use of com.jme3.math.Transform in project jmonkeyengine by jMonkeyEngine.
the class SkeletonControl method applySkinning.
/**
* Method to apply skinning transforms to a mesh's buffers
*
* @param mesh the mesh
* @param offsetMatrices the offset matices to apply
*/
private void applySkinning(Mesh mesh, Matrix4f[] offsetMatrices) {
int maxWeightsPerVert = mesh.getMaxNumWeights();
if (maxWeightsPerVert <= 0) {
throw new IllegalStateException("Max weights per vert is incorrectly set!");
}
int fourMinusMaxWeights = 4 - maxWeightsPerVert;
// NOTE: This code assumes the vertex buffer is in bind pose
// resetToBind() has been called this frame
VertexBuffer vb = mesh.getBuffer(Type.Position);
FloatBuffer fvb = (FloatBuffer) vb.getData();
fvb.rewind();
VertexBuffer nb = mesh.getBuffer(Type.Normal);
FloatBuffer fnb = (FloatBuffer) nb.getData();
fnb.rewind();
// get boneIndexes and weights for mesh
ByteBuffer ib = (ByteBuffer) mesh.getBuffer(Type.BoneIndex).getData();
FloatBuffer wb = (FloatBuffer) mesh.getBuffer(Type.BoneWeight).getData();
ib.rewind();
wb.rewind();
float[] weights = wb.array();
byte[] indices = ib.array();
int idxWeights = 0;
TempVars vars = TempVars.get();
float[] posBuf = vars.skinPositions;
float[] normBuf = vars.skinNormals;
int iterations = (int) FastMath.ceil(fvb.limit() / ((float) posBuf.length));
int bufLength = posBuf.length;
for (int i = iterations - 1; i >= 0; i--) {
// read next set of positions and normals from native buffer
bufLength = Math.min(posBuf.length, fvb.remaining());
fvb.get(posBuf, 0, bufLength);
fnb.get(normBuf, 0, bufLength);
int verts = bufLength / 3;
int idxPositions = 0;
// iterate vertices and apply skinning transform for each effecting bone
for (int vert = verts - 1; vert >= 0; vert--) {
// Skip this vertex if the first weight is zero.
if (weights[idxWeights] == 0) {
idxPositions += 3;
idxWeights += 4;
continue;
}
float nmx = normBuf[idxPositions];
float vtx = posBuf[idxPositions++];
float nmy = normBuf[idxPositions];
float vty = posBuf[idxPositions++];
float nmz = normBuf[idxPositions];
float vtz = posBuf[idxPositions++];
float rx = 0, ry = 0, rz = 0, rnx = 0, rny = 0, rnz = 0;
for (int w = maxWeightsPerVert - 1; w >= 0; w--) {
float weight = weights[idxWeights];
Matrix4f mat = offsetMatrices[indices[idxWeights++] & 0xff];
rx += (mat.m00 * vtx + mat.m01 * vty + mat.m02 * vtz + mat.m03) * weight;
ry += (mat.m10 * vtx + mat.m11 * vty + mat.m12 * vtz + mat.m13) * weight;
rz += (mat.m20 * vtx + mat.m21 * vty + mat.m22 * vtz + mat.m23) * weight;
rnx += (nmx * mat.m00 + nmy * mat.m01 + nmz * mat.m02) * weight;
rny += (nmx * mat.m10 + nmy * mat.m11 + nmz * mat.m12) * weight;
rnz += (nmx * mat.m20 + nmy * mat.m21 + nmz * mat.m22) * weight;
}
idxWeights += fourMinusMaxWeights;
idxPositions -= 3;
normBuf[idxPositions] = rnx;
posBuf[idxPositions++] = rx;
normBuf[idxPositions] = rny;
posBuf[idxPositions++] = ry;
normBuf[idxPositions] = rnz;
posBuf[idxPositions++] = rz;
}
fvb.position(fvb.position() - bufLength);
fvb.put(posBuf, 0, bufLength);
fnb.position(fnb.position() - bufLength);
fnb.put(normBuf, 0, bufLength);
}
vars.release();
vb.updateData(fvb);
nb.updateData(fnb);
}
use of com.jme3.math.Transform in project jmonkeyengine by jMonkeyEngine.
the class SkeletonControl method applySkinningTangents.
