Search in sources :

Example 51 with SpacecraftState

use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.

the class RangeRateTest method testStateDerivativesOneWay.

@Test
public void testStateDerivativesOneWay() throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // create perfect range rate measurements
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, false), 1.0, 3.0, 300.0);
    for (final ObservedMeasurement<?> m : measurements) {
        Assert.assertFalse(((RangeRate) m).isTwoWay());
    }
    propagator.setSlaveMode();
    double maxRelativeError = 0;
    for (final ObservedMeasurement<?> measurement : measurements) {
        // measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
        final double meanDelay = 1;
        final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
        final SpacecraftState state = propagator.propagate(date);
        final EstimatedMeasurement<?> estimated = measurement.estimate(0, 0, new SpacecraftState[] { state });
        Assert.assertEquals(2, estimated.getParticipants().length);
        final double[][] jacobian = estimated.getStateDerivatives(0);
        final double[][] finiteDifferencesJacobian = Differentiation.differentiate(new StateFunction() {

            public double[] value(final SpacecraftState state) throws OrekitException {
                return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue();
            }
        }, 1, propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 15.0, 3).value(state);
        Assert.assertEquals(finiteDifferencesJacobian.length, jacobian.length);
        Assert.assertEquals(finiteDifferencesJacobian[0].length, jacobian[0].length);
        for (int i = 0; i < jacobian.length; ++i) {
            for (int j = 0; j < jacobian[i].length; ++j) {
                // check the values returned by getStateDerivatives() are correct
                maxRelativeError = FastMath.max(maxRelativeError, FastMath.abs((finiteDifferencesJacobian[i][j] - jacobian[i][j]) / finiteDifferencesJacobian[i][j]));
            }
        }
    }
    Assert.assertEquals(0, maxRelativeError, 1.6e-8);
}
Also used : Context(org.orekit.estimation.Context) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) Propagator(org.orekit.propagation.Propagator) StateFunction(org.orekit.utils.StateFunction) Test(org.junit.Test)

Example 52 with SpacecraftState

use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.

the class RangeTest method genericTestValues.

