use of org.orekit.propagation.conversion.NumericalPropagatorBuilder in project Orekit by CS-SI.
the class RangeRateTest method testStateDerivativesOneWay.
@Test
public void testStateDerivativesOneWay() throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// create perfect range rate measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, false), 1.0, 3.0, 300.0);
for (final ObservedMeasurement<?> m : measurements) {
Assert.assertFalse(((RangeRate) m).isTwoWay());
}
propagator.setSlaveMode();
double maxRelativeError = 0;
for (final ObservedMeasurement<?> measurement : measurements) {
// measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final double meanDelay = 1;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = propagator.propagate(date);
final EstimatedMeasurement<?> estimated = measurement.estimate(0, 0, new SpacecraftState[] { state });
Assert.assertEquals(2, estimated.getParticipants().length);
final double[][] jacobian = estimated.getStateDerivatives(0);
final double[][] finiteDifferencesJacobian = Differentiation.differentiate(new StateFunction() {
public double[] value(final SpacecraftState state) throws OrekitException {
return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue();
}
}, 1, propagator.getAttitudeProvider(), OrbitType.CARTESIAN, PositionAngle.TRUE, 15.0, 3).value(state);
Assert.assertEquals(finiteDifferencesJacobian.length, jacobian.length);
Assert.assertEquals(finiteDifferencesJacobian[0].length, jacobian[0].length);
for (int i = 0; i < jacobian.length; ++i) {
for (int j = 0; j < jacobian[i].length; ++j) {
// check the values returned by getStateDerivatives() are correct
maxRelativeError = FastMath.max(maxRelativeError, FastMath.abs((finiteDifferencesJacobian[i][j] - jacobian[i][j]) / finiteDifferencesJacobian[i][j]));
}
}
}
Assert.assertEquals(0, maxRelativeError, 1.6e-8);
}
use of org.orekit.propagation.conversion.NumericalPropagatorBuilder in project Orekit by CS-SI.
the class RangeTest method genericTestValues.
/**
* Generic test function for values of the range
* @param printResults Print the results ?
* @throws OrekitException
*/
void genericTestValues(final boolean printResults) throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// Create perfect range measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// Lists for results' storage - Used only for derivatives with respect to state
// "final" value to be seen by "handleStep" function of the propagator
final List<Double> absoluteErrors = new ArrayList<Double>();
final List<Double> relativeErrors = new ArrayList<Double>();
// Set master mode
// Use a lambda function to implement "handleStep" function
propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
for (final ObservedMeasurement<?> measurement : measurements) {
// Play test if the measurement date is between interpolator previous and current date
if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// range would have depended only on the current position but
// not on the current velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = interpolator.getInterpolatedState(date);
// Values of the Range & errors
final double RangeObserved = measurement.getObservedValue()[0];
final EstimatedMeasurement<?> estimated = measurement.estimate(0, 0, new SpacecraftState[] { state });
final TimeStampedPVCoordinates[] participants = estimated.getParticipants();
Assert.assertEquals(3, participants.length);
Assert.assertEquals(0.5 * Constants.SPEED_OF_LIGHT * participants[2].getDate().durationFrom(participants[0].getDate()), estimated.getEstimatedValue()[0], 2.0e-8);
// the real state used for estimation is adjusted according to downlink delay
double adjustment = state.getDate().durationFrom(estimated.getStates()[0].getDate());
Assert.assertTrue(adjustment > 0.006);
Assert.assertTrue(adjustment < 0.010);
final double RangeEstimated = estimated.getEstimatedValue()[0];
final double absoluteError = RangeEstimated - RangeObserved;
absoluteErrors.add(absoluteError);
relativeErrors.add(FastMath.abs(absoluteError) / FastMath.abs(RangeObserved));
// Print results on console ?
