use of net.imglib2.type.numeric.complex.ComplexFloatType in project imagej-ops by imagej.
the class ConvolveTest method testConvolve.
/**
* tests fft based convolve
*/
@Test
public void testConvolve() {
float delta = 0.0001f;
int[] size = new int[] { 225, 167 };
int[] kernelSize = new int[] { 27, 39 };
long[] borderSize = new long[] { 10, 10 };
// create an input with a small sphere at the center
Img<FloatType> in = new ArrayImgFactory<FloatType>().create(size, new FloatType());
placeSphereInCenter(in);
// create a kernel with a small sphere in the center
Img<FloatType> kernel = new ArrayImgFactory<FloatType>().create(kernelSize, new FloatType());
placeSphereInCenter(kernel);
// create variables to hold the image sums
FloatType inSum = new FloatType();
FloatType kernelSum = new FloatType();
FloatType outSum = new FloatType();
FloatType outSum2 = new FloatType();
FloatType outSum3 = new FloatType();
// calculate sum of input and kernel
ops.stats().sum(inSum, in);
ops.stats().sum(kernelSum, kernel);
// convolve and calculate the sum of output
@SuppressWarnings("unchecked") final Img<FloatType> out = (Img<FloatType>) ops.run(ConvolveFFTF.class, in, kernel, borderSize);
// create an output for the next test
Img<FloatType> out2 = new ArrayImgFactory<FloatType>().create(size, new FloatType());
// create an output for the next test
Img<FloatType> out3 = new ArrayImgFactory<FloatType>().create(size, new FloatType());
// Op used to pad the input
final BinaryFunctionOp<RandomAccessibleInterval<FloatType>, Dimensions, RandomAccessibleInterval<FloatType>> padOp = (BinaryFunctionOp) Functions.binary(ops, PadInputFFTMethods.class, RandomAccessibleInterval.class, RandomAccessibleInterval.class, Dimensions.class, true);
// Op used to pad the kernel
final BinaryFunctionOp<RandomAccessibleInterval<FloatType>, Dimensions, RandomAccessibleInterval<FloatType>> padKernelOp = (BinaryFunctionOp) Functions.binary(ops, PadShiftKernelFFTMethods.class, RandomAccessibleInterval.class, RandomAccessibleInterval.class, Dimensions.class, true);
// Op used to create the complex FFTs
UnaryFunctionOp<Dimensions, RandomAccessibleInterval<ComplexFloatType>> createOp = (UnaryFunctionOp) Functions.unary(ops, CreateOutputFFTMethods.class, RandomAccessibleInterval.class, Dimensions.class, new ComplexFloatType(), true);
final int numDimensions = in.numDimensions();
// 1. Calculate desired extended size of the image
final long[] paddedSize = new long[numDimensions];
// if no getBorderSize() was passed in, then extend based on kernel size
for (int d = 0; d < numDimensions; ++d) {
paddedSize[d] = (int) in.dimension(d) + (int) kernel.dimension(d) - 1;
}
RandomAccessibleInterval<FloatType> paddedInput = padOp.calculate(in, new FinalDimensions(paddedSize));
RandomAccessibleInterval<FloatType> paddedKernel = padKernelOp.calculate(kernel, new FinalDimensions(paddedSize));
RandomAccessibleInterval<ComplexFloatType> fftImage = createOp.calculate(new FinalDimensions(paddedSize));
RandomAccessibleInterval<ComplexFloatType> fftKernel = createOp.calculate(new FinalDimensions(paddedSize));
// run convolve using the rai version with the memory created above
ops.run(ConvolveFFTC.class, out2, paddedInput, paddedKernel, fftImage, fftKernel);
ops.run(ConvolveFFTC.class, out3, paddedInput, paddedKernel, fftImage, fftKernel, true, false);
ops.stats().sum(outSum, Views.iterable(out));
ops.stats().sum(outSum2, out2);
ops.stats().sum(outSum3, out3);
// multiply input sum by kernelSum and assert it is the same as outSum
inSum.mul(kernelSum);
assertEquals(inSum.get(), outSum.get(), delta);
assertEquals(inSum.get(), outSum2.get(), delta);
assertEquals(inSum.get(), outSum3.get(), delta);
assertEquals(size[0], out.dimension(0));
assertEquals(size[0], out2.dimension(0));
}
use of net.imglib2.type.numeric.complex.ComplexFloatType in project imagej-ops by imagej.
the class FFTTest method testFFