use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.
the class RangeAnalytic method theoreticalEvaluationAnalytic.
/**
* Analytical version of the theoreticalEvaluation function in Range class
* The derivative structures are not used, an analytical computation is used instead.
* @param iteration current LS estimator iteration
* @param evaluation current LS estimator evaluation
* @param state spacecraft state. At measurement date on first iteration then close to emission date on further iterations
* @param interpolator Orekit step interpolator
* @return
* @throws OrekitException
*/
protected EstimatedMeasurement<Range> theoreticalEvaluationAnalytic(final int iteration, final int evaluation, final SpacecraftState state) throws OrekitException {
// Station attribute from parent Range class
final GroundStation groundStation = this.getStation();
// Station position at signal arrival
final AbsoluteDate downlinkDate = getDate();
final Transform topoToInertDownlink = groundStation.getOffsetToInertial(state.getFrame(), downlinkDate);
final TimeStampedPVCoordinates stationDownlink = topoToInertDownlink.transformPVCoordinates(new TimeStampedPVCoordinates(downlinkDate, PVCoordinates.ZERO));
// Take propagation time into account
// (if state has already been set up to pre-compensate propagation delay,
// we will have offset == downlinkDelay and transitState will be
// the same as state)
// Downlink time of flight
final double tauD = signalTimeOfFlight(state.getPVCoordinates(), stationDownlink.getPosition(), downlinkDate);
final double delta = downlinkDate.durationFrom(state.getDate());
final double dt = delta - tauD;
// Transit state position
final SpacecraftState transitState = state.shiftedBy(dt);
final AbsoluteDate transitDate = transitState.getDate();
final Vector3D transitP = transitState.getPVCoordinates().getPosition();
// Station position at transit state date
final Transform topoToInertAtTransitDate = groundStation.getOffsetToInertial(state.getFrame(), transitDate);
final TimeStampedPVCoordinates stationAtTransitDate = topoToInertAtTransitDate.transformPVCoordinates(new TimeStampedPVCoordinates(transitDate, PVCoordinates.ZERO));
// Uplink time of flight
final double tauU = signalTimeOfFlight(stationAtTransitDate, transitP, transitDate);
final double tau = tauD + tauU;
// Real date and position of station at signal departure
final AbsoluteDate uplinkDate = downlinkDate.shiftedBy(-tau);
final TimeStampedPVCoordinates stationUplink = topoToInertDownlink.shiftedBy(-tau).transformPVCoordinates(new TimeStampedPVCoordinates(uplinkDate, PVCoordinates.ZERO));
// Prepare the evaluation
final EstimatedMeasurement<Range> estimated = new EstimatedMeasurement<Range>(this, iteration, evaluation, new SpacecraftState[] { transitState }, new TimeStampedPVCoordinates[] { stationUplink, transitState.getPVCoordinates(), stationDownlink });
// Set range value
final double cOver2 = 0.5 * Constants.SPEED_OF_LIGHT;
estimated.setEstimatedValue(tau * cOver2);
// Partial derivatives with respect to state
// The formulas below take into account the fact the measurement is at fixed reception date.
// When spacecraft position is changed, the downlink delay is changed, and in order
// to still have the measurement arrive at exactly the same date on ground, we must
// take the spacecraft-station relative velocity into account.
