rotation = new Rotation(Vector3D.PLUS_K, -alpharot.getZ(), RotationConvention.VECTOR_OPERATOR);
            return new Transform(date, rotation, rotationRate);
        }

        public <T extends RealFieldElement<T>> FieldTransform<T> getTransform(final FieldAbsoluteDate<T> date) {
            final T rotationduration = date.durationFrom(datedef);
            final FieldVector3D<T> alpharot = new FieldVector3D<>(rotationduration, rotationRate);
            final FieldRotation<T> rotation = new FieldRotation<>(FieldVector3D.getPlusK(date.getField()), alpharot.getZ().negate(), RotationConvention.VECTOR_OPERATOR);
            return new FieldTransform<>(date, rotation, new FieldVector3D<>(date.getField(), rotationRate));
        }
    };
    Frame FrameTest = new Frame(FramesFactory.getEME2000(), MyEarthFrame, Myframename, true);
    // Earth is spherical, rotating in one sidereal day
    context.earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, 0.0, FrameTest);
    context.sun = CelestialBodyFactory.getSun();
    context.moon = CelestialBodyFactory.getMoon();
    context.radiationSensitive = new IsotropicRadiationClassicalConvention(2.0, 0.2, 0.8);
    context.dragSensitive = new IsotropicDrag(2.0, 1.2);
    GravityFieldFactory.addPotentialCoefficientsReader(new GRGSFormatReader("grim4s4_gr", true));
    AstronomicalAmplitudeReader aaReader = new AstronomicalAmplitudeReader("hf-fes2004.dat", 5, 2, 3, 1.0);
    DataProvidersManager.getInstance().feed(aaReader.getSupportedNames(), aaReader);
    Map<Integer, Double> map = aaReader.getAstronomicalAmplitudesMap();
    GravityFieldFactory.addOceanTidesReader(new FESCHatEpsilonReader("fes2004-7x7.dat", 0.01, FastMath.toRadians(1.0), OceanLoadDeformationCoefficients.IERS_2010, map));
    context.gravity = GravityFieldFactory.getNormalizedProvider(20, 20);
    // semimajor axis for a geostationnary satellite
    double da = FastMath.cbrt(context.gravity.getMu() / (omega * omega));
    // context.stations = Arrays.asList(context.createStation(  0.0,  0.0, 0.0, "Lat0_Long0"),
    // context.createStation( 62.29639,   -7.01250,  880.0, "Slættaratindur")
    // );
    context.stations = Arrays.asList(context.createStation(0.0, 0.0, 0.0, "Lat0_Long0"));
    // Station position & velocity in EME2000
    final Vector3D geovelocity = new Vector3D(0., 0., 0.);
    // Compute the frames transformation from station frame to EME2000
    Transform topoToEME = context.stations.get(0).getBaseFrame().getTransformTo(FramesFactory.getEME2000(), new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc));
    // Station position in EME2000 at reference date
    Vector3D stationPositionEME = topoToEME.transformPosition(Vector3D.ZERO);
    // Satellite position and velocity in Station Frame
    final Vector3D sat_pos = new Vector3D(0., 0., da - stationPositionEME.getNorm());
    final Vector3D acceleration = new Vector3D(-context.gravity.getMu(), sat_pos);
    final PVCoordinates pv_sat_topo = new PVCoordinates(sat_pos, geovelocity, acceleration);
    // satellite position in EME2000
    final PVCoordinates pv_sat_iner = topoToEME.transformPVCoordinates(pv_sat_topo);
    // Geo-stationary Satellite Orbit, tightly above the station (l0-L0)
    context.initialOrbit = new KeplerianOrbit(pv_sat_iner, FramesFactory.getEME2000(), new AbsoluteDate(2000, 1, 1, 12, 0, 0.0, context.utc), context.gravity.getMu());
    context.stations = Arrays.asList(context.createStation(10.0, 45.0, 0.0, "Lat10_Long45"));
    // Turn-around range stations
    // Map entry = master station
    // Map value = slave station associated
    context.TARstations = new HashMap<GroundStation, GroundStation>();
    context.TARstations.put(context.createStation(41.977, 13.600, 671.354, "Fucino"), context.createStation(43.604, 1.444, 263.0, "Toulouse"));
    context.TARstations.put(context.createStation(49.867, 8.65, 144.0, "Darmstadt"), context.createStation(-25.885, 27.707, 1566.633, "Pretoria"));
    return context;
}
Also used : Frame(org.orekit.frames.Frame) OneAxisEllipsoid(org.orekit.bodies.OneAxisEllipsoid) IsotropicDrag(org.orekit.forces.drag.IsotropicDrag) PVCoordinates(org.orekit.utils.PVCoordinates) FieldVector3D(org.hipparchus.geometry.euclidean.threed.FieldVector3D) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate) AbsoluteDate(org.orekit.time.AbsoluteDate) GRGSFormatReader(org.orekit.forces.gravity.potential.GRGSFormatReader) FieldVector3D(org.hipparchus.geometry.euclidean.threed.FieldVector3D) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) TransformProvider(org.orekit.frames.TransformProvider) KeplerianOrbit(org.orekit.orbits.KeplerianOrbit) AstronomicalAmplitudeReader(org.orekit.forces.gravity.potential.AstronomicalAmplitudeReader) GroundStation(org.orekit.estimation.measurements.GroundStation) RealFieldElement(org.hipparchus.RealFieldElement) FieldTransform(org.orekit.frames.FieldTransform) Rotation(org.hipparchus.geometry.euclidean.threed.Rotation) FieldRotation(org.hipparchus.geometry.euclidean.threed.FieldRotation) FieldRotation(org.hipparchus.geometry.euclidean.threed.FieldRotation) FESCHatEpsilonReader(org.orekit.forces.gravity.potential.FESCHatEpsilonReader) IsotropicRadiationClassicalConvention(org.orekit.forces.radiation.IsotropicRadiationClassicalConvention) FieldTransform(org.orekit.frames.FieldTransform) Transform(org.orekit.frames.Transform) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate)