/**
 * Generic test function for values of the range
 * @param printResults Print the results ?
 * @throws OrekitException
 */
void genericTestValues(final boolean printResults) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect range measurements
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    // Lists for results' storage - Used only for derivatives with respect to state
    // "final" value to be seen by "handleStep" function of the propagator
    final List<Double> absoluteErrors = new ArrayList<Double>();
    final List<Double> relativeErrors = new ArrayList<Double>();
    // Set master mode
    // Use a lambda function to implement "handleStep" function
    propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
        for (final ObservedMeasurement<?> measurement : measurements) {
            // Play test if the measurement date is between interpolator previous and current date
            if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
                // We intentionally propagate to a date which is close to the
                // real spacecraft state but is *not* the accurate date, by
                // compensating only part of the downlink delay. This is done
                // in order to validate the partial derivatives with respect
                // to velocity. If we had chosen the proper state date, the
                // range would have depended only on the current position but
                // not on the current velocity.
                final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
                final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
                final SpacecraftState state = interpolator.getInterpolatedState(date);
                // Values of the Range & errors
                final double RangeObserved = measurement.getObservedValue()[0];
                final EstimatedMeasurement<?> estimated = measurement.estimate(0, 0, new SpacecraftState[] { state });
                final TimeStampedPVCoordinates[] participants = estimated.getParticipants();
                Assert.assertEquals(3, participants.length);
                Assert.assertEquals(0.5 * Constants.SPEED_OF_LIGHT * participants[2].getDate().durationFrom(participants[0].getDate()), estimated.getEstimatedValue()[0], 2.0e-8);
                // the real state used for estimation is adjusted according to downlink delay
                double adjustment = state.getDate().durationFrom(estimated.getStates()[0].getDate());
                Assert.assertTrue(adjustment > 0.006);
                Assert.assertTrue(adjustment < 0.010);
                final double RangeEstimated = estimated.getEstimatedValue()[0];
                final double absoluteError = RangeEstimated - RangeObserved;
                absoluteErrors.add(absoluteError);
                relativeErrors.add(FastMath.abs(absoluteError) / FastMath.abs(RangeObserved));
                // Print results on console ?
                if (printResults) {
                    final AbsoluteDate measurementDate = measurement.getDate();
                    String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
                    System.out.format(Locale.US, "%-15s  %-23s  %-23s  %19.6f  %19.6f  %13.6e  %13.6e%n", stationName, measurementDate, date, RangeObserved, RangeEstimated, FastMath.abs(RangeEstimated - RangeObserved), FastMath.abs((RangeEstimated - RangeObserved) / RangeObserved));
                }
            }
        // End if measurement date between previous and current interpolator step
        }
    // End for loop on the measurements
    });
    // Print results on console ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s  %-23s  %-23s  %19s  %19s  %13s  %13s%n", "Station", "Measurement Date", "State Date", "Range observed [m]", "Range estimated [m]", "ΔRange [m]", "rel ΔRange");
    }
    // Rewind the propagator to initial date
    propagator.propagate(context.initialOrbit.getDate());
    // Sort measurements chronologically
    measurements.sort(new ChronologicalComparator());
    // Propagate to final measurement's date
    propagator.propagate(measurements.get(measurements.size() - 1).getDate());
    // Convert lists to double array
    final double[] absErrors = absoluteErrors.stream().mapToDouble(Double::doubleValue).toArray();
    final double[] relErrors = relativeErrors.stream().mapToDouble(Double::doubleValue).toArray();
    // Statistics' assertion
    final double absErrorsMedian = new Median().evaluate(absErrors);
    final double absErrorsMin = new Min().evaluate(absErrors);
    final double absErrorsMax = new Max().evaluate(absErrors);
    final double relErrorsMedian = new Median().evaluate(relErrors);
    final double relErrorsMax = new Max().evaluate(relErrors);
    // Print the results on console ? Final results
    if (printResults) {
        System.out.println();
        System.out.println("Absolute errors median: " + absErrorsMedian);
        System.out.println("Absolute errors min   : " + absErrorsMin);
        System.out.println("Absolute errors max   : " + absErrorsMax);
        System.out.println("Relative errors median: " + relErrorsMedian);
        System.out.println("Relative errors max   : " + relErrorsMax);
    }
    Assert.assertEquals(0.0, absErrorsMedian, 4.9e-8);
    Assert.assertEquals(0.0, absErrorsMin, 2.2e-7);
    Assert.assertEquals(0.0, absErrorsMax, 2.1e-7);
    Assert.assertEquals(0.0, relErrorsMedian, 1.0e-14);
    Assert.assertEquals(0.0, relErrorsMax, 2.6e-14);
}
Also used : Context(org.orekit.estimation.Context) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) TimeStampedPVCoordinates(org.orekit.utils.TimeStampedPVCoordinates) AbsoluteDate(org.orekit.time.AbsoluteDate) OrekitStepInterpolator(org.orekit.propagation.sampling.OrekitStepInterpolator) SpacecraftState(org.orekit.propagation.SpacecraftState) Min(org.hipparchus.stat.descriptive.rank.Min) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) Propagator(org.orekit.propagation.Propagator) ChronologicalComparator(org.orekit.time.ChronologicalComparator)

Example 53 with SpacecraftState

use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.

the class RangeTest method genericTestParameterDerivatives.

void genericTestParameterDerivatives(final boolean isModifier, final boolean printResults, final double refErrorsMedian, final double refErrorsMean, final double refErrorsMax) throws OrekitException {
    Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
    final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
    // Create perfect range measurements
    for (final GroundStation station : context.stations) {
        station.getEastOffsetDriver().setSelected(true);
        station.getNorthOffsetDriver().setSelected(true);
        station.getZenithOffsetDriver().setSelected(true);
    }
    final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
    final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
    // List to store the results
    final List<Double> relErrorList = new ArrayList<Double>();
    // Set master mode
    // Use a lambda function to implement "handleStep" function
    propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
        for (final ObservedMeasurement<?> measurement : measurements) {
            // Play test if the measurement date is between interpolator previous and current date
            if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
                // Add modifiers if test implies it
                final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
                if (isModifier) {
                    ((Range) measurement).addModifier(modifier);
                }
                // Parameter corresponding to station position offset
                final GroundStation stationParameter = ((Range) measurement).getStation();
                // We intentionally propagate to a date which is close to the
                // real spacecraft state but is *not* the accurate date, by
                // compensating only part of the downlink delay. This is done
                // in order to validate the partial derivatives with respect
                // to velocity. If we had chosen the proper state date, the
                // range would have depended only on the current position but
                // not on the current velocity.
                final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
                final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
                final SpacecraftState state = interpolator.getInterpolatedState(date);
                final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
                if (printResults) {
                    String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
                    System.out.format(Locale.US, "%-15s  %-23s  %-23s  ", stationName, measurement.getDate(), date);
                }
                for (int i = 0; i < 3; ++i) {
                    final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
                    Assert.assertEquals(1, measurement.getDimension());
                    Assert.assertEquals(1, gradient.length);
                    // Compute a reference value using finite differences
                    final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {

