use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class Smasher method zjednotenie.
/**
* Vezme polygony a vrati ich zjednotenie. Plygony su navzajom disjunknte
* avsak dotykaju sa bodmi hranami, ktore maju referencnu zavislost.
*
* @param polygony
* @return Vrati List zjednotenych polygonov.
*/
private static MyList<Polygon> zjednotenie(MyList<Fragment> polygony) {
HashTabulka<GraphVertex> graf = new HashTabulka<>();
for (Polygon p : polygony) {
for (int i = 1; i <= p.size(); ++i) {
Tuple2f v = p.cycleGet(i);
GraphVertex vertex = graf.get(v);
if (vertex == null) {
vertex = new GraphVertex(v);
graf.add(vertex);
vertex.first = p;
} else {
vertex.polygonCount++;
vertex.second = p;
}
}
}
for (Polygon p : polygony) {
for (int i = 0; i < p.size(); ++i) {
GraphVertex v1 = graf.get(p.get(i));
GraphVertex v2 = graf.get(p.cycleGet(i + 1));
if (v1.polygonCount == 1 || v2.polygonCount == 1 || (v1.polygonCount <= 2 && v2.polygonCount <= 2 && !((v1.first == v2.first && v1.second == v2.second) || (v1.first == v2.second && v1.second == v2.first)))) {
v1.next = v2;
v2.prev = v1;
}
}
}
MyList<Polygon> vysledok = new MyList<>();
GraphVertex[] arr = graf.toArray(new GraphVertex[graf.size()]);
for (GraphVertex v : arr) {
if (v.next != null && !v.visited) {
Polygon p = new Polygon();
for (GraphVertex iterator = v; !iterator.visited; iterator = iterator.next) {
if (PlatformMathUtils.siteDef(iterator.next.value, iterator.value, iterator.prev.value) != 0) {
p.add(iterator.value);
}
iterator.visited = true;
}
vysledok.add(p);
}
}
return vysledok;
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class Smasher method calculate.
/**
* Vrati prienik voronoi diagramu a polygonu.
*
* @param focee
* @param p Kopia polygonu, moze byt modifikovana
* @param contactPoint Bod dotyku
* @param ic Funkcionalny interface, ktory definuje, ci fragment patri,
* alebo nepatri do mnoziny ulomkov
*/
public void calculate(Polygon p, Tuple2f[] focee, Tuple2f contactPoint, IContains ic) {
this.focee = focee;
this.p = p;
// Geometry geom = new Geometry(foceeAll, p);
List<Fragment> list = getVoronoi();
List<EdgePolygon> polygonEdgesList = new FasterList<>();
HashTabulka<EdgeDiagram> diagramEdges = new HashTabulka<>();
HashTabulka<EdgePolygon> polygonEdges = new HashTabulka<>();
// vlozim hrany polygonu do hashovacej tabulky hran polygonu
int count = p.size();
for (int i = 1; i <= count; i++) {
Tuple2f p1 = p.get(i - 1);
Tuple2f p2 = p.get(i == count ? 0 : i);
EdgePolygon e = new EdgePolygon(p1, p2);
polygonEdges.add(e);
polygonEdgesList.add(e);
}
// vlozim hrany diagramu do hashovacej tabulky hran diagramu
for (Fragment pp : list) {
count = pp.size();
for (int i = 1; i <= count; i++) {
Tuple2f p1 = pp.get(i - 1);
Tuple2f p2 = pp.get(i == count ? 0 : i);
EdgeDiagram e = new EdgeDiagram(p1, p2);
EdgeDiagram alternative = diagramEdges.get(e);
if (alternative == null) {
diagramEdges.add(e);
e.d1 = pp;
} else {
alternative.d2 = pp;
}
}
}
AEdge[][] allEdges = new AEdge[][] { diagramEdges.toArray(new AEdge[diagramEdges.size()]), polygonEdges.toArray(new AEdge[polygonEdges.size()]) };
diagramEdges.clear();
polygonEdges.clear();
List<EVec2> vectorList = new FasterList<>();
for (AEdge[] array : allEdges) {
for (AEdge e : array) {
EVec2 v1 = new EVec2(e.p1);
EVec2 v2 = new EVec2(e.p2);
v1.e = e;
v2.e = e;
if (v1.p.y < v2.p.y) {
v1.start = true;
} else {
v2.start = true;
}
vectorList.add(v1);
vectorList.add(v2);
}
}
EVec2[] vectors = vectorList.toArray(new EVec2[vectorList.size()]);
// zotriedim body
Arrays.sort(vectors);
for (EVec2 e : vectors) {
if (e.e instanceof EdgeDiagram) {
if (e.start) {
EdgeDiagram ex = (EdgeDiagram) e.e;
diagramEdges.add(ex);
// for (EdgePolygon px : polygonEdges.toArray(new EdgePolygon[polygonEdges.size()])) {
// process(px, ex);
// }
polygonEdges.forEach(px -> process(px, ex));
} else {
diagramEdges.remove(e.e);
}
} else {
