use of ij.gui.PlotWindow in project GDSC-SMLM by aherbert.
the class BenchmarkSpotFilter method plot.
private void plot(int i, ArrayList<BatchResult[]> batchResults) {
if (!batchPlot[i])
return;
Color[] colors = new Color[] { Color.red, Color.gray, Color.green, Color.blue, Color.magenta };
String name = batchPlotNames[i];
String title = TITLE + " Performance " + name;
Plot plot = new Plot(title, "Relative width", name);
final double scale = 1.0 / config.getHWHMMin();
for (BatchResult[] batchResult : batchResults) {
if (batchResult == null || batchResult.length == 0)
continue;
float[][] data = extractData(batchResult, i, scale);
int colorIndex = batchResult[0].dataFilter.ordinal();
plot.setColor(colors[colorIndex]);
colors[colorIndex] = colors[colorIndex].darker();
plot.addPoints(data[0], data[1], null, (batchResult.length > 1) ? Plot.LINE : Plot.CIRCLE, batchResult[0].getName());
}
plot.setColor(Color.black);
plot.addLegend(null);
if (name.contains("Time"))
plot.setAxisYLog(true);
PlotWindow pw = Utils.display(title, plot);
// Seems to only work after drawing
plot.setLimitsToFit(true);
if (Utils.isNewWindow())
windowOrganiser.add(pw);
}
use of ij.gui.PlotWindow in project GDSC-SMLM by aherbert.
the class BenchmarkFilterAnalysis method depthAnalysis.
/**
* Depth analysis.
*
* @param allAssignments
* The assignments generated from running the filter (or null)
* @param filter
* the filter
* @return the assignments
*/
private ArrayList<FractionalAssignment[]> depthAnalysis(ArrayList<FractionalAssignment[]> allAssignments, DirectFilter filter) {
if (!depthRecallAnalysis || simulationParameters.fixedDepth)
return null;
// Build a histogram of the number of spots at different depths
final double[] depths = depthStats.getValues();
double[] limits = Maths.limits(depths);
//final int bins = Math.max(10, nActual / 100);
//final int bins = Utils.getBinsSturges(depths.length);
final int bins = Utils.getBinsSqrt(depths.length);
double[][] h1 = Utils.calcHistogram(depths, limits[0], limits[1], bins);
double[][] h2 = Utils.calcHistogram(depthFitStats.getValues(), limits[0], limits[1], bins);
// manually to get the results that pass.
if (allAssignments == null)
allAssignments = getAssignments(filter);
double[] depths2 = new double[results.size()];
int count = 0;
for (FractionalAssignment[] assignments : allAssignments) {
if (assignments == null)
continue;
for (int i = 0; i < assignments.length; i++) {
final CustomFractionalAssignment c = (CustomFractionalAssignment) assignments[i];
depths2[count++] = c.peak.error;
}
}
depths2 = Arrays.copyOf(depths2, count);
// Build a histogram using the same limits
double[][] h3 = Utils.calcHistogram(depths2, limits[0], limits[1], bins);
// Convert pixel depth to nm
for (int i = 0; i < h1[0].length; i++) h1[0][i] *= simulationParameters.a;
limits[0] *= simulationParameters.a;
limits[1] *= simulationParameters.a;
// Produce a histogram of the number of spots at each depth
String title1 = TITLE + " Depth Histogram";
Plot2 plot1 = new Plot2(title1, "Depth (nm)", "Frequency");
plot1.setLimits(limits[0], limits[1], 0, Maths.max(h1[1]));
plot1.setColor(Color.black);
plot1.addPoints(h1[0], h1[1], Plot2.BAR);
plot1.addLabel(0, 0, "Black = Spots; Blue = Fitted; Red = Filtered");
plot1.setColor(Color.blue);
plot1.addPoints(h1[0], h2[1], Plot2.BAR);
plot1.setColor(Color.red);
plot1.addPoints(h1[0], h3[1], Plot2.BAR);
plot1.setColor(Color.magenta);
PlotWindow pw1 = Utils.display(title1, plot1);
if (Utils.isNewWindow())
wo.add(pw1);
// Interpolate
final double halfBinWidth = (h1[0][1] - h1[0][0]) * 0.5;
// Remove final value of the histogram as this is at the upper limit of the range (i.e. count zero)
h1[0] = Arrays.copyOf(h1[0], h1[0].length - 1);
h1[1] = Arrays.copyOf(h1[1], h1[0].length);
h2[1] = Arrays.copyOf(h2[1], h1[0].length);
h3[1] = Arrays.copyOf(h3[1], h1[0].length);
// TODO : Fix the smoothing since LOESS sometimes does not work.
