use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class Body2D method getLocalVector.
/**
* Gets a local vector given a world vector.
*
* @param a vector in world coordinates.
* @return the corresponding local vector.
*/
public final Tuple2f getLocalVector(Tuple2f worldVector) {
Tuple2f out = new v2();
getLocalVectorToOut(worldVector, out);
return out;
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class Body2D method getLocalPoint.
/**
* Gets a local point relative to the body's origin given a world point.
*
* @param a point in world coordinates.
* @return the corresponding local point relative to the body's origin.
*/
public final Tuple2f getLocalPoint(Tuple2f worldPoint) {
Tuple2f out = new v2();
getLocalPointToOut(worldPoint, out);
return out;
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class PositionSolverManifold method initializeVelocityConstraints.
public final void initializeVelocityConstraints() {
// Warm start.
for (int i = 0; i < m_count; ++i) {
ContactVelocityConstraint vc = m_velocityConstraints[i];
ContactPositionConstraint pc = m_positionConstraints[i];
float radiusA = pc.radiusA;
float radiusB = pc.radiusB;
Manifold manifold = m_contacts[vc.contactIndex].getManifold();
int indexA = vc.indexA;
int indexB = vc.indexB;
float mA = vc.invMassA;
float mB = vc.invMassB;
float iA = vc.invIA;
float iB = vc.invIB;
Tuple2f localCenterA = pc.localCenterA;
Tuple2f localCenterB = pc.localCenterB;
Tuple2f cA = m_positions[indexA];
float aA = m_positions[indexA].a;
Tuple2f vA = m_velocities[indexA];
float wA = m_velocities[indexA].w;
Tuple2f cB = m_positions[indexB];
float aB = m_positions[indexB].a;
Tuple2f vB = m_velocities[indexB];
float wB = m_velocities[indexB].w;
assert (manifold.pointCount > 0);
final Rot xfAq = xfA;
final Rot xfBq = xfB;
xfAq.set(aA);
xfBq.set(aB);
xfA.pos.x = cA.x - (xfAq.c * localCenterA.x - xfAq.s * localCenterA.y);
xfA.pos.y = cA.y - (xfAq.s * localCenterA.x + xfAq.c * localCenterA.y);
xfB.pos.x = cB.x - (xfBq.c * localCenterB.x - xfBq.s * localCenterB.y);
xfB.pos.y = cB.y - (xfBq.s * localCenterB.x + xfBq.c * localCenterB.y);
worldManifold.initialize(manifold, xfA, radiusA, xfB, radiusB);
final Tuple2f vcnormal = vc.normal;
vcnormal.x = worldManifold.normal.x;
vcnormal.y = worldManifold.normal.y;
int pointCount = vc.pointCount;
for (int j = 0; j < pointCount; ++j) {
VelocityConstraintPoint vcp = vc.points[j];
Tuple2f wmPj = worldManifold.points[j];
final Tuple2f vcprA = vcp.rA;
final Tuple2f vcprB = vcp.rB;
vcprA.x = wmPj.x - cA.x;
vcprA.y = wmPj.y - cA.y;
vcprB.x = wmPj.x - cB.x;
vcprB.y = wmPj.y - cB.y;
float rnA = vcprA.x * vcnormal.y - vcprA.y * vcnormal.x;
float rnB = vcprB.x * vcnormal.y - vcprB.y * vcnormal.x;
float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;
vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;
float tangentx = 1.0f * vcnormal.y;
float tangenty = -1.0f * vcnormal.x;
float rtA = vcprA.x * tangenty - vcprA.y * tangentx;
float rtB = vcprB.x * tangenty - vcprB.y * tangentx;
float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;
vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;
// Setup a velocity bias for restitution.
vcp.velocityBias = 0.0f;
float tempx = vB.x + -wB * vcprB.y - vA.x - (-wA * vcprA.y);
float tempy = vB.y + wB * vcprB.x - vA.y - (wA * vcprA.x);
float vRel = vcnormal.x * tempx + vcnormal.y * tempy;
if (vRel < -Settings.velocityThreshold) {
vcp.velocityBias = -vc.restitution * vRel;
}
}
// If we have two points, then prepare the block solver.