final Vector3D v = state.getPVCoordinates().getVelocity();
final Vector3D qv = stationDownlink.getVelocity();
final Vector3D downInert = stationDownlink.getPosition().subtract(transitP);
final double dDown = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tauD - Vector3D.dotProduct(downInert, v);
final Vector3D upInert = transitP.subtract(stationUplink.getPosition());
// test
// final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tauU -
// Vector3D.dotProduct(upInert, qv);
// test
final double dUp = Constants.SPEED_OF_LIGHT * Constants.SPEED_OF_LIGHT * tauU - Vector3D.dotProduct(upInert, stationUplink.getVelocity());
// derivatives of the downlink time of flight
final double dTauDdPx = -downInert.getX() / dDown;
final double dTauDdPy = -downInert.getY() / dDown;
final double dTauDdPz = -downInert.getZ() / dDown;
// Derivatives of the uplink time of flight
final double dTauUdPx = 1. / dUp * upInert.dotProduct(Vector3D.PLUS_I.add((qv.subtract(v)).scalarMultiply(dTauDdPx)));
final double dTauUdPy = 1. / dUp * upInert.dotProduct(Vector3D.PLUS_J.add((qv.subtract(v)).scalarMultiply(dTauDdPy)));
final double dTauUdPz = 1. / dUp * upInert.dotProduct(Vector3D.PLUS_K.add((qv.subtract(v)).scalarMultiply(dTauDdPz)));
// derivatives of the range measurement
final double dRdPx = (dTauDdPx + dTauUdPx) * cOver2;
final double dRdPy = (dTauDdPy + dTauUdPy) * cOver2;
final double dRdPz = (dTauDdPz + dTauUdPz) * cOver2;
estimated.setStateDerivatives(0, new double[] { dRdPx, dRdPy, dRdPz, dRdPx * dt, dRdPy * dt, dRdPz * dt });
if (groundStation.getEastOffsetDriver().isSelected() || groundStation.getNorthOffsetDriver().isSelected() || groundStation.getZenithOffsetDriver().isSelected()) {
// Downlink tme of flight derivatives / station position in topocentric frame
final AngularCoordinates ac = topoToInertDownlink.getAngular().revert();
// final Rotation rotTopoToInert = ac.getRotation();
final Vector3D omega = ac.getRotationRate();
// Inertial frame
final double dTauDdQIx = downInert.getX() / dDown;
final double dTauDdQIy = downInert.getY() / dDown;
final double dTauDdQIz = downInert.getZ() / dDown;
// Uplink tme of flight derivatives / station position in topocentric frame
// Inertial frame
final double dTauUdQIx = 1 / dUp * upInert.dotProduct(Vector3D.MINUS_I.add((qv.subtract(v)).scalarMultiply(dTauDdQIx)).subtract(Vector3D.PLUS_I.crossProduct(omega).scalarMultiply(tau)));
final double dTauUdQIy = 1 / dUp * upInert.dotProduct(Vector3D.MINUS_J.add((qv.subtract(v)).scalarMultiply(dTauDdQIy)).subtract(Vector3D.PLUS_J.crossProduct(omega).scalarMultiply(tau)));
final double dTauUdQIz = 1 / dUp * upInert.dotProduct(Vector3D.MINUS_K.add((qv.subtract(v)).scalarMultiply(dTauDdQIz)).subtract(Vector3D.PLUS_K.crossProduct(omega).scalarMultiply(tau)));
// Range partial derivatives
// with respect to station position in inertial frame
final Vector3D dRdQI = new Vector3D((dTauDdQIx + dTauUdQIx) * cOver2, (dTauDdQIy + dTauUdQIy) * cOver2, (dTauDdQIz + dTauUdQIz) * cOver2);
// convert to topocentric frame, as the station position
// offset parameter is expressed in this frame
final Vector3D dRdQT = ac.getRotation().applyTo(dRdQI);
if (groundStation.getEastOffsetDriver().isSelected()) {
estimated.setParameterDerivatives(groundStation.getEastOffsetDriver(), dRdQT.getX());
}
if (groundStation.getNorthOffsetDriver().isSelected()) {
estimated.setParameterDerivatives(groundStation.getNorthOffsetDriver(), dRdQT.getY());
}
if (groundStation.getZenithOffsetDriver().isSelected()) {
estimated.setParameterDerivatives(groundStation.getZenithOffsetDriver(), dRdQT.getZ());
}
}
return estimated;
}
use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.
the class RangeAnalyticTest method genericTestStateDerivatives.
/**
* Generic test function for derivatives with respect to state
* @param isModifier Use of atmospheric modifiers
* @param isFiniteDifferences Finite differences reference calculation if true, Range class otherwise
* @param printResults Print the results ?