// Perhaps allow configuration of the number of histogram bins and the smoothing bandwidth.
// Use minimum of 3 points for smoothing
// Ensure we use at least x% of data
double bandwidth = Math.max(3.0 / h1[0].length, 0.15);
LoessInterpolator loess = new LoessInterpolator(bandwidth, 1);
PolynomialSplineFunction spline1 = loess.interpolate(h1[0], h1[1]);
PolynomialSplineFunction spline2 = loess.interpolate(h1[0], h2[1]);
PolynomialSplineFunction spline3 = loess.interpolate(h1[0], h3[1]);
// Use a second interpolator in case the LOESS fails
LinearInterpolator lin = new LinearInterpolator();
PolynomialSplineFunction spline1b = lin.interpolate(h1[0], h1[1]);
PolynomialSplineFunction spline2b = lin.interpolate(h1[0], h2[1]);
PolynomialSplineFunction spline3b = lin.interpolate(h1[0], h3[1]);
// Increase the number of points to show a smooth curve
double[] points = new double[bins * 5];
limits = Maths.limits(h1[0]);
final double interval = (limits[1] - limits[0]) / (points.length - 1);
double[] v = new double[points.length];
double[] v2 = new double[points.length];
double[] v3 = new double[points.length];
for (int i = 0; i < points.length - 1; i++) {
points[i] = limits[0] + i * interval;
v[i] = getSplineValue(spline1, spline1b, points[i]);
v2[i] = getSplineValue(spline2, spline2b, points[i]);
v3[i] = getSplineValue(spline3, spline3b, points[i]);
points[i] += halfBinWidth;
}
// Final point on the limit of the spline range
int ii = points.length - 1;
v[ii] = getSplineValue(spline1, spline1b, limits[1]);
v2[ii] = getSplineValue(spline2, spline2b, limits[1]);
v3[ii] = getSplineValue(spline3, spline3b, limits[1]);
points[ii] = limits[1] + halfBinWidth;
// Calculate recall
for (int i = 0; i < v.length; i++) {
v2[i] = v2[i] / v[i];
v3[i] = v3[i] / v[i];
}
final double halfSummaryDepth = summaryDepth * 0.5;
String title2 = TITLE + " Depth Histogram (normalised)";
Plot2 plot2 = new Plot2(title2, "Depth (nm)", "Recall");
plot2.setLimits(limits[0] + halfBinWidth, limits[1] + halfBinWidth, 0, Maths.min(1, Maths.max(v2)));
plot2.setColor(Color.black);
plot2.addLabel(0, 0, "Blue = Fitted; Red = Filtered");
plot2.setColor(Color.blue);
plot2.addPoints(points, v2, Plot2.LINE);
plot2.setColor(Color.red);
plot2.addPoints(points, v3, Plot2.LINE);
plot2.setColor(Color.magenta);
if (-halfSummaryDepth - halfBinWidth >= limits[0]) {
plot2.drawLine(-halfSummaryDepth, 0, -halfSummaryDepth, getSplineValue(spline3, spline3b, -halfSummaryDepth - halfBinWidth) / getSplineValue(spline1, spline1b, -halfSummaryDepth - halfBinWidth));
}
if (halfSummaryDepth - halfBinWidth <= limits[1]) {
plot2.drawLine(halfSummaryDepth, 0, halfSummaryDepth, getSplineValue(spline3, spline3b, halfSummaryDepth - halfBinWidth) / getSplineValue(spline1, spline1b, halfSummaryDepth - halfBinWidth));
}
PlotWindow pw2 = Utils.display(title2, plot2);
if (Utils.isNewWindow())
wo.add(pw2);
return allAssignments;
}
use of ij.gui.PlotWindow in project GDSC-SMLM by aherbert.
the class MeanVarianceTest method run.