Example 8 with GroundStation

use of org.orekit.estimation.measurements.GroundStation in project Orekit by CS-SI.

the class EstimationTestUtils method eccentricContext.

public static Context eccentricContext(final String dataRoot) throws OrekitException {
    Utils.setDataRoot(dataRoot);
    Context context = new Context();
    context.conventions = IERSConventions.IERS_2010;
    context.earth = new OneAxisEllipsoid(Constants.WGS84_EARTH_EQUATORIAL_RADIUS, Constants.WGS84_EARTH_FLATTENING, FramesFactory.getITRF(context.conventions, true));
    context.sun = CelestialBodyFactory.getSun();
    context.moon = CelestialBodyFactory.getMoon();
    context.radiationSensitive = new IsotropicRadiationClassicalConvention(2.0, 0.2, 0.8);
    context.dragSensitive = new IsotropicDrag(2.0, 1.2);
    final EOPHistory eopHistory = FramesFactory.getEOPHistory(context.conventions, true);
    context.utc = TimeScalesFactory.getUTC();
    context.ut1 = TimeScalesFactory.getUT1(eopHistory);
    context.displacements = new StationDisplacement[] { new TidalDisplacement(Constants.EIGEN5C_EARTH_EQUATORIAL_RADIUS, Constants.JPL_SSD_SUN_EARTH_PLUS_MOON_MASS_RATIO, Constants.JPL_SSD_EARTH_MOON_MASS_RATIO, context.sun, context.moon, context.conventions, false) };
    GravityFieldFactory.addPotentialCoefficientsReader(new GRGSFormatReader("grim4s4_gr", true));
    AstronomicalAmplitudeReader aaReader = new AstronomicalAmplitudeReader("hf-fes2004.dat", 5, 2, 3, 1.0);
    DataProvidersManager.getInstance().feed(aaReader.getSupportedNames(), aaReader);
    Map<Integer, Double> map = aaReader.getAstronomicalAmplitudesMap();
    GravityFieldFactory.addOceanTidesReader(new FESCHatEpsilonReader("fes2004-7x7.dat", 0.01, FastMath.toRadians(1.0), OceanLoadDeformationCoefficients.IERS_2010, map));
    context.gravity = GravityFieldFactory.getNormalizedProvider(20, 20);
    context.initialOrbit = new KeplerianOrbit(15000000.0, 0.125, 1.25, 0.250, 1.375, 0.0625, PositionAngle.TRUE, FramesFactory.getEME2000(), new AbsoluteDate(2000, 2, 24, 11, 35, 47.0, context.utc), context.gravity.getMu());
    context.stations = // context.createStation(-18.59146, -173.98363,   76.0, "Leimatu`a"),
    Arrays.asList(context.createStation(-53.05388, -75.01551, 1750.0, "Isla Desolación"), context.createStation(62.29639, -7.01250, 880.0, "Slættaratindur"));
    // Turn-around range stations
    // Map entry = master station
    // Map value = slave station associated
    context.TARstations = new HashMap<GroundStation, GroundStation>();
    context.TARstations.put(context.createStation(-53.05388, -75.01551, 1750.0, "Isla Desolación"), context.createStation(-54.815833, -68.317778, 6.0, "Ushuaïa"));
    context.TARstations.put(context.createStation(62.29639, -7.01250, 880.0, "Slættaratindur"), context.createStation(61.405833, -6.705278, 470.0, "Sumba"));
    return context;
}
Also used : OneAxisEllipsoid(org.orekit.bodies.OneAxisEllipsoid) IsotropicDrag(org.orekit.forces.drag.IsotropicDrag) GroundStation(org.orekit.estimation.measurements.GroundStation) EOPHistory(org.orekit.frames.EOPHistory) FieldAbsoluteDate(org.orekit.time.FieldAbsoluteDate) AbsoluteDate(org.orekit.time.AbsoluteDate) GRGSFormatReader(org.orekit.forces.gravity.potential.GRGSFormatReader) FESCHatEpsilonReader(org.orekit.forces.gravity.potential.FESCHatEpsilonReader) IsotropicRadiationClassicalConvention(org.orekit.forces.radiation.IsotropicRadiationClassicalConvention) KeplerianOrbit(org.orekit.orbits.KeplerianOrbit) AstronomicalAmplitudeReader(org.orekit.forces.gravity.potential.AstronomicalAmplitudeReader) TidalDisplacement(org.orekit.models.earth.displacement.TidalDisplacement)