* @throws OrekitException
*/
void genericTestStateDerivatives(final boolean isModifier, final boolean isFiniteDifferences, final boolean printResults, final double refErrorsPMedian, final double refErrorsPMean, final double refErrorsPMax, final double refErrorsVMedian, final double refErrorsVMean, final double refErrorsVMax) throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// Create perfect range measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// Lists for results' storage - Used only for derivatives with respect to state
// "final" value to be seen by "handleStep" function of the propagator
final List<Double> errorsP = new ArrayList<Double>();
final List<Double> errorsV = new ArrayList<Double>();
// Set master mode
// Use a lambda function to implement "handleStep" function
propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
for (final ObservedMeasurement<?> measurement : measurements) {
// Play test if the measurement date is between interpolator previous and current date
if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
// Add modifiers if test implies it
final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
if (isModifier) {
((Range) measurement).addModifier(modifier);
}
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// range would have depended only on the current position but
// not on the current velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = interpolator.getInterpolatedState(date);
final EstimatedMeasurement<Range> range = new RangeAnalytic((Range) measurement).theoreticalEvaluationAnalytic(0, 0, state);
if (isModifier) {
modifier.modify(range);
}
final double[][] jacobian = range.getStateDerivatives(0);
// Jacobian reference value
final double[][] jacobianRef;
if (isFiniteDifferences) {
// Compute a reference value using finite differences
jacobianRef = Differentiation.differentiate(new StateFunction() {
public double[] value(final SpacecraftState state) throws OrekitException {
return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue();
}
}, measurement.getDimension(), propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 2.0, 3).value(state);
} else {
// Compute a reference value using Range class function
jacobianRef = ((Range) measurement).theoreticalEvaluation(0, 0, new SpacecraftState[] { state }).getStateDerivatives(0);
}
// //Test: Test point by point with the debugger
// if (!isFiniteDifferences && !isModifier) {
// final EstimatedMeasurement<Range> test =
// new RangeAnalytic((Range)measurement).theoreticalEvaluationValidation(0, 0, state);
// }
// //Test
Assert.assertEquals(jacobianRef.length, jacobian.length);
Assert.assertEquals(jacobianRef[0].length, jacobian[0].length);
// Errors & relative errors on the jacobian
double[][] dJacobian = new double[jacobian.length][jacobian[0].length];
double[][] dJacobianRelative = new double[jacobian.length][jacobian[0].length];
for (int i = 0; i < jacobian.length; ++i) {
for (int j = 0; j < jacobian[i].length; ++j) {
dJacobian[i][j] = jacobian[i][j] - jacobianRef[i][j];
dJacobianRelative[i][j] = FastMath.abs(dJacobian[i][j] / jacobianRef[i][j]);
if (j < 3) {
errorsP.add(dJacobianRelative[i][j]);
} else {
errorsV.add(dJacobianRelative[i][j]);
}
}
}
// Print values in console ?
if (printResults) {
String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
System.out.format(Locale.US, "%-15s %-23s %-23s " + "%10.3e %10.3e %10.3e " + "%10.3e %10.3e %10.3e " + "%10.3e %10.3e %10.3e " + "%10.3e %10.3e %10.3e%n", stationName, measurement.getDate(), date, dJacobian[0][0], dJacobian[0][1], dJacobian[0][2], dJacobian[0][3], dJacobian[0][4], dJacobian[0][5], dJacobianRelative[0][0], dJacobianRelative[0][1], dJacobianRelative[0][2], dJacobianRelative[0][3], dJacobianRelative[0][4], dJacobianRelative[0][5]);
}
}
// End if measurement date between previous and current interpolator step
}
// End for loop on the measurements
});
// Print results on console ?
if (printResults) {
System.out.format(Locale.US, "%-15s %-23s %-23s " + "%10s %10s %10s " + "%10s %10s %10s " + "%10s %10s %10s " + "%10s %10s %10s%n", "Station", "Measurement Date", "State Date", "ΔdPx", "ΔdPy", "ΔdPz", "ΔdVx", "ΔdVy", "ΔdVz", "rel ΔdPx", "rel ΔdPy", "rel ΔdPz", "rel ΔdVx", "rel ΔdVy", "rel ΔdVz");
}
// Rewind the propagator to initial date
propagator.propagate(context.initialOrbit.getDate());
// Sort measurements chronologically
measurements.sort(new ChronologicalComparator());
// Propagate to final measurement's date
propagator.propagate(measurements.get(measurements.size() - 1).getDate());
// Convert lists to double[] and evaluate some statistics
final double[] relErrorsP = errorsP.stream().mapToDouble(Double::doubleValue).toArray();
final double[] relErrorsV = errorsV.stream().mapToDouble(Double::doubleValue).toArray();
final double errorsPMedian = new Median().evaluate(relErrorsP);
final double errorsPMean = new Mean().evaluate(relErrorsP);
final double errorsPMax = new Max().evaluate(relErrorsP);
final double errorsVMedian = new Median().evaluate(relErrorsV);
final double errorsVMean = new Mean().evaluate(relErrorsV);
final double errorsVMax = new Max().evaluate(relErrorsV);
// Print the results on console ?