/*
* (non-Javadoc)
*
* @see ij.plugin.PlugIn#run(java.lang.String)
*/
public void run(String arg) {
SMLMUsageTracker.recordPlugin(this.getClass(), arg);
if (Utils.isExtraOptions()) {
ImagePlus imp = WindowManager.getCurrentImage();
if (imp.getStackSize() > 1) {
GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("Perform single image analysis on the current image?");
gd.addNumericField("Bias", _bias, 0);
gd.showDialog();
if (gd.wasCanceled())
return;
singleImage = true;
_bias = Math.abs(gd.getNextNumber());
} else {
IJ.error(TITLE, "Single-image mode requires a stack");
return;
}
}
List<ImageSample> images;
String inputDirectory = "";
if (singleImage) {
IJ.showStatus("Loading images...");
images = getImages();
if (images.size() == 0) {
IJ.error(TITLE, "Not enough images for analysis");
return;
}
} else {
inputDirectory = IJ.getDirectory("Select image series ...");
if (inputDirectory == null)
return;
SeriesOpener series = new SeriesOpener(inputDirectory, false, 0);
series.setVariableSize(true);
if (series.getNumberOfImages() < 3) {
IJ.error(TITLE, "Not enough images in the selected directory");
return;
}
if (!IJ.showMessageWithCancel(TITLE, String.format("Analyse %d images, first image:\n%s", series.getNumberOfImages(), series.getImageList()[0]))) {
return;
}
IJ.showStatus("Loading images");
images = getImages(series);
if (images.size() < 3) {
IJ.error(TITLE, "Not enough images for analysis");
return;
}
if (images.get(0).exposure != 0) {
IJ.error(TITLE, "First image in series must have exposure 0 (Bias image)");
return;
}
}
boolean emMode = (arg != null && arg.contains("em"));
GenericDialog gd = new GenericDialog(TITLE);
gd.addMessage("Set the output options:");
gd.addCheckbox("Show_table", showTable);
gd.addCheckbox("Show_charts", showCharts);
if (emMode) {
// Ask the user for the camera gain ...
gd.addMessage("Estimating the EM-gain requires the camera gain without EM readout enabled");
gd.addNumericField("Camera_gain (ADU/e-)", cameraGain, 4);
}
gd.showDialog();
if (gd.wasCanceled())
return;
showTable = gd.getNextBoolean();
showCharts = gd.getNextBoolean();
if (emMode) {
cameraGain = gd.getNextNumber();
}
IJ.showStatus("Computing mean & variance");
final double nImages = images.size();
for (int i = 0; i < images.size(); i++) {
IJ.showStatus(String.format("Computing mean & variance %d/%d", i + 1, images.size()));
images.get(i).compute(singleImage, i / nImages, (i + 1) / nImages);
}
IJ.showProgress(1);
IJ.showStatus("Computing results");
// Allow user to input multiple bias images
int start = 0;
Statistics biasStats = new Statistics();
Statistics noiseStats = new Statistics();
final double bias;
if (singleImage) {
bias = _bias;
} else {
while (start < images.size()) {
ImageSample sample = images.get(start);
if (sample.exposure == 0) {
biasStats.add(sample.means);
for (PairSample pair : sample.samples) {
noiseStats.add(pair.variance);
}
start++;
} else
break;
}
bias = biasStats.getMean();
}
// Get the mean-variance data
int total = 0;
for (int i = start; i < images.size(); i++) total += images.get(i).samples.size();
if (showTable && total > 2000) {
gd = new GenericDialog(TITLE);
gd.addMessage("Table output requires " + total + " entries.\n \nYou may want to disable the table.");
gd.addCheckbox("Show_table", showTable);