Example 9 with GroundStation

use of org.orekit.estimation.measurements.GroundStation in project Orekit by CS-SI.

the class OrbitDetermination method createStationsData.

/**
 * Set up stations.
 * @param parser input file parser
 * @param body central body
 * @return name to station data map
 * @exception OrekitException if some frame transforms cannot be computed
 * @throws NoSuchElementException if input parameters are missing
 */
private Map<String, StationData> createStationsData(final KeyValueFileParser<ParameterKey> parser, final OneAxisEllipsoid body) throws OrekitException, NoSuchElementException {
    final Map<String, StationData> stations = new HashMap<String, StationData>();
    final String[] stationNames = parser.getStringArray(ParameterKey.GROUND_STATION_NAME);
    final double[] stationLatitudes = parser.getAngleArray(ParameterKey.GROUND_STATION_LATITUDE);
    final double[] stationLongitudes = parser.getAngleArray(ParameterKey.GROUND_STATION_LONGITUDE);
    final double[] stationAltitudes = parser.getDoubleArray(ParameterKey.GROUND_STATION_ALTITUDE);
    final boolean[] stationPositionEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_POSITION_ESTIMATED);
    final double[] stationRangeSigma = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_SIGMA);
    final double[] stationRangeBias = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS);
    final double[] stationRangeBiasMin = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS_MIN);
    final double[] stationRangeBiasMax = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_BIAS_MAX);
    final boolean[] stationRangeBiasEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_BIAS_ESTIMATED);
    final double[] stationRangeRateSigma = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_SIGMA);
    final double[] stationRangeRateBias = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS);
    final double[] stationRangeRateBiasMin = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_MIN);
    final double[] stationRangeRateBiasMax = parser.getDoubleArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_MAX);
    final boolean[] stationRangeRateBiasEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_RATE_BIAS_ESTIMATED);
    final double[] stationAzimuthSigma = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_SIGMA);
    final double[] stationAzimuthBias = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS);
    final double[] stationAzimuthBiasMin = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS_MIN);
    final double[] stationAzimuthBiasMax = parser.getAngleArray(ParameterKey.GROUND_STATION_AZIMUTH_BIAS_MAX);
    final double[] stationElevationSigma = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_SIGMA);
    final double[] stationElevationBias = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS);
    final double[] stationElevationBiasMin = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS_MIN);
    final double[] stationElevationBiasMax = parser.getAngleArray(ParameterKey.GROUND_STATION_ELEVATION_BIAS_MAX);
    final boolean[] stationAzElBiasesEstimated = parser.getBooleanArray(ParameterKey.GROUND_STATION_AZ_EL_BIASES_ESTIMATED);
    final boolean[] stationElevationRefraction = parser.getBooleanArray(ParameterKey.GROUND_STATION_ELEVATION_REFRACTION_CORRECTION);
    final boolean[] stationRangeTropospheric = parser.getBooleanArray(ParameterKey.GROUND_STATION_RANGE_TROPOSPHERIC_CORRECTION);
    for (int i = 0; i < stationNames.length; ++i) {
        // the station itself
        final GeodeticPoint position = new GeodeticPoint(stationLatitudes[i], stationLongitudes[i], stationAltitudes[i]);
        final TopocentricFrame topo = new TopocentricFrame(body, position, stationNames[i]);
        final GroundStation station = new GroundStation(topo);
        station.getEastOffsetDriver().setSelected(stationPositionEstimated[i]);
        station.getNorthOffsetDriver().setSelected(stationPositionEstimated[i]);
        station.getZenithOffsetDriver().setSelected(stationPositionEstimated[i]);
        // range
        final double rangeSigma = stationRangeSigma[i];
        final Bias<Range> rangeBias;