if (printResults) {
System.out.println();
System.out.format(Locale.US, "Relative errors dR/dP -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", errorsPMedian, errorsPMean, errorsPMax);
System.out.format(Locale.US, "Relative errors dR/dV -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", errorsVMedian, errorsVMean, errorsVMax);
}
// Reference comparison with Range class
Assert.assertEquals(0.0, errorsPMedian, refErrorsPMedian);
Assert.assertEquals(0.0, errorsPMean, refErrorsPMean);
Assert.assertEquals(0.0, errorsPMax, refErrorsPMax);
Assert.assertEquals(0.0, errorsVMedian, refErrorsVMedian);
Assert.assertEquals(0.0, errorsVMean, refErrorsVMean);
Assert.assertEquals(0.0, errorsVMax, refErrorsVMax);
}
use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.
the class RangeAnalyticTest method genericTestParameterDerivatives.
/**
* Generic test function for derivatives with respect to parameters (station's position in station's topocentric frame)
* @param isModifier Use of atmospheric modifiers
* @param isFiniteDifferences Finite differences reference calculation if true, Range class otherwise
* @param printResults Print the results ?
* @throws OrekitException
*/
void genericTestParameterDerivatives(final boolean isModifier, final boolean isFiniteDifferences, final boolean printResults) throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// Create perfect range measurements
for (final GroundStation station : context.stations) {
station.getEastOffsetDriver().setSelected(true);
station.getNorthOffsetDriver().setSelected(true);
station.getZenithOffsetDriver().setSelected(true);
}
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// List to store the results
final List<Double> relErrorList = new ArrayList<Double>();
// Set master mode
// Use a lambda function to implement "handleStep" function
propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
for (final ObservedMeasurement<?> measurement : measurements) {
// Play test if the measurement date is between interpolator previous and current date
if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
// Add modifiers if test implies it
final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
if (isModifier) {
((Range) measurement).addModifier(modifier);
}
// Parameter corresponding to station position offset
final GroundStation stationParameter = ((Range) measurement).getStation();
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// range would have depended only on the current position but
// not on the current velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = interpolator.getInterpolatedState(date);
final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
if (printResults) {
String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
System.out.format(Locale.US, "%-15s %-23s %-23s ", stationName, measurement.getDate(), date);
}
for (int i = 0; i < 3; ++i) {
final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
Assert.assertEquals(1, measurement.getDimension());
Assert.assertEquals(1, gradient.length);
// Compute a reference value using analytical formulas
final EstimatedMeasurement<Range> rangeAnalytic = new RangeAnalytic((Range) measurement).theoreticalEvaluationAnalytic(0, 0, state);
if (isModifier) {
modifier.modify(rangeAnalytic);
}
final double ref = rangeAnalytic.getParameterDerivatives(drivers[i])[0];
if (printResults) {
System.out.format(Locale.US, "%10.3e %10.3e ", gradient[0] - ref, FastMath.abs((gradient[0] - ref) / ref));
}
final double relError = FastMath.abs((ref - gradient[0]) / ref);
relErrorList.add(relError);
// Assert.assertEquals(ref, gradient[0], 6.1e-5 * FastMath.abs(ref));
}
if (printResults) {
System.out.format(Locale.US, "%n");
}
}
// End if measurement date between previous and current interpolator step
}
// End for loop on the measurements
});
// Rewind the propagator to initial date
propagator.propagate(context.initialOrbit.getDate());
// Sort measurements chronologically
measurements.sort(new ChronologicalComparator());
// Print results ? Header
if (printResults) {
System.out.format(Locale.US, "%-15s %-23s %-23s " + "%10s %10s %10s " + "%10s %10s %10s%n", "Station", "Measurement Date", "State Date", "ΔdQx", "rel ΔdQx", "ΔdQy", "rel ΔdQy", "ΔdQz", "rel ΔdQz");
}
// Propagate to final measurement's date
propagator.propagate(measurements.get(measurements.size() - 1).getDate());
// Convert error list to double[]
final double[] relErrors = relErrorList.stream().mapToDouble(Double::doubleValue).toArray();
// Compute statistics
final double relErrorsMedian = new Median().evaluate(relErrors);
final double relErrorsMean = new Mean().evaluate(relErrors);
final double relErrorsMax = new Max().evaluate(relErrors);
// Print the results on console ?