/**
* Specific method for skinning with tangents to avoid cluttering the
* classic skinning calculation with null checks that would slow down the
* process even if tangents don't have to be computed. Also the iteration
* has additional indexes since tangent has 4 components instead of 3 for
* pos and norm
*
* @param maxWeightsPerVert maximum number of weights per vertex
* @param mesh the mesh
* @param offsetMatrices the offsetMaytrices to apply
* @param tb the tangent vertexBuffer
*/
private void applySkinningTangents(Mesh mesh, Matrix4f[] offsetMatrices, VertexBuffer tb) {
int maxWeightsPerVert = mesh.getMaxNumWeights();
if (maxWeightsPerVert <= 0) {
throw new IllegalStateException("Max weights per vert is incorrectly set!");
}
int fourMinusMaxWeights = 4 - maxWeightsPerVert;
// NOTE: This code assumes the vertex buffer is in bind pose
// resetToBind() has been called this frame
VertexBuffer vb = mesh.getBuffer(Type.Position);
FloatBuffer fvb = (FloatBuffer) vb.getData();
fvb.rewind();
VertexBuffer nb = mesh.getBuffer(Type.Normal);
FloatBuffer fnb = (FloatBuffer) nb.getData();
fnb.rewind();
FloatBuffer ftb = (FloatBuffer) tb.getData();
ftb.rewind();
// get boneIndexes and weights for mesh
ByteBuffer ib = (ByteBuffer) mesh.getBuffer(Type.BoneIndex).getData();
FloatBuffer wb = (FloatBuffer) mesh.getBuffer(Type.BoneWeight).getData();
ib.rewind();
wb.rewind();
float[] weights = wb.array();
byte[] indices = ib.array();
int idxWeights = 0;
TempVars vars = TempVars.get();
float[] posBuf = vars.skinPositions;
float[] normBuf = vars.skinNormals;
float[] tanBuf = vars.skinTangents;
int iterations = (int) FastMath.ceil(fvb.limit() / ((float) posBuf.length));
int bufLength = 0;
int tanLength = 0;
for (int i = iterations - 1; i >= 0; i--) {
// read next set of positions and normals from native buffer
bufLength = Math.min(posBuf.length, fvb.remaining());
tanLength = Math.min(tanBuf.length, ftb.remaining());
fvb.get(posBuf, 0, bufLength);
fnb.get(normBuf, 0, bufLength);
ftb.get(tanBuf, 0, tanLength);
int verts = bufLength / 3;
int idxPositions = 0;
//tangents has their own index because of the 4 components
int idxTangents = 0;
// iterate vertices and apply skinning transform for each effecting bone
for (int vert = verts - 1; vert >= 0; vert--) {
// Skip this vertex if the first weight is zero.
if (weights[idxWeights] == 0) {
idxTangents += 4;
idxPositions += 3;
idxWeights += 4;
continue;
}
float nmx = normBuf[idxPositions];
float vtx = posBuf[idxPositions++];
float nmy = normBuf[idxPositions];
float vty = posBuf[idxPositions++];
float nmz = normBuf[idxPositions];
float vtz = posBuf[idxPositions++];
float tnx = tanBuf[idxTangents++];
float tny = tanBuf[idxTangents++];
float tnz = tanBuf[idxTangents++];
// skipping the 4th component of the tangent since it doesn't have to be transformed
idxTangents++;
float rx = 0, ry = 0, rz = 0, rnx = 0, rny = 0, rnz = 0, rtx = 0, rty = 0, rtz = 0;
for (int w = maxWeightsPerVert - 1; w >= 0; w--) {
float weight = weights[idxWeights];
Matrix4f mat = offsetMatrices[indices[idxWeights++] & 0xff];
rx += (mat.m00 * vtx + mat.m01 * vty + mat.m02 * vtz + mat.m03) * weight;
ry += (mat.m10 * vtx + mat.m11 * vty + mat.m12 * vtz + mat.m13) * weight;
rz += (mat.m20 * vtx + mat.m21 * vty + mat.m22 * vtz + mat.m23) * weight;
rnx += (nmx * mat.m00 + nmy * mat.m01 + nmz * mat.m02) * weight;
rny += (nmx * mat.m10 + nmy * mat.m11 + nmz * mat.m12) * weight;
rnz += (nmx * mat.m20 + nmy * mat.m21 + nmz * mat.m22) * weight;
rtx += (tnx * mat.m00 + tny * mat.m01 + tnz * mat.m02) * weight;
rty += (tnx * mat.m10 + tny * mat.m11 + tnz * mat.m12) * weight;
rtz += (tnx * mat.m20 + tny * mat.m21 + tnz * mat.m22) * weight;
}
idxWeights += fourMinusMaxWeights;
idxPositions -= 3;
normBuf[idxPositions] = rnx;
posBuf[idxPositions++] = rx;
normBuf[idxPositions] = rny;
posBuf[idxPositions++] = ry;
normBuf[idxPositions] = rnz;
posBuf[idxPositions++] = rz;
idxTangents -= 4;
tanBuf[idxTangents++] = rtx;
tanBuf[idxTangents++] = rty;
tanBuf[idxTangents++] = rtz;
//once again skipping the 4th component of the tangent
idxTangents++;
}
fvb.position(fvb.position() - bufLength);
fvb.put(posBuf, 0, bufLength);
fnb.position(fnb.position() - bufLength);
fnb.put(normBuf, 0, bufLength);
ftb.position(ftb.position() - tanLength);
ftb.put(tanBuf, 0, tanLength);
}
vars.release();
vb.updateData(fvb);
nb.updateData(fnb);
tb.updateData(ftb);
}
use of com.jme3.math.Transform in project jmonkeyengine by jMonkeyEngine.