if (printResults) {
final AbsoluteDate measurementDate = measurement.getDate();
String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
System.out.format(Locale.US, "%-15s %-23s %-23s %19.6f %19.6f %13.6e %13.6e%n", stationName, measurementDate, date, RangeObserved, RangeEstimated, FastMath.abs(RangeEstimated - RangeObserved), FastMath.abs((RangeEstimated - RangeObserved) / RangeObserved));
}
}
// End if measurement date between previous and current interpolator step
}
// End for loop on the measurements
});
// Print results on console ? Header
if (printResults) {
System.out.format(Locale.US, "%-15s %-23s %-23s %19s %19s %13s %13s%n", "Station", "Measurement Date", "State Date", "Range observed [m]", "Range estimated [m]", "ΔRange [m]", "rel ΔRange");
}
// Rewind the propagator to initial date
propagator.propagate(context.initialOrbit.getDate());
// Sort measurements chronologically
measurements.sort(new ChronologicalComparator());
// Propagate to final measurement's date
propagator.propagate(measurements.get(measurements.size() - 1).getDate());
// Convert lists to double array
final double[] absErrors = absoluteErrors.stream().mapToDouble(Double::doubleValue).toArray();
final double[] relErrors = relativeErrors.stream().mapToDouble(Double::doubleValue).toArray();
// Statistics' assertion
final double absErrorsMedian = new Median().evaluate(absErrors);
final double absErrorsMin = new Min().evaluate(absErrors);
final double absErrorsMax = new Max().evaluate(absErrors);
final double relErrorsMedian = new Median().evaluate(relErrors);
final double relErrorsMax = new Max().evaluate(relErrors);
// Print the results on console ? Final results
if (printResults) {
System.out.println();
System.out.println("Absolute errors median: " + absErrorsMedian);
System.out.println("Absolute errors min : " + absErrorsMin);
System.out.println("Absolute errors max : " + absErrorsMax);
System.out.println("Relative errors median: " + relErrorsMedian);
System.out.println("Relative errors max : " + relErrorsMax);
}
Assert.assertEquals(0.0, absErrorsMedian, 4.9e-8);
Assert.assertEquals(0.0, absErrorsMin, 2.2e-7);
Assert.assertEquals(0.0, absErrorsMax, 2.1e-7);
Assert.assertEquals(0.0, relErrorsMedian, 1.0e-14);
Assert.assertEquals(0.0, relErrorsMax, 2.6e-14);
}
use of org.orekit.propagation.conversion.NumericalPropagatorBuilder in project Orekit by CS-SI.
the class RangeTest method genericTestParameterDerivatives.
void genericTestParameterDerivatives(final boolean isModifier, final boolean printResults, final double refErrorsMedian, final double refErrorsMean, final double refErrorsMax) throws OrekitException {
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(OrbitType.KEPLERIAN, PositionAngle.TRUE, true, 1.0e-6, 60.0, 0.001);
// Create perfect range measurements
for (final GroundStation station : context.stations) {
station.getEastOffsetDriver().setSelected(true);
station.getNorthOffsetDriver().setSelected(true);
station.getZenithOffsetDriver().setSelected(true);
}
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeMeasurementCreator(context), 1.0, 3.0, 300.0);
// List to store the results
final List<Double> relErrorList = new ArrayList<Double>();
// Set master mode
// Use a lambda function to implement "handleStep" function
propagator.setMasterMode((OrekitStepInterpolator interpolator, boolean isLast) -> {
for (final ObservedMeasurement<?> measurement : measurements) {
// Play test if the measurement date is between interpolator previous and current date
if ((measurement.getDate().durationFrom(interpolator.getPreviousState().getDate()) > 0.) && (measurement.getDate().durationFrom(interpolator.getCurrentState().getDate()) <= 0.)) {
// Add modifiers if test implies it
final RangeTroposphericDelayModifier modifier = new RangeTroposphericDelayModifier(SaastamoinenModel.getStandardModel());
if (isModifier) {
((Range) measurement).addModifier(modifier);
}
// Parameter corresponding to station position offset
final GroundStation stationParameter = ((Range) measurement).getStation();
// We intentionally propagate to a date which is close to the
// real spacecraft state but is *not* the accurate date, by
// compensating only part of the downlink delay. This is done
// in order to validate the partial derivatives with respect
// to velocity. If we had chosen the proper state date, the
// range would have depended only on the current position but
// not on the current velocity.