if (printResults) {
System.out.println();
System.out.format(Locale.US, "Relative errors dR/dQ -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsMedian, relErrorsMean, relErrorsMax);
}
// Assert the results / max values depend on the test
double refErrorsMedian, refErrorsMean, refErrorsMax;
// Analytic references
refErrorsMedian = 1.55e-06;
refErrorsMean = 3.64e-06;
refErrorsMax = 6.1e-05;
Assert.assertEquals(0.0, relErrorsMedian, refErrorsMedian);
Assert.assertEquals(0.0, relErrorsMean, refErrorsMean);
Assert.assertEquals(0.0, relErrorsMax, refErrorsMax);
}
use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.
the class RangeRateTest method testParameterDerivativesOneWay.
@Test
public void testParameterDerivativesOneWay() throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// create perfect range rate measurements
for (final GroundStation station : context.stations) {
station.getEastOffsetDriver().setSelected(true);
station.getNorthOffsetDriver().setSelected(true);
station.getZenithOffsetDriver().setSelected(true);
}
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, false), 1.0, 3.0, 300.0);
propagator.setSlaveMode();
double maxRelativeError = 0;
for (final ObservedMeasurement<?> measurement : measurements) {
// parameter corresponding to station position offset
final GroundStation stationParameter = ((RangeRate) measurement).getStation();
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// range would have depended only on the current position but
// not on the current velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = propagator.propagate(date);
final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
for (int i = 0; i < 3; ++i) {
final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
Assert.assertEquals(1, measurement.getDimension());
Assert.assertEquals(1, gradient.length);
final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {
/**
* {@inheritDoc}
*/
@Override
public double value(final ParameterDriver parameterDriver) throws OrekitException {
return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
}
}, drivers[i], 3, 20.0);
final double ref = dMkdP.value(drivers[i]);
maxRelativeError = FastMath.max(maxRelativeError, FastMath.abs((ref - gradient[0]) / ref));
}
}
Assert.assertEquals(0, maxRelativeError, 1.2e-6);
}
use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.
the class RangeRateTest method testParameterDerivativesTwoWays.
@Test
public void testParameterDerivativesTwoWays() throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// create perfect range rate measurements
for (final GroundStation station : context.stations) {
station.getEastOffsetDriver().setSelected(true);
station.getNorthOffsetDriver().setSelected(true);
station.getZenithOffsetDriver().setSelected(true);
}
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, true), 1.0, 3.0, 300.0);
propagator.setSlaveMode();
double maxRelativeError = 0;
for (final ObservedMeasurement<?> measurement : measurements) {
// parameter corresponding to station position offset
final GroundStation stationParameter = ((RangeRate) measurement).getStation();
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// range would have depended only on the current position but
// not on the current velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = propagator.propagate(date);
final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
for (int i = 0; i < 3; ++i) {
final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
Assert.assertEquals(1, measurement.getDimension());
Assert.assertEquals(1, gradient.length);
final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {
/**
* {@inheritDoc}
*/
@Override
public double value(final ParameterDriver parameterDriver) throws OrekitException {
return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
}
}, drivers[i], 3, 20.0);
final double ref = dMkdP.value(drivers[i]);
maxRelativeError = FastMath.max(maxRelativeError, FastMath.abs((ref - gradient[0]) / ref));
}
}
Assert.assertEquals(0, maxRelativeError, 5.2e-5);
}
Aggregations