gd.showDialog();
if (gd.wasCanceled())
return;
showTable = gd.getNextBoolean();
}
TextWindow results = (showTable) ? createResultsWindow() : null;
double[] mean = new double[total];
double[] variance = new double[mean.length];
Statistics gainStats = (singleImage) ? new StoredDataStatistics(total) : new Statistics();
final WeightedObservedPoints obs = new WeightedObservedPoints();
for (int i = (singleImage) ? 0 : start, j = 0; i < images.size(); i++) {
StringBuilder sb = (showTable) ? new StringBuilder() : null;
ImageSample sample = images.get(i);
for (PairSample pair : sample.samples) {
if (j % 16 == 0)
IJ.showProgress(j, total);
mean[j] = pair.getMean();
variance[j] = pair.variance;
// Gain is in ADU / e
double gain = variance[j] / (mean[j] - bias);
gainStats.add(gain);
obs.add(mean[j], variance[j]);
if (emMode) {
gain /= (2 * cameraGain);
}
if (showTable) {
sb.append(sample.title).append("\t");
sb.append(sample.exposure).append("\t");
sb.append(pair.slice1).append("\t");
sb.append(pair.slice2).append("\t");
sb.append(IJ.d2s(pair.mean1, 2)).append("\t");
sb.append(IJ.d2s(pair.mean2, 2)).append("\t");
sb.append(IJ.d2s(mean[j], 2)).append("\t");
sb.append(IJ.d2s(variance[j], 2)).append("\t");
sb.append(Utils.rounded(gain, 4)).append("\n");
}
j++;
}
if (showTable)
results.append(sb.toString());
}
IJ.showProgress(1);
if (singleImage) {
StoredDataStatistics stats = (StoredDataStatistics) gainStats;
Utils.log(TITLE);
if (emMode) {
double[] values = stats.getValues();
MathArrays.scaleInPlace(0.5, values);
stats = new StoredDataStatistics(values);
}
if (showCharts) {
// Plot the gain over time
String title = TITLE + " Gain vs Frame";
Plot2 plot = new Plot2(title, "Slice", "Gain", Utils.newArray(gainStats.getN(), 1, 1.0), stats.getValues());
PlotWindow pw = Utils.display(title, plot);
// Show a histogram
String label = String.format("Mean = %s, Median = %s", Utils.rounded(stats.getMean()), Utils.rounded(stats.getMedian()));
int id = Utils.showHistogram(TITLE, stats, "Gain", 0, 1, 100, true, label);
if (Utils.isNewWindow()) {
Point point = pw.getLocation();
point.x = pw.getLocation().x;
point.y += pw.getHeight();
WindowManager.getImage(id).getWindow().setLocation(point);
}
}
Utils.log("Single-image mode: %s camera", (emMode) ? "EM-CCD" : "Standard");
final double gain = stats.getMedian();
if (emMode) {
final double totalGain = gain;
final double emGain = totalGain / cameraGain;
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(cameraGain, 4));
Utils.log(" EM-Gain = %s", Utils.rounded(emGain, 4));
Utils.log(" Total Gain = %s (ADU/e-)", Utils.rounded(totalGain, 4));
} else {
cameraGain = gain;
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(cameraGain, 4));
}
} else {
IJ.showStatus("Computing fit");
// Sort
int[] indices = rank(mean);
mean = reorder(mean, indices);
variance = reorder(variance, indices);
// Compute optimal coefficients.
// a - b x
final double[] init = { 0, 1 / gainStats.getMean() };
final PolynomialCurveFitter fitter = PolynomialCurveFitter.create(2).withStartPoint(init);
final double[] best = fitter.fit(obs.toList());
// Construct the polynomial that best fits the data.
final PolynomialFunction fitted = new PolynomialFunction(best);
if (showCharts) {
// Plot mean verses variance. Gradient is gain in ADU/e.