final double meanDelay = measurement.getObservedValue()[0] / Constants.SPEED_OF_LIGHT;
final AbsoluteDate date = measurement.getDate().shiftedBy(-0.75 * meanDelay);
final SpacecraftState state = interpolator.getInterpolatedState(date);
final ParameterDriver[] drivers = new ParameterDriver[] { stationParameter.getEastOffsetDriver(), stationParameter.getNorthOffsetDriver(), stationParameter.getZenithOffsetDriver() };
if (printResults) {
String stationName = ((Range) measurement).getStation().getBaseFrame().getName();
System.out.format(Locale.US, "%-15s %-23s %-23s ", stationName, measurement.getDate(), date);
}
for (int i = 0; i < 3; ++i) {
final double[] gradient = measurement.estimate(0, 0, new SpacecraftState[] { state }).getParameterDerivatives(drivers[i]);
Assert.assertEquals(1, measurement.getDimension());
Assert.assertEquals(1, gradient.length);
// Compute a reference value using finite differences
final ParameterFunction dMkdP = Differentiation.differentiate(new ParameterFunction() {
/**
* {@inheritDoc}
*/
@Override
public double value(final ParameterDriver parameterDriver) throws OrekitException {
return measurement.estimate(0, 0, new SpacecraftState[] { state }).getEstimatedValue()[0];
}
}, drivers[i], 3, 20.0);
final double ref = dMkdP.value(drivers[i]);
if (printResults) {
System.out.format(Locale.US, "%10.3e %10.3e ", gradient[0] - ref, FastMath.abs((gradient[0] - ref) / ref));
}
final double relError = FastMath.abs((ref - gradient[0]) / ref);
relErrorList.add(relError);
// Assert.assertEquals(ref, gradient[0], 6.1e-5 * FastMath.abs(ref));
}
if (printResults) {
System.out.format(Locale.US, "%n");
}
}
// End if measurement date between previous and current interpolator step
}
// End for loop on the measurements
});
// Rewind the propagator to initial date
propagator.propagate(context.initialOrbit.getDate());
// Sort measurements chronologically
measurements.sort(new ChronologicalComparator());
// Print results ? Header
if (printResults) {
System.out.format(Locale.US, "%-15s %-23s %-23s " + "%10s %10s %10s " + "%10s %10s %10s%n", "Station", "Measurement Date", "State Date", "ΔdQx", "rel ΔdQx", "ΔdQy", "rel ΔdQy", "ΔdQz", "rel ΔdQz");
}
// Propagate to final measurement's date
propagator.propagate(measurements.get(measurements.size() - 1).getDate());
// Convert error list to double[]
final double[] relErrors = relErrorList.stream().mapToDouble(Double::doubleValue).toArray();
// Compute statistics
final double relErrorsMedian = new Median().evaluate(relErrors);
final double relErrorsMean = new Mean().evaluate(relErrors);
final double relErrorsMax = new Max().evaluate(relErrors);
// Print the results on console ?
if (printResults) {
System.out.println();
System.out.format(Locale.US, "Relative errors dR/dQ -> Median: %6.3e / Mean: %6.3e / Max: %6.3e%n", relErrorsMedian, relErrorsMean, relErrorsMax);
}
Assert.assertEquals(0.0, relErrorsMedian, refErrorsMedian);
Assert.assertEquals(0.0, relErrorsMean, refErrorsMean);
Assert.assertEquals(0.0, relErrorsMax, refErrorsMax);
}
use of org.orekit.propagation.conversion.NumericalPropagatorBuilder in project Orekit by CS-SI.
the class OrbitDetermination method run.
private void run(final File input, final File home) throws IOException, IllegalArgumentException, OrekitException, ParseException {
// read input parameters
KeyValueFileParser<ParameterKey> parser = new KeyValueFileParser<ParameterKey>(ParameterKey.class);
try (final FileInputStream fis = new FileInputStream(input)) {
parser.parseInput(input.getAbsolutePath(), fis);
}
// log file
final String baseName;
final PrintStream logStream;
if (parser.containsKey(ParameterKey.OUTPUT_BASE_NAME) && parser.getString(ParameterKey.OUTPUT_BASE_NAME).length() > 0) {
baseName = parser.getString(ParameterKey.OUTPUT_BASE_NAME);
logStream = new PrintStream(new File(home, baseName + "-log.out"), "UTF-8");
} else {
baseName = null;
logStream = null;
}
final RangeLog rangeLog = new RangeLog(home, baseName);
final RangeRateLog rangeRateLog = new RangeRateLog(home, baseName);
final AzimuthLog azimuthLog = new AzimuthLog(home, baseName);
final ElevationLog elevationLog = new ElevationLog(home, baseName);
final PositionLog positionLog = new PositionLog(home, baseName);
final VelocityLog velocityLog = new VelocityLog(home, baseName);
try {
// gravity field