// je instanciou EdgePolygon
if (e.start) {
EdgePolygon px = (EdgePolygon) e.e;
polygonEdges.add(px);
diagramEdges.forEach(ex -> process(px, ex));
// for (EdgeDiagram ex : diagramEdges.toArray(new EdgeDiagram[diagramEdges.size()]))
// process(px, ex);
} else {
polygonEdges.remove(e.e);
}
}
}
for (Fragment pol : list) {
pol.resort();
int pn = pol.size();
for (int i = 0; i < pn; i++) {
Tuple2f v = pol.get(i);
if (v instanceof Vec2Intersect) {
Vec2Intersect vi = (Vec2Intersect) v;
if (vi.p1 == pol) {
vi.i1 = i;
} else {
vi.i2 = i;
}
}
}
}
Polygon polygonAll = new Polygon();
for (EdgePolygon ex : polygonEdgesList) {
polygonAll.add(ex.p1);
ex.list.sort(c);
polygonAll.add(ex.list);
}
for (int i = 0; i < polygonAll.size(); i++) {
Tuple2f v = polygonAll.get(i);
if (v instanceof Vec2Intersect) {
((Vec2Intersect) v).index = i;
}
}
MyList<Fragment> allIntersections = new MyList<>();
// ostatne algoritmy generovali diery - tento je najlepsi - najdem najblizsi bod na hrane polygonu a zistim kolizny fargment - od neho prehladavam do sirky a kontrolujem vzdialenost a viditelnost (jednoduche, ciste)
precalc_values();
for (Fragment ppp : list) {
List<Fragment> intsc = getIntersections(ppp, polygonAll);
if (intsc == null) {
// cely polygon sa nachadza vnutri fragmentu
fragments = new Polygon[] { p };
return;
}
allIntersections.addAll(intsc);
}
table.clear();
// vytvorim hashovaciu tabulku hran
for (Fragment f : allIntersections) {
for (int i = 0; i < f.size(); ++i) {
Tuple2f v1 = f.get(i);
Tuple2f v2 = f.cycleGet(i + 1);
EdgeDiagram e = new EdgeDiagram(v1, v2);
EdgeDiagram e2 = table.get(e);
if (e2 != null) {
e = e2;
e.d2 = f;
} else {
e.d1 = f;
table.add(e);
}
}
}
// rozdelim polygony na 2 mnoziny - na tie, ktore budu ulomky a tie, ktore budu spojene a drzat spolu
final double[] distance = { Double.MAX_VALUE };
final Fragment[] startPolygon = { null };
final Tuple2f[] kolmicovyBod = { null };
MyList<EdgeDiagram> allEdgesPolygon = new MyList<>();
// EdgeDiagram[] ee = table.toArray(new EdgeDiagram[table.size()]);
table.forEach(ep -> {
if (ep.d2 == null) {
// toto sa nahradi vzorcom na vypocet vzdialenosti body od usecky
Tuple2f vv = ep.kolmicovyBod(contactPoint);
double newDistance = contactPoint.distanceSq(vv);
if (newDistance <= distance[0]) {
distance[0] = newDistance;
kolmicovyBod[0] = vv;
startPolygon[0] = ep.d1;
}
allEdgesPolygon.add(ep);
}
});
MyList<Fragment> ppx = new MyList<>();
ppx.add(startPolygon[0]);
EdgeDiagram epx = new EdgeDiagram(null, null);
HashTabulka<Fragment> vysledneFragmenty = new HashTabulka<>();
startPolygon[0].visited = true;
while (!ppx.isEmpty()) {
Fragment px = ppx.get(0);
vysledneFragmenty.add(px);
for (int i = 0; i < px.size(); ++i) {
Tuple2f v1 = px.get(i);
Tuple2f v2 = px.cycleGet(i + 1);
epx.p1 = v1;
epx.p2 = v2;
EdgeDiagram ep = table.get(epx);
Fragment opposite = ep.d1 == px ? ep.d2 : ep.d1;
if (opposite != null && !opposite.visited) {
Tuple2f centroid = opposite.centroid();
opposite.visited = true;
if (ic.contains(centroid)) {
boolean intersection = false;
for (EdgeDiagram edge : allEdgesPolygon) {
// neberie do uvahy hrany polygonu
if (edge.d1 != startPolygon[0] && edge.d2 != startPolygon[0] && edge.intersectAre(centroid, kolmicovyBod[0])) {
intersection = true;
break;
}
}
// tu bude podmienka - ci ten polygon vezmem do uvahy, ak hej, priplnim ho do MyListu
if (!intersection) {
ppx.add(opposite);
}
}
}
}
ppx.removeAt(0);
}
Fragment[] fragmentsArray = vysledneFragmenty.toArray(new Fragment[vysledneFragmenty.size()]);
MyList<Fragment> fragmentsBody = new MyList<>();
for (Fragment fx : allIntersections) {
if (!vysledneFragmenty.contains(fx)) {
fragmentsBody.add(fx);
}
}
MyList<Polygon> result = zjednotenie(fragmentsBody);
result.add(fragmentsArray);
fragments = new Polygon[result.size()];
result.addToArray(fragments);
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class DynamicTree method moveProxy.