String title = TITLE + " results";
Plot2 plot = new Plot2(title, "Mean", "Variance");
double[] xlimits = Maths.limits(mean);
double[] ylimits = Maths.limits(variance);
double xrange = (xlimits[1] - xlimits[0]) * 0.05;
if (xrange == 0)
xrange = 0.05;
double yrange = (ylimits[1] - ylimits[0]) * 0.05;
if (yrange == 0)
yrange = 0.05;
plot.setLimits(xlimits[0] - xrange, xlimits[1] + xrange, ylimits[0] - yrange, ylimits[1] + yrange);
plot.setColor(Color.blue);
plot.addPoints(mean, variance, Plot2.CROSS);
plot.setColor(Color.red);
plot.addPoints(new double[] { mean[0], mean[mean.length - 1] }, new double[] { fitted.value(mean[0]), fitted.value(mean[mean.length - 1]) }, Plot2.LINE);
Utils.display(title, plot);
}
final double avBiasNoise = Math.sqrt(noiseStats.getMean());
Utils.log(TITLE);
Utils.log(" Directory = %s", inputDirectory);
Utils.log(" Bias = %s +/- %s (ADU)", Utils.rounded(bias, 4), Utils.rounded(avBiasNoise, 4));
Utils.log(" Variance = %s + %s * mean", Utils.rounded(best[0], 4), Utils.rounded(best[1], 4));
if (emMode) {
final double emGain = best[1] / (2 * cameraGain);
// Noise is standard deviation of the bias image divided by the total gain (in ADU/e-)
final double totalGain = emGain * cameraGain;
Utils.log(" Read Noise = %s (e-) [%s (ADU)]", Utils.rounded(avBiasNoise / totalGain, 4), Utils.rounded(avBiasNoise, 4));
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(1 / cameraGain, 4));
Utils.log(" EM-Gain = %s", Utils.rounded(emGain, 4));
Utils.log(" Total Gain = %s (ADU/e-)", Utils.rounded(totalGain, 4));
} else {
// Noise is standard deviation of the bias image divided by the gain (in ADU/e-)
cameraGain = best[1];
final double readNoise = avBiasNoise / cameraGain;
Utils.log(" Read Noise = %s (e-) [%s (ADU)]", Utils.rounded(readNoise, 4), Utils.rounded(readNoise * cameraGain, 4));
Utils.log(" Gain = 1 / %s (ADU/e-)", Utils.rounded(1 / cameraGain, 4));
}
}
IJ.showStatus("");
}
use of ij.gui.PlotWindow in project GDSC-SMLM by aherbert.
the class PSFCreator method plotSignalAtSpecifiedSD.
/**
* Show a plot of the amount of signal within N x SD for each z position. This indicates
* how much the PSF has spread from the original Gaussian shape.
*
* @param psf
* The PSF
* @param fittedSd
* The width of the PSF (in pixels)
* @param factor
* The factor to use
* @param slice
* The slice used to create the label
*/
private void plotSignalAtSpecifiedSD(ImageStack psf, double fittedSd, double factor, int slice) {
if (signalZ == null) {
// Get the bounds
int radius = (int) Math.round(fittedSd * factor);
int min = FastMath.max(0, psf.getWidth() / 2 - radius);
int max = FastMath.min(psf.getWidth() - 1, psf.getWidth() / 2 + radius);
// Create a circle mask of the PSF projection
ByteProcessor circle = new ByteProcessor(max - min + 1, max - min + 1);
circle.setColor(255);
circle.fillOval(0, 0, circle.getWidth(), circle.getHeight());
final byte[] mask = (byte[]) circle.getPixels();
// Sum the pixels within the mask for each slice
signalZ = new double[psf.getSize()];
signal = new double[psf.getSize()];
for (int i = 0; i < psf.getSize(); i++) {
double sum = 0;
float[] data = (float[]) psf.getProcessor(i + 1).getPixels();
for (int y = min, ii = 0; y <= max; y++) {
int index = y * psf.getWidth() + min;
for (int x = min; x <= max; x++, ii++, index++) {
if (mask[ii] != 0 && data[index] > 0)
sum += data[index];
}
}
double total = 0;
for (float f : data) if (f > 0)
total += f;
signalZ[i] = i + 1;
signal[i] = 100 * sum / total;
}
signalTitle = String.format("%% PSF signal at %s x SD", Utils.rounded(factor, 3));
signalLimits = Maths.limits(signal);
}
// Plot the sum
boolean alignWindows = (WindowManager.getFrame(signalTitle) == null);
final double total = signal[slice - 1];
Plot2 plot = new Plot2(signalTitle, "z", "Signal", signalZ, signal);
plot.addLabel(0, 0, String.format("Total = %s. z = %s nm", Utils.rounded(total), Utils.rounded((slice - zCentre) * nmPerSlice)));
plot.setColor(Color.green);
plot.drawLine(slice, signalLimits[0], slice, signalLimits[1]);
plot.setColor(Color.blue);
PlotWindow plotWindow = Utils.display(signalTitle, plot);
if (alignWindows && plotWindow != null) {
if (alignWindows && plotWindow != null) {
PlotWindow otherWindow = getPlot(TITLE_AMPLITUDE);
if (otherWindow != null) {
// Put the two plots tiled together so both are visible
Point l = plotWindow.getLocation();
l.x = otherWindow.getLocation().x + otherWindow.getWidth();
l.y = otherWindow.getLocation().y;
plotWindow.setLocation(l);
}
}
}
}
use of ij.gui.PlotWindow in project GDSC-SMLM by aherbert.
the class PSFCreator method plotCumulativeSignal.