if (vc.pointCount == 2) {
VelocityConstraintPoint vcp1 = vc.points[0];
VelocityConstraintPoint vcp2 = vc.points[1];
float rn1A = vcp1.rA.x * vcnormal.y - vcp1.rA.y * vcnormal.x;
float rn1B = vcp1.rB.x * vcnormal.y - vcp1.rB.y * vcnormal.x;
float rn2A = vcp2.rA.x * vcnormal.y - vcp2.rA.y * vcnormal.x;
float rn2B = vcp2.rB.x * vcnormal.y - vcp2.rB.y * vcnormal.x;
float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;
if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) {
// K is safe to invert.
vc.K.ex.x = k11;
vc.K.ex.y = k12;
vc.K.ey.x = k12;
vc.K.ey.y = k22;
vc.K.invertToOut(vc.normalMass);
} else {
// The constraints are redundant, just use one.
// TODO_ERIN use deepest?
vc.pointCount = 1;
}
}
}
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class PositionSolverManifold method initialize.
public void initialize(ContactPositionConstraint pc, Transform xfA, Transform xfB, int index) {
assert (pc.pointCount > 0);
final Rot xfAq = xfA;
final Rot xfBq = xfB;
final Tuple2f pcLocalPointsI = pc.localPoints[index];
switch(pc.type) {
case CIRCLES:
{
// Transform.mulToOutUnsafe(xfA, pc.localPoint, pointA);
// Transform.mulToOutUnsafe(xfB, pc.localPoints[0], pointB);
// normal.set(pointB).subLocal(pointA);
// normal.normalize();
//
// point.set(pointA).addLocal(pointB).mulLocal(.5f);
// temp.set(pointB).subLocal(pointA);
// separation = Vec2.dot(temp, normal) - pc.radiusA - pc.radiusB;
final Tuple2f plocalPoint = pc.localPoint;
final Tuple2f pLocalPoints0 = pc.localPoints[0];
final float pointAx = (xfAq.c * plocalPoint.x - xfAq.s * plocalPoint.y) + xfA.pos.x;
final float pointAy = (xfAq.s * plocalPoint.x + xfAq.c * plocalPoint.y) + xfA.pos.y;
final float pointBx = (xfBq.c * pLocalPoints0.x - xfBq.s * pLocalPoints0.y) + xfB.pos.x;
final float pointBy = (xfBq.s * pLocalPoints0.x + xfBq.c * pLocalPoints0.y) + xfB.pos.y;
normal.x = pointBx - pointAx;
normal.y = pointBy - pointAy;
normal.normalize();
point.x = (pointAx + pointBx) * 0.5f;
point.y = (pointAy + pointBy) * 0.5f;
final float tempx = pointBx - pointAx;
final float tempy = pointBy - pointAy;
separation = tempx * normal.x + tempy * normal.y - pc.radiusA - pc.radiusB;
break;
}
case FACE_A:
{
// Rot.mulToOutUnsafe(xfAq, pc.localNormal, normal);
// Transform.mulToOutUnsafe(xfA, pc.localPoint, planePoint);
//
// Transform.mulToOutUnsafe(xfB, pc.localPoints[index], clipPoint);
// temp.set(clipPoint).subLocal(planePoint);
// separation = Vec2.dot(temp, normal) - pc.radiusA - pc.radiusB;
// point.set(clipPoint);
final Tuple2f pcLocalNormal = pc.localNormal;
final Tuple2f pcLocalPoint = pc.localPoint;
normal.x = xfAq.c * pcLocalNormal.x - xfAq.s * pcLocalNormal.y;
normal.y = xfAq.s * pcLocalNormal.x + xfAq.c * pcLocalNormal.y;
final float planePointx = (xfAq.c * pcLocalPoint.x - xfAq.s * pcLocalPoint.y) + xfA.pos.x;