final NormalizedSphericalHarmonicsProvider gravityField = createGravityField(parser);
// Orbit initial guess
final Orbit initialGuess = createOrbit(parser, gravityField.getMu());
// IERS conventions
final IERSConventions conventions;
if (!parser.containsKey(ParameterKey.IERS_CONVENTIONS)) {
conventions = IERSConventions.IERS_2010;
} else {
conventions = IERSConventions.valueOf("IERS_" + parser.getInt(ParameterKey.IERS_CONVENTIONS));
}
// central body
final OneAxisEllipsoid body = createBody(parser);
// propagator builder
final NumericalPropagatorBuilder propagatorBuilder = createPropagatorBuilder(parser, conventions, gravityField, body, initialGuess);
// estimator
final BatchLSEstimator estimator = createEstimator(parser, propagatorBuilder);
// measurements
final List<ObservedMeasurement<?>> measurements = new ArrayList<ObservedMeasurement<?>>();
for (final String fileName : parser.getStringsList(ParameterKey.MEASUREMENTS_FILES, ',')) {
measurements.addAll(readMeasurements(new File(input.getParentFile(), fileName), createStationsData(parser, body), createPVData(parser), createSatRangeBias(parser), createWeights(parser), createRangeOutliersManager(parser), createRangeRateOutliersManager(parser), createAzElOutliersManager(parser), createPVOutliersManager(parser)));
}
for (ObservedMeasurement<?> measurement : measurements) {
estimator.addMeasurement(measurement);
}
// estimate orbit
estimator.setObserver(new BatchLSObserver() {
private PVCoordinates previousPV;
{
previousPV = initialGuess.getPVCoordinates();
final String header = "iteration evaluations ΔP(m) ΔV(m/s) RMS nb Range nb Range-rate nb Angular nb PV%n";
System.out.format(Locale.US, header);
if (logStream != null) {
logStream.format(Locale.US, header);
}
}
/**
* {@inheritDoc}
*/
@Override
public void evaluationPerformed(final int iterationsCount, final int evaluationsCount, final Orbit[] orbits, final ParameterDriversList estimatedOrbitalParameters, final ParameterDriversList estimatedPropagatorParameters, final ParameterDriversList estimatedMeasurementsParameters, final EstimationsProvider evaluationsProvider, final LeastSquaresProblem.Evaluation lspEvaluation) {
PVCoordinates currentPV = orbits[0].getPVCoordinates();
final String format0 = " %2d %2d %16.12f %s %s %s %s%n";
final String format = " %2d %2d %13.6f %12.9f %16.12f %s %s %s %s%n";
final EvaluationCounter<Range> rangeCounter = new EvaluationCounter<Range>();
final EvaluationCounter<RangeRate> rangeRateCounter = new EvaluationCounter<RangeRate>();
final EvaluationCounter<AngularAzEl> angularCounter = new EvaluationCounter<AngularAzEl>();
final EvaluationCounter<PV> pvCounter = new EvaluationCounter<PV>();
for (final Map.Entry<ObservedMeasurement<?>, EstimatedMeasurement<?>> entry : estimator.getLastEstimations().entrySet()) {
if (entry.getKey() instanceof Range) {
@SuppressWarnings("unchecked") EstimatedMeasurement<Range> evaluation = (EstimatedMeasurement<Range>) entry.getValue();
rangeCounter.add(evaluation);
} else if (entry.getKey() instanceof RangeRate) {
@SuppressWarnings("unchecked") EstimatedMeasurement<RangeRate> evaluation = (EstimatedMeasurement<RangeRate>) entry.getValue();
rangeRateCounter.add(evaluation);
} else if (entry.getKey() instanceof AngularAzEl) {
@SuppressWarnings("unchecked") EstimatedMeasurement<AngularAzEl> evaluation = (EstimatedMeasurement<AngularAzEl>) entry.getValue();
angularCounter.add(evaluation);
} else if (entry.getKey() instanceof PV) {
@SuppressWarnings("unchecked") EstimatedMeasurement<PV> evaluation = (EstimatedMeasurement<PV>) entry.getValue();
pvCounter.add(evaluation);
}
}
if (evaluationsCount == 1) {
System.out.format(Locale.US, format0, iterationsCount, evaluationsCount, lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
if (logStream != null) {
logStream.format(Locale.US, format0, iterationsCount, evaluationsCount, lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
}
} else {
System.out.format(Locale.US, format, iterationsCount, evaluationsCount, Vector3D.distance(previousPV.getPosition(), currentPV.getPosition()), Vector3D.distance(previousPV.getVelocity(), currentPV.getVelocity()), lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
if (logStream != null) {