@Override
public final boolean moveProxy(int proxyId, final AABB aabb, Tuple2f displacement) {
assert (aabb.isValid());
assert (0 <= proxyId && proxyId < m_nodeCapacity);
final DynamicTreeNode node = this.node[proxyId];
assert (node.child1 == null);
final AABB nodeAABB = node.aabb;
// if (nodeAABB.contains(aabb)) {
if (nodeAABB.lowerBound.x <= aabb.lowerBound.x && nodeAABB.lowerBound.y <= aabb.lowerBound.y && aabb.upperBound.x <= nodeAABB.upperBound.x && aabb.upperBound.y <= nodeAABB.upperBound.y) {
return false;
}
removeLeaf(node);
// Extend AABB
final Tuple2f lowerBound = nodeAABB.lowerBound;
final Tuple2f upperBound = nodeAABB.upperBound;
lowerBound.x = aabb.lowerBound.x - Settings.aabbExtension;
lowerBound.y = aabb.lowerBound.y - Settings.aabbExtension;
upperBound.x = aabb.upperBound.x + Settings.aabbExtension;
upperBound.y = aabb.upperBound.y + Settings.aabbExtension;
// Predict AABB displacement.
final float dx = displacement.x * Settings.aabbMultiplier;
final float dy = displacement.y * Settings.aabbMultiplier;
if (dx < 0.0f) {
lowerBound.x += dx;
} else {
upperBound.x += dx;
}
if (dy < 0.0f) {
lowerBound.y += dy;
} else {
upperBound.y += dy;
}
insertLeaf(proxyId);
return true;
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class ChainShape method raycast.
@Override
public boolean raycast(RayCastOutput output, RayCastInput input, Transform xf, int childIndex) {
assert (childIndex < m_count);
final EdgeShape edgeShape = pool0;
int i1 = childIndex;
int i2 = childIndex + 1;
if (i2 == m_count) {
i2 = 0;
}
Tuple2f v = m_vertices[i1];
edgeShape.m_vertex1.x = v.x;
edgeShape.m_vertex1.y = v.y;
Tuple2f v1 = m_vertices[i2];
edgeShape.m_vertex2.x = v1.x;
edgeShape.m_vertex2.y = v1.y;
return edgeShape.raycast(output, input, xf, 0);
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class ChainShape method computeAABB.
@Override
public void computeAABB(AABB aabb, Transform xf, int childIndex) {
assert (childIndex < m_count);
final Tuple2f lower = aabb.lowerBound;
final Tuple2f upper = aabb.upperBound;
int i1 = childIndex;
int i2 = childIndex + 1;
if (i2 == m_count) {
i2 = 0;
}
final Tuple2f vi1 = m_vertices[i1];
final Tuple2f vi2 = m_vertices[i2];
final Rot xfq = xf;
final Tuple2f xfp = xf.pos;
float v1x = (xfq.c * vi1.x - xfq.s * vi1.y) + xfp.x;
float v1y = (xfq.s * vi1.x + xfq.c * vi1.y) + xfp.y;
float v2x = (xfq.c * vi2.x - xfq.s * vi2.y) + xfp.x;
float v2y = (xfq.s * vi2.x + xfq.c * vi2.y) + xfp.y;
lower.x = v1x < v2x ? v1x : v2x;
lower.y = v1y < v2y ? v1y : v2y;
upper.x = v1x > v2x ? v1x : v2x;
upper.y = v1y > v2y ? v1y : v2y;
}
Aggregations