        if (FastMath.abs(stationRangeBias[i]) >= Precision.SAFE_MIN || stationRangeBiasEstimated[i]) {
            rangeBias = new Bias<Range>(new String[] { stationNames[i] + "/range bias" }, new double[] { stationRangeBias[i] }, new double[] { rangeSigma }, new double[] { stationRangeBiasMin[i] }, new double[] { stationRangeBiasMax[i] });
            rangeBias.getParametersDrivers().get(0).setSelected(stationRangeBiasEstimated[i]);
        } else {
            // bias fixed to zero, we don't need to create a modifier for this
            rangeBias = null;
        }
        // range rate
        final double rangeRateSigma = stationRangeRateSigma[i];
        final Bias<RangeRate> rangeRateBias;
        if (FastMath.abs(stationRangeRateBias[i]) >= Precision.SAFE_MIN || stationRangeRateBiasEstimated[i]) {
            rangeRateBias = new Bias<RangeRate>(new String[] { stationNames[i] + "/range rate bias" }, new double[] { stationRangeRateBias[i] }, new double[] { rangeRateSigma }, new double[] { stationRangeRateBiasMin[i] }, new double[] { stationRangeRateBiasMax[i] });
            rangeRateBias.getParametersDrivers().get(0).setSelected(stationRangeRateBiasEstimated[i]);
        } else {
            // bias fixed to zero, we don't need to create a modifier for this
            rangeRateBias = null;
        }
        // angular biases
        final double[] azELSigma = new double[] { stationAzimuthSigma[i], stationElevationSigma[i] };
        final Bias<AngularAzEl> azELBias;
        if (FastMath.abs(stationAzimuthBias[i]) >= Precision.SAFE_MIN || FastMath.abs(stationElevationBias[i]) >= Precision.SAFE_MIN || stationAzElBiasesEstimated[i]) {
            azELBias = new Bias<AngularAzEl>(new String[] { stationNames[i] + "/az bias", stationNames[i] + "/el bias" }, new double[] { stationAzimuthBias[i], stationElevationBias[i] }, azELSigma, new double[] { stationAzimuthBiasMin[i], stationElevationBiasMin[i] }, new double[] { stationAzimuthBiasMax[i], stationElevationBiasMax[i] });
            azELBias.getParametersDrivers().get(0).setSelected(stationAzElBiasesEstimated[i]);
            azELBias.getParametersDrivers().get(1).setSelected(stationAzElBiasesEstimated[i]);
        } else {
            // bias fixed to zero, we don't need to create a modifier for this
            azELBias = null;
        }
        // Refraction correction
        final AngularRadioRefractionModifier refractionCorrection;
        if (stationElevationRefraction[i]) {
            final double altitude = station.getBaseFrame().getPoint().getAltitude();
            final AtmosphericRefractionModel refractionModel = new EarthITU453AtmosphereRefraction(altitude);
            refractionCorrection = new AngularRadioRefractionModifier(refractionModel);
        } else {
            refractionCorrection = null;
        }
        // Tropospheric correction
        final RangeTroposphericDelayModifier rangeTroposphericCorrection;
        if (stationRangeTropospheric[i]) {
            final SaastamoinenModel troposphericModel = SaastamoinenModel.getStandardModel();
            rangeTroposphericCorrection = new RangeTroposphericDelayModifier(troposphericModel);
        } else {
            rangeTroposphericCorrection = null;
        }
        stations.put(stationNames[i], new StationData(station, rangeSigma, rangeBias, rangeRateSigma, rangeRateBias, azELSigma, azELBias, refractionCorrection, rangeTroposphericCorrection));
    }
    return stations;
}
Also used : GroundStation(org.orekit.estimation.measurements.GroundStation) HashMap(java.util.HashMap) EarthITU453AtmosphereRefraction(org.orekit.models.earth.EarthITU453AtmosphereRefraction) TopocentricFrame(org.orekit.frames.TopocentricFrame) AngularRadioRefractionModifier(org.orekit.estimation.measurements.modifiers.AngularRadioRefractionModifier) AtmosphericRefractionModel(org.orekit.models.AtmosphericRefractionModel) Range(org.orekit.estimation.measurements.Range) RangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier) GeodeticPoint(org.orekit.bodies.GeodeticPoint) RangeRate(org.orekit.estimation.measurements.RangeRate) GeodeticPoint(org.orekit.bodies.GeodeticPoint) AngularAzEl(org.orekit.estimation.measurements.AngularAzEl) SaastamoinenModel(org.orekit.models.earth.SaastamoinenModel)