logStream.format(Locale.US, format, iterationsCount, evaluationsCount, Vector3D.distance(previousPV.getPosition(), currentPV.getPosition()), Vector3D.distance(previousPV.getVelocity(), currentPV.getVelocity()), lspEvaluation.getRMS(), rangeCounter.format(8), rangeRateCounter.format(8), angularCounter.format(8), pvCounter.format(8));
}
}
previousPV = currentPV;
}
});
Orbit estimated = estimator.estimate()[0].getInitialState().getOrbit();
// compute some statistics
for (final Map.Entry<ObservedMeasurement<?>, EstimatedMeasurement<?>> entry : estimator.getLastEstimations().entrySet()) {
if (entry.getKey() instanceof Range) {
@SuppressWarnings("unchecked") EstimatedMeasurement<Range> evaluation = (EstimatedMeasurement<Range>) entry.getValue();
rangeLog.add(evaluation);
} else if (entry.getKey() instanceof RangeRate) {
@SuppressWarnings("unchecked") EstimatedMeasurement<RangeRate> evaluation = (EstimatedMeasurement<RangeRate>) entry.getValue();
rangeRateLog.add(evaluation);
} else if (entry.getKey() instanceof AngularAzEl) {
@SuppressWarnings("unchecked") EstimatedMeasurement<AngularAzEl> evaluation = (EstimatedMeasurement<AngularAzEl>) entry.getValue();
azimuthLog.add(evaluation);
elevationLog.add(evaluation);
} else if (entry.getKey() instanceof PV) {
@SuppressWarnings("unchecked") EstimatedMeasurement<PV> evaluation = (EstimatedMeasurement<PV>) entry.getValue();
positionLog.add(evaluation);
velocityLog.add(evaluation);
}
}
System.out.println("Estimated orbit: " + estimated);
if (logStream != null) {
logStream.println("Estimated orbit: " + estimated);
}
final ParameterDriversList orbitalParameters = estimator.getOrbitalParametersDrivers(true);
final ParameterDriversList propagatorParameters = estimator.getPropagatorParametersDrivers(true);
final ParameterDriversList measurementsParameters = estimator.getMeasurementsParametersDrivers(true);
int length = 0;
for (final ParameterDriver parameterDriver : orbitalParameters.getDrivers()) {
length = FastMath.max(length, parameterDriver.getName().length());
}
for (final ParameterDriver parameterDriver : propagatorParameters.getDrivers()) {
length = FastMath.max(length, parameterDriver.getName().length());
}
for (final ParameterDriver parameterDriver : measurementsParameters.getDrivers()) {
length = FastMath.max(length, parameterDriver.getName().length());
}
displayParametersChanges(System.out, "Estimated orbital parameters changes: ", false, length, orbitalParameters);
if (logStream != null) {
displayParametersChanges(logStream, "Estimated orbital parameters changes: ", false, length, orbitalParameters);
}
displayParametersChanges(System.out, "Estimated propagator parameters changes: ", true, length, propagatorParameters);
if (logStream != null) {
displayParametersChanges(logStream, "Estimated propagator parameters changes: ", true, length, propagatorParameters);
}
displayParametersChanges(System.out, "Estimated measurements parameters changes: ", true, length, measurementsParameters);
if (logStream != null) {
displayParametersChanges(logStream, "Estimated measurements parameters changes: ", true, length, measurementsParameters);
}
System.out.println("Number of iterations: " + estimator.getIterationsCount());
System.out.println("Number of evaluations: " + estimator.getEvaluationsCount());
rangeLog.displaySummary(System.out);
rangeRateLog.displaySummary(System.out);
azimuthLog.displaySummary(System.out);
elevationLog.displaySummary(System.out);
positionLog.displaySummary(System.out);
velocityLog.displaySummary(System.out);
if (logStream != null) {
logStream.println("Number of iterations: " + estimator.getIterationsCount());
logStream.println("Number of evaluations: " + estimator.getEvaluationsCount());
rangeLog.displaySummary(logStream);
rangeRateLog.displaySummary(logStream);
azimuthLog.displaySummary(logStream);
elevationLog.displaySummary(logStream);
positionLog.displaySummary(logStream);
velocityLog.displaySummary(logStream);
}
rangeLog.displayResiduals();
rangeRateLog.displayResiduals();
azimuthLog.displayResiduals();
elevationLog.displayResiduals();
positionLog.displayResiduals();
velocityLog.displayResiduals();
} finally {
if (logStream != null) {
logStream.close();
}
rangeLog.close();
rangeRateLog.close();
azimuthLog.close();
elevationLog.close();
positionLog.close();
velocityLog.close();
}
}
use of org.orekit.propagation.conversion.NumericalPropagatorBuilder in project Orekit by CS-SI.
the class KalmanEstimatorTest method testCartesianRangeRate.