                        /**
                         * {@inheritDoc}
                         */
                        @Override
                        public double value(final ParameterDriver parameterDriver) throws OrekitException {
                            return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
                        }
                    }, drivers[i], 3, 20.0);
                    final double ref = dMkdP.value(drivers[i]);
                    if (printResults) {
                        System.out.format(Locale.US, "%10.3e  %10.3e  ", gradient[0] - ref, FastMath.abs((gradient[0] - ref) / ref));
                    }
                    final double relError = FastMath.abs((ref - gradient[0]) / ref);
                    relErrorList.add(relError);
                // Assert.assertEquals(ref, gradient[0], 6.1e-5 * FastMath.abs(ref));
                }
                if (printResults) {
                    System.out.format(Locale.US, "%n");
                }
            }
        // End if measurement date between previous and current interpolator step
        }
    // End for loop on the measurements
    });
    // Rewind the propagator to initial date
    propagator.propagate(context.initialOrbit.getDate());
    // Sort measurements chronologically
    measurements.sort(new ChronologicalComparator());
    // Print results ? Header
    if (printResults) {
        System.out.format(Locale.US, "%-15s  %-23s  %-23s  " + "%10s  %10s  %10s  " + "%10s  %10s  %10s%n", "Station", "Measurement Date", "State Date", "ΔdQx", "rel ΔdQx", "ΔdQy", "rel ΔdQy", "ΔdQz", "rel ΔdQz");
    }
    // Propagate to final measurement's date
    propagator.propagate(measurements.get(measurements.size() - 1).getDate());
    // Convert error list to double[]
    final double[] relErrors = relErrorList.stream().mapToDouble(Double::doubleValue).toArray();
    // Compute statistics
    final double relErrorsMedian = new Median().evaluate(relErrors);
    final double relErrorsMean = new Mean().evaluate(relErrors);
    final double relErrorsMax = new Max().evaluate(relErrors);
    // Print the results on console ?
    if (printResults) {
        System.out.println();
        System.out.format(Locale.US, "Relative errors dR/dQ -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsMedian, relErrorsMean, relErrorsMax);
    }
    Assert.assertEquals(0.0, relErrorsMedian, refErrorsMedian);
    Assert.assertEquals(0.0, relErrorsMean, refErrorsMean);
    Assert.assertEquals(0.0, relErrorsMax, refErrorsMax);
}
Also used : Mean(org.hipparchus.stat.descriptive.moment.Mean) Max(org.hipparchus.stat.descriptive.rank.Max) ArrayList(java.util.ArrayList) Median(org.hipparchus.stat.descriptive.rank.Median) AbsoluteDate(org.orekit.time.AbsoluteDate) SpacecraftState(org.orekit.propagation.SpacecraftState) Propagator(org.orekit.propagation.Propagator) OrekitException(org.orekit.errors.OrekitException) Context(org.orekit.estimation.Context) ParameterDriver(org.orekit.utils.ParameterDriver) RangeTroposphericDelayModifier(org.orekit.estimation.measurements.modifiers.RangeTroposphericDelayModifier) OrekitStepInterpolator(org.orekit.propagation.sampling.OrekitStepInterpolator) NumericalPropagatorBuilder(org.orekit.propagation.conversion.NumericalPropagatorBuilder) ParameterFunction(org.orekit.utils.ParameterFunction) ChronologicalComparator(org.orekit.time.ChronologicalComparator)

Example 54 with SpacecraftState

use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.

the class ConstantThrustManeuver method getEventsDetectors.

/**
 * {@inheritDoc}
 */
@Override
public Stream<EventDetector> getEventsDetectors() {
    // in forward propagation direction, firing must be enabled
    // at start time and disabled at end time; in backward
    // propagation direction, firing must be enabled
    // at end time and disabled at start time
    final DateDetector startDetector = new DateDetector(startDate).withHandler((SpacecraftState state, DateDetector d, boolean increasing) -> {
        firing = d.isForward();
        return EventHandler.Action.RESET_DERIVATIVES;
    });
    final DateDetector endDetector = new DateDetector(endDate).withHandler((SpacecraftState state, DateDetector d, boolean increasing) -> {
        firing = !d.isForward();
        return EventHandler.Action.RESET_DERIVATIVES;
    });
    return Stream.of(startDetector, endDetector);
}
Also used : DateDetector(org.orekit.propagation.events.DateDetector) FieldDateDetector(org.orekit.propagation.events.FieldDateDetector) FieldSpacecraftState(org.orekit.propagation.FieldSpacecraftState) SpacecraftState(org.orekit.propagation.SpacecraftState)

Example 55 with SpacecraftState

use of org.orekit.propagation.SpacecraftState in project Orekit by CS-SI.

the class NumericalPropagatorTest method setUp.