Example 10 with GroundStation

use of org.orekit.estimation.measurements.GroundStation in project Orekit by CS-SI.

the class AngularRadioRefractionModifier method modify.

@Override
public void modify(final EstimatedMeasurement<AngularAzEl> estimated) throws OrekitException {
    final AngularAzEl measure = estimated.getObservedMeasurement();
    final GroundStation station = measure.getStation();
    final SpacecraftState state = estimated.getStates()[0];
    final double correction = angularErrorRadioRefractionModel(station, state);
    // update estimated value taking into account the tropospheric elevation corection.
    // The tropospheric elevation correction is directly added to the elevation.
    final double[] oldValue = estimated.getEstimatedValue();
    final double[] newValue = oldValue.clone();
    // consider only effect on elevation
    newValue[1] = newValue[1] + correction;
    estimated.setEstimatedValue(newValue[0], newValue[1]);
}
Also used : SpacecraftState(org.orekit.propagation.SpacecraftState) GroundStation(org.orekit.estimation.measurements.GroundStation) AngularAzEl(org.orekit.estimation.measurements.AngularAzEl)

Aggregations

GroundStation (org.orekit.estimation.measurements.GroundStation)24 SpacecraftState (org.orekit.propagation.SpacecraftState)19 AbsoluteDate (org.orekit.time.AbsoluteDate)14 Test (org.junit.Test)10 Context (org.orekit.estimation.Context)10 ObservedMeasurement (org.orekit.estimation.measurements.ObservedMeasurement)10 Propagator (org.orekit.propagation.Propagator)10 NumericalPropagatorBuilder (org.orekit.propagation.conversion.NumericalPropagatorBuilder)10 AngularAzEl (org.orekit.estimation.measurements.AngularAzEl)9 Range (org.orekit.estimation.measurements.Range)8 ParameterDriver (org.orekit.utils.ParameterDriver)8 RangeRate (org.orekit.estimation.measurements.RangeRate)7 TurnAroundRange (org.orekit.estimation.measurements.TurnAroundRange)7 TurnAroundRangeMeasurementCreator (org.orekit.estimation.measurements.TurnAroundRangeMeasurementCreator)5 Vector3D (org.hipparchus.geometry.euclidean.threed.Vector3D)4 GeodeticPoint (org.orekit.bodies.GeodeticPoint)4 AngularRadioRefractionModifier (org.orekit.estimation.measurements.modifiers.AngularRadioRefractionModifier)4 RangeTroposphericDelayModifier (org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier)4 EarthITU453AtmosphereRefraction (org.orekit.models.earth.EarthITU453AtmosphereRefraction)4 HashMap (java.util.HashMap)3