/**
* Show a plot of the cumulative signal vs distance from the centre
*
* @param z
* The slice to plot
* @param normalise
* normalise the sum to 1
* @param resetScale
* Reset the y-axis maximum
* @param distanceThreshold
* The distance threshold for the cumulative total shown in the plot label
*/
private void plotCumulativeSignal(int z, boolean normalise, boolean resetScale, double distanceThreshold) {
float[] data = (float[]) psf.getProcessor(z).getPixels();
final int size = psf.getWidth();
if (indexLookup == null || indexLookup.length != data.length) {
// Precompute square distances
double[] d2 = new double[size];
for (int y = 0, y2 = -size / 2; y < size; y++, y2++) d2[y] = y2 * y2;
// Precompute distances
double[] d = new double[data.length];
for (int y = 0, i = 0; y < size; y++) {
for (int x = 0; x < size; x++, i++) {
d[i] = Math.sqrt(d2[y] + d2[x]);
}
}
// Sort
int[] indices = Utils.newArray(d.length, 0, 1);
Sort.sort(indices, d, true);
// The sort is made in descending order so invert
Sort.reverse(indices);
Sort.reverse(d);
// Store a unique cumulative index for each distance
double lastD = d[0];
int lastI = 0;
int counter = 0;
StoredData distance = new StoredData();
indexLookup = new int[indices.length];
for (int i = 0; i < indices.length; i++) {
if (lastD != d[i]) {
distance.add(lastD * psfNmPerPixel);
for (int j = lastI; j < i; j++) {
indexLookup[indices[j]] = counter;
}
lastD = d[i];
lastI = i;
counter++;
}
}
// Do the final distance
distance.add(lastD * psfNmPerPixel);
for (int j = lastI; j < indices.length; j++) {
indexLookup[indices[j]] = counter;
}
counter++;
distances = distance.getValues();
}
// Get the signal at each distance
double[] signal = new double[distances.length];
for (int i = 0; i < data.length; i++) {
if (data[i] > 0)
signal[indexLookup[i]] += data[i];
}
// Get the cumulative signal
for (int i = 1; i < signal.length; i++) signal[i] += signal[i - 1];
// Get the total up to the distance threshold
double sum = 0;
for (int i = 0; i < signal.length; i++) {
if (distances[i] > distanceThreshold)
break;
sum = signal[i];
}
if (normalise && distanceThreshold > 0) {
for (int i = 0; i < signal.length; i++) signal[i] /= sum;
}
if (resetScale)
maxCumulativeSignal = 0;
maxCumulativeSignal = Maths.maxDefault(maxCumulativeSignal, signal);
String title = "Cumulative Signal";
boolean alignWindows = (WindowManager.getFrame(title) == null);
Plot2 plot = new Plot2(title, "Distance (nm)", "Signal", distances, signal);
plot.setLimits(0, distances[distances.length - 1], 0, maxCumulativeSignal);
plot.addLabel(0, 0, String.format("Total = %s (@ %s nm). z = %s nm", Utils.rounded(sum), Utils.rounded(distanceThreshold), Utils.rounded((z - zCentre) * nmPerSlice)));
plot.setColor(Color.green);
plot.drawLine(distanceThreshold, 0, distanceThreshold, maxCumulativeSignal);
plot.setColor(Color.blue);
PlotWindow plotWindow = Utils.display(title, plot);
if (alignWindows && plotWindow != null) {
PlotWindow otherWindow = getPlot(TITLE_PSF_PARAMETERS);
if (otherWindow != null) {
// Put the two plots tiled together so both are visible
Point l = plotWindow.getLocation();
l.x = otherWindow.getLocation().x + otherWindow.getWidth();
l.y = otherWindow.getLocation().y + otherWindow.getHeight();
plotWindow.setLocation(l);
}
}
// Update the PSF to the correct slice
if (psfImp != null)
psfImp.setSlice(z);
}
Aggregations