final float planePointy = (xfAq.s * pcLocalPoint.x + xfAq.c * pcLocalPoint.y) + xfA.pos.y;
final float clipPointx = (xfBq.c * pcLocalPointsI.x - xfBq.s * pcLocalPointsI.y) + xfB.pos.x;
final float clipPointy = (xfBq.s * pcLocalPointsI.x + xfBq.c * pcLocalPointsI.y) + xfB.pos.y;
final float tempx = clipPointx - planePointx;
final float tempy = clipPointy - planePointy;
separation = tempx * normal.x + tempy * normal.y - pc.radiusA - pc.radiusB;
point.x = clipPointx;
point.y = clipPointy;
break;
}
case FACE_B:
{
// Rot.mulToOutUnsafe(xfBq, pc.localNormal, normal);
// Transform.mulToOutUnsafe(xfB, pc.localPoint, planePoint);
//
// Transform.mulToOutUnsafe(xfA, pcLocalPointsI, clipPoint);
// temp.set(clipPoint).subLocal(planePoint);
// separation = Vec2.dot(temp, normal) - pc.radiusA - pc.radiusB;
// point.set(clipPoint);
//
// // Ensure normal points from A to B
// normal.negateLocal();
final Tuple2f pcLocalNormal = pc.localNormal;
final Tuple2f pcLocalPoint = pc.localPoint;
normal.x = xfBq.c * pcLocalNormal.x - xfBq.s * pcLocalNormal.y;
normal.y = xfBq.s * pcLocalNormal.x + xfBq.c * pcLocalNormal.y;
final float planePointx = (xfBq.c * pcLocalPoint.x - xfBq.s * pcLocalPoint.y) + xfB.pos.x;
final float planePointy = (xfBq.s * pcLocalPoint.x + xfBq.c * pcLocalPoint.y) + xfB.pos.y;
final float clipPointx = (xfAq.c * pcLocalPointsI.x - xfAq.s * pcLocalPointsI.y) + xfA.pos.x;
final float clipPointy = (xfAq.s * pcLocalPointsI.x + xfAq.c * pcLocalPointsI.y) + xfA.pos.y;
final float tempx = clipPointx - planePointx;
final float tempy = clipPointy - planePointy;
separation = tempx * normal.x + tempy * normal.y - pc.radiusA - pc.radiusB;
point.x = clipPointx;
point.y = clipPointy;
normal.x *= -1;
normal.y *= -1;
}
break;
}
}
use of spacegraph.util.math.Tuple2f in project narchy by automenta.
the class PositionSolverManifold method warmStart.
public void warmStart() {
// Warm start.
for (int i = 0; i < m_count; ++i) {
final ContactVelocityConstraint vc = m_velocityConstraints[i];
int indexA = vc.indexA;
int indexB = vc.indexB;
float mA = vc.invMassA;
float iA = vc.invIA;
float mB = vc.invMassB;
float iB = vc.invIB;
int pointCount = vc.pointCount;
Tuple2f vA = m_velocities[indexA];
float wA = m_velocities[indexA].w;
Tuple2f vB = m_velocities[indexB];
float wB = m_velocities[indexB].w;
Tuple2f normal = vc.normal;
float tangentx = 1.0f * normal.y;
float tangenty = -1.0f * normal.x;
for (int j = 0; j < pointCount; ++j) {
VelocityConstraintPoint vcp = vc.points[j];
float Px = tangentx * vcp.tangentImpulse + normal.x * vcp.normalImpulse;
float Py = tangenty * vcp.tangentImpulse + normal.y * vcp.normalImpulse;
wA -= iA * (vcp.rA.x * Py - vcp.rA.y * Px);
vA.x -= Px * mA;
vA.y -= Py * mA;
wB += iB * (vcp.rB.x * Py - vcp.rB.y * Px);
vB.x += Px * mB;
vB.y += Py * mB;
}
m_velocities[indexA].w = wA;
m_velocities[indexB].w = wB;
}
}
Aggregations