/**
* Perfect range rate measurements with a perfect start
* Cartesian formalism
* @throws OrekitException
*/
@Test
public void testCartesianRangeRate() throws OrekitException {
// Create context
Context context = EstimationTestUtils.eccentricContext("regular-data:potential:tides");
// Create initial orbit and propagator builder
final OrbitType orbitType = OrbitType.CARTESIAN;
final PositionAngle positionAngle = PositionAngle.TRUE;
final boolean perfectStart = true;
final double minStep = 1.e-6;
final double maxStep = 60.;
final double dP = 1.;
final NumericalPropagatorBuilder propagatorBuilder = context.createBuilder(orbitType, positionAngle, perfectStart, minStep, maxStep, dP);
// Create perfect range measurements
final Propagator propagator = EstimationTestUtils.createPropagator(context.initialOrbit, propagatorBuilder);
final List<ObservedMeasurement<?>> measurements = EstimationTestUtils.createMeasurements(propagator, new RangeRateMeasurementCreator(context, false), 1.0, 3.0, 300.0);
// Reference propagator for estimation performances
final NumericalPropagator referencePropagator = propagatorBuilder.buildPropagator(propagatorBuilder.getSelectedNormalizedParameters());
// Reference position/velocity at last measurement date
final Orbit refOrbit = referencePropagator.propagate(measurements.get(measurements.size() - 1).getDate()).getOrbit();
// Cartesian covariance matrix initialization
// 100m on position / 1e-2m/s on velocity
final RealMatrix cartesianP = MatrixUtils.createRealDiagonalMatrix(new double[] { 1e-4, 1e-4, 1e-4, 1e-10, 1e-10, 1e-10 });
// Jacobian of the orbital parameters w/r to Cartesian
final Orbit initialOrbit = orbitType.convertType(context.initialOrbit);
final double[][] dYdC = new double[6][6];
initialOrbit.getJacobianWrtCartesian(PositionAngle.TRUE, dYdC);
final RealMatrix Jac = MatrixUtils.createRealMatrix(dYdC);
// Initial covariance matrix
final RealMatrix initialP = Jac.multiply(cartesianP.multiply(Jac.transpose()));
// Process noise matrix
final RealMatrix cartesianQ = MatrixUtils.createRealDiagonalMatrix(new double[] { 1.e-6, 1.e-6, 1.e-6, 1.e-12, 1.e-12, 1.e-12 });
final RealMatrix Q = Jac.multiply(cartesianQ.multiply(Jac.transpose()));
// Build the Kalman filter
final KalmanEstimatorBuilder kalmanBuilder = new KalmanEstimatorBuilder();
kalmanBuilder.builder(propagatorBuilder);
kalmanBuilder.estimatedMeasurementsParameters(new ParameterDriversList());
kalmanBuilder.initialCovarianceMatrix(initialP);
kalmanBuilder.processNoiseMatrixProvider(new ConstantProcessNoise(Q));
final KalmanEstimator kalman = kalmanBuilder.build();
// Filter the measurements and check the results
final double expectedDeltaPos = 0.;
final double posEps = 9.50e-4;
final double expectedDeltaVel = 0.;
final double velEps = 3.49e-7;
final double[] expectedSigmasPos = { 0.324398, 1.347031, 1.743310 };
final double sigmaPosEps = 1e-6;
final double[] expectedSigmasVel = { 2.856883e-4, 5.765844e-4, 5.056186e-4 };
final double sigmaVelEps = 1e-10;
EstimationTestUtils.checkKalmanFit(context, kalman, measurements, refOrbit, positionAngle, expectedDeltaPos, posEps, expectedDeltaVel, velEps, expectedSigmasPos, sigmaPosEps, expectedSigmasVel, sigmaVelEps);
}
Aggregations