@Before
public void setUp() throws OrekitException {
    Utils.setDataRoot("regular-data:potential/shm-format");
    GravityFieldFactory.addPotentialCoefficientsReader(new SHMFormatReader("^eigen_cg03c_coef$", false));
    mu = GravityFieldFactory.getUnnormalizedProvider(0, 0).getMu();
    final Vector3D position = new Vector3D(7.0e6, 1.0e6, 4.0e6);
    final Vector3D velocity = new Vector3D(-500.0, 8000.0, 1000.0);
    initDate = AbsoluteDate.J2000_EPOCH;
    final Orbit orbit = new EquinoctialOrbit(new PVCoordinates(position, velocity), FramesFactory.getEME2000(), initDate, mu);
    initialState = new SpacecraftState(orbit);
    double[][] tolerance = NumericalPropagator.tolerances(0.001, orbit, OrbitType.EQUINOCTIAL);
    AdaptiveStepsizeIntegrator integrator = new DormandPrince853Integrator(0.001, 200, tolerance[0], tolerance[1]);
    integrator.setInitialStepSize(60);
    propagator = new NumericalPropagator(integrator);
    propagator.setInitialState(initialState);
}
Also used : SpacecraftState(org.orekit.propagation.SpacecraftState) FieldSpacecraftState(org.orekit.propagation.FieldSpacecraftState) SHMFormatReader(org.orekit.forces.gravity.potential.SHMFormatReader) EquinoctialOrbit(org.orekit.orbits.EquinoctialOrbit) CartesianOrbit(org.orekit.orbits.CartesianOrbit) KeplerianOrbit(org.orekit.orbits.KeplerianOrbit) Orbit(org.orekit.orbits.Orbit) FieldVector3D(org.hipparchus.geometry.euclidean.threed.FieldVector3D) Vector3D(org.hipparchus.geometry.euclidean.threed.Vector3D) EquinoctialOrbit(org.orekit.orbits.EquinoctialOrbit) AdaptiveStepsizeIntegrator(org.hipparchus.ode.nonstiff.AdaptiveStepsizeIntegrator) TimeStampedPVCoordinates(org.orekit.utils.TimeStampedPVCoordinates) PVCoordinates(org.orekit.utils.PVCoordinates) DormandPrince853Integrator(org.hipparchus.ode.nonstiff.DormandPrince853Integrator) Before(org.junit.Before)

Aggregations

SpacecraftState (org.orekit.propagation.SpacecraftState)470 Test (org.junit.Test)324 AbsoluteDate (org.orekit.time.AbsoluteDate)280 KeplerianOrbit (org.orekit.orbits.KeplerianOrbit)178 Vector3D (org.hipparchus.geometry.euclidean.threed.Vector3D)153 FieldAbsoluteDate (org.orekit.time.FieldAbsoluteDate)138 Orbit (org.orekit.orbits.Orbit)131 FieldSpacecraftState (org.orekit.propagation.FieldSpacecraftState)127 PVCoordinates (org.orekit.utils.PVCoordinates)98 CartesianOrbit (org.orekit.orbits.CartesianOrbit)95 Propagator (org.orekit.propagation.Propagator)92 Frame (org.orekit.frames.Frame)79 OrekitException (org.orekit.errors.OrekitException)74 EquinoctialOrbit (org.orekit.orbits.EquinoctialOrbit)74 NumericalPropagator (org.orekit.propagation.numerical.NumericalPropagator)74 DormandPrince853Integrator (org.hipparchus.ode.nonstiff.DormandPrince853Integrator)70 TimeStampedPVCoordinates (org.orekit.utils.TimeStampedPVCoordinates)64 AbstractLegacyForceModelTest (org.orekit.forces.AbstractLegacyForceModelTest)61 CircularOrbit (org.orekit.orbits.CircularOrbit)58 FieldVector3D (org.hipparchus.geometry.euclidean.threed.FieldVector3D)57