the class RigidBodyMotionState method applyTransform.
/**
* applies the current transform to the given jme Node if the location has been updated on the physics side
* @param spatial
*/
public boolean applyTransform(Spatial spatial) {
Vector3f localLocation = spatial.getLocalTranslation();
Quaternion localRotationQuat = spatial.getLocalRotation();
boolean physicsLocationDirty = applyTransform(motionStateId, localLocation, localRotationQuat);
if (!physicsLocationDirty) {
return false;
}
if (!applyPhysicsLocal && spatial.getParent() != null) {
localLocation.subtractLocal(spatial.getParent().getWorldTranslation());
localLocation.divideLocal(spatial.getParent().getWorldScale());
tmp_inverseWorldRotation.set(spatial.getParent().getWorldRotation()).inverseLocal().multLocal(localLocation);
// localRotationQuat.set(worldRotationQuat);
tmp_inverseWorldRotation.mult(localRotationQuat, localRotationQuat);
spatial.setLocalTranslation(localLocation);
spatial.setLocalRotation(localRotationQuat);
} else {
spatial.setLocalTranslation(localLocation);
spatial.setLocalRotation(localRotationQuat);
// spatial.setLocalTranslation(worldLocation);
// spatial.setLocalRotation(worldRotationQuat);
}
if (vehicle != null) {
vehicle.updateWheels();
}
return true;
}
use of com.jme3.math.Transform in project jmonkeyengine by jMonkeyEngine.
the class AnimationFactory method interpolate.
/**
* Interpolates over the key frames for the given keyFrame array and the given type of transform
* @param keyFrames the keyFrames array
* @param type the type of transforms
*/
private void interpolate(Object[] keyFrames, Type type) {
int i = 0;
while (i < totalFrames) {
//fetching the next keyFrame index transform in the array
int key = getNextKeyFrame(i, keyFrames);
if (key != -1) {
//computing the frame span to interpolate over
int span = key - i;
//interating over the frames
for (int j = i; j <= key; j++) {
// computing interpolation value
float val = (float) (j - i) / (float) span;
//interpolationg depending on the transform type
switch(type) {
case Translation:
translations[j] = FastMath.interpolateLinear(val, (Vector3f) keyFrames[i], (Vector3f) keyFrames[key]);
break;
case Rotation:
Quaternion rot = new Quaternion();
rotations[j] = rot.slerp(((Rotation) keyFrames[i]).rotation, ((Rotation) keyFrames[key]).rotation, val);
break;
case Scale:
scales[j] = FastMath.interpolateLinear(val, (Vector3f) keyFrames[i], (Vector3f) keyFrames[key]);
break;
}
}
//jumping to the next keyFrame
i = key;
} else {
//No more key frame, filling the array witht he last transform computed.
for (int j = i; j < totalFrames; j++) {
switch(type) {
case Translation:
translations[j] = ((Vector3f) keyFrames[i]).clone();
break;
case Rotation:
rotations[j] = ((Quaternion) ((Rotation) keyFrames[i]).rotation).clone();
break;
case Scale:
scales[j] = ((Vector3f) keyFrames[i]).clone();
break;
}
}
//we're done
i = totalFrames;
}
}
}
use of com.jme3.math.Transform in project jmonkeyengine by jMonkeyEngine.
the class SinglePassLightingLogic method updateLightListUniforms.
