use of net.imagej.ops.special.function.UnaryFunctionOp in project imagej-ops by imagej.
the class CachedOpEnvironment method op.
@Override
public Op op(final OpRef ref) {
final Op op = super.op(ref);
for (final Class<?> ignored : ignoredOps) {
for (final Type t : ref.getTypes()) {
// FIXME: Use generic assignability test, once it exists.
final Class<?> raw = GenericUtils.getClass(t);
if (ignored.isAssignableFrom(raw)) {
return op;
}
}
}
final Op cachedOp;
if (op instanceof UnaryHybridCF) {
cachedOp = wrapUnaryHybrid((UnaryHybridCF<?, ?>) op);
} else if (op instanceof UnaryFunctionOp) {
cachedOp = wrapUnaryFunction((UnaryFunctionOp<?, ?>) op);
} else
return op;
getContext().inject(cachedOp);
return cachedOp;
}
use of net.imagej.ops.special.function.UnaryFunctionOp in project imagej-ops by imagej.
the class ConvolveTest method testConvolve.
/**
* tests fft based convolve
*/
@Test
public void testConvolve() {
float delta = 0.0001f;
int[] size = new int[] { 225, 167 };
int[] kernelSize = new int[] { 27, 39 };
long[] borderSize = new long[] { 10, 10 };
// create an input with a small sphere at the center
Img<FloatType> in = new ArrayImgFactory<FloatType>().create(size, new FloatType());
placeSphereInCenter(in);
// create a kernel with a small sphere in the center
Img<FloatType> kernel = new ArrayImgFactory<FloatType>().create(kernelSize, new FloatType());
placeSphereInCenter(kernel);
// create variables to hold the image sums
FloatType inSum = new FloatType();
FloatType kernelSum = new FloatType();
FloatType outSum = new FloatType();
FloatType outSum2 = new FloatType();
FloatType outSum3 = new FloatType();
// calculate sum of input and kernel
ops.stats().sum(inSum, in);
ops.stats().sum(kernelSum, kernel);
// convolve and calculate the sum of output
@SuppressWarnings("unchecked") final Img<FloatType> out = (Img<FloatType>) ops.run(ConvolveFFTF.class, in, kernel, borderSize);
// create an output for the next test
Img<FloatType> out2 = new ArrayImgFactory<FloatType>().create(size, new FloatType());
// create an output for the next test
Img<FloatType> out3 = new ArrayImgFactory<FloatType>().create(size, new FloatType());
// Op used to pad the input
final BinaryFunctionOp<RandomAccessibleInterval<FloatType>, Dimensions, RandomAccessibleInterval<FloatType>> padOp = (BinaryFunctionOp) Functions.binary(ops, PadInputFFTMethods.class, RandomAccessibleInterval.class, RandomAccessibleInterval.class, Dimensions.class, true);
// Op used to pad the kernel
final BinaryFunctionOp<RandomAccessibleInterval<FloatType>, Dimensions, RandomAccessibleInterval<FloatType>> padKernelOp = (BinaryFunctionOp) Functions.binary(ops, PadShiftKernelFFTMethods.class, RandomAccessibleInterval.class, RandomAccessibleInterval.class, Dimensions.class, true);
// Op used to create the complex FFTs
UnaryFunctionOp<Dimensions, RandomAccessibleInterval<ComplexFloatType>> createOp = (UnaryFunctionOp) Functions.unary(ops, CreateOutputFFTMethods.class, RandomAccessibleInterval.class, Dimensions.class, new ComplexFloatType(), true);
final int numDimensions = in.numDimensions();
// 1. Calculate desired extended size of the image
final long[] paddedSize = new long[numDimensions];
// if no getBorderSize() was passed in, then extend based on kernel size
for (int d = 0; d < numDimensions; ++d) {
paddedSize[d] = (int) in.dimension(d) + (int) kernel.dimension(d) - 1;
}
RandomAccessibleInterval<FloatType> paddedInput = padOp.calculate(in, new FinalDimensions(paddedSize));
RandomAccessibleInterval<FloatType> paddedKernel = padKernelOp.calculate(kernel, new FinalDimensions(paddedSize));
RandomAccessibleInterval<ComplexFloatType> fftImage = createOp.calculate(new FinalDimensions(paddedSize));
RandomAccessibleInterval<ComplexFloatType> fftKernel = createOp.calculate(new FinalDimensions(paddedSize));
// run convolve using the rai version with the memory created above
ops.run(ConvolveFFTC.class, out2, paddedInput, paddedKernel, fftImage, fftKernel);
ops.run(ConvolveFFTC.class, out3, paddedInput, paddedKernel, fftImage, fftKernel, true, false);
ops.stats().sum(outSum, Views.iterable(out));
ops.stats().sum(outSum2, out2);
ops.stats().sum(outSum3, out3);
// multiply input sum by kernelSum and assert it is the same as outSum
inSum.mul(kernelSum);
assertEquals(inSum.get(), outSum.get(), delta);
assertEquals(inSum.get(), outSum2.get(), delta);
assertEquals(inSum.get(), outSum3.get(), delta);
assertEquals(size[0], out.dimension(0));
assertEquals(size[0], out2.dimension(0));
}
Aggregations