/**
* Uploads the lights in the light list as two uniform arrays.<br/><br/> *
* <p>
* <code>uniform vec4 g_LightColor[numLights];</code><br/> //
* g_LightColor.rgb is the diffuse/specular color of the light.<br/> //
* g_Lightcolor.a is the type of light, 0 = Directional, 1 = Point, <br/> //
* 2 = Spot. <br/> <br/>
* <code>uniform vec4 g_LightPosition[numLights];</code><br/> //
* g_LightPosition.xyz is the position of the light (for point lights)<br/>
* // or the direction of the light (for directional lights).<br/> //
* g_LightPosition.w is the inverse radius (1/r) of the light (for
* attenuation) <br/> </p>
*/
protected int updateLightListUniforms(Shader shader, Geometry g, LightList lightList, int numLights, RenderManager rm, int startIndex) {
if (numLights == 0) {
// this shader does not do lighting, ignore.
return 0;
}
Uniform lightData = shader.getUniform("g_LightData");
//8 lights * max 3
lightData.setVector4Length(numLights * 3);
Uniform ambientColor = shader.getUniform("g_AmbientLightColor");
if (startIndex != 0) {
// apply additive blending for 2nd and future passes
rm.getRenderer().applyRenderState(ADDITIVE_LIGHT);
ambientColor.setValue(VarType.Vector4, ColorRGBA.Black);
} else {
ambientColor.setValue(VarType.Vector4, getAmbientColor(lightList, true, ambientLightColor));
}
int lightDataIndex = 0;
TempVars vars = TempVars.get();
Vector4f tmpVec = vars.vect4f1;
int curIndex;
int endIndex = numLights + startIndex;
for (curIndex = startIndex; curIndex < endIndex && curIndex < lightList.size(); curIndex++) {
Light l = lightList.get(curIndex);
if (l.getType() == Light.Type.Ambient) {
endIndex++;
continue;
}
ColorRGBA color = l.getColor();
//Color
lightData.setVector4InArray(color.getRed(), color.getGreen(), color.getBlue(), l.getType().getId(), lightDataIndex);
lightDataIndex++;
switch(l.getType()) {
case Directional:
DirectionalLight dl = (DirectionalLight) l;
Vector3f dir = dl.getDirection();
//Data directly sent in view space to avoid a matrix mult for each pixel
tmpVec.set(dir.getX(), dir.getY(), dir.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
// tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), -1, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
lightDataIndex++;
break;
case Point:
PointLight pl = (PointLight) l;
Vector3f pos = pl.getPosition();
float invRadius = pl.getInvRadius();
tmpVec.set(pos.getX(), pos.getY(), pos.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
//tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRadius, lightDataIndex);
lightDataIndex++;
//PADDING
lightData.setVector4InArray(0, 0, 0, 0, lightDataIndex);
lightDataIndex++;
break;
case Spot:
SpotLight sl = (SpotLight) l;
Vector3f pos2 = sl.getPosition();
Vector3f dir2 = sl.getDirection();
float invRange = sl.getInvSpotRange();
float spotAngleCos = sl.getPackedAngleCos();
tmpVec.set(pos2.getX(), pos2.getY(), pos2.getZ(), 1.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
// tmpVec.divideLocal(tmpVec.w);
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), invRange, lightDataIndex);
lightDataIndex++;
//We transform the spot direction in view space here to save 5 varying later in the lighting shader
//one vec4 less and a vec4 that becomes a vec3
//the downside is that spotAngleCos decoding happens now in the frag shader.
tmpVec.set(dir2.getX(), dir2.getY(), dir2.getZ(), 0.0f);
rm.getCurrentCamera().getViewMatrix().mult(tmpVec, tmpVec);
tmpVec.normalizeLocal();
lightData.setVector4InArray(tmpVec.getX(), tmpVec.getY(), tmpVec.getZ(), spotAngleCos, lightDataIndex);
lightDataIndex++;
break;
case Probe:
break;
default:
throw new UnsupportedOperationException("Unknown type of light: " + l.getType());
}
}
vars.release();
//Padding of unsued buffer space
while (lightDataIndex < numLights * 3) {
lightData.setVector4InArray(0f, 0f, 0f, 0f, lightDataIndex);
lightDataIndex++;
}
return curIndex;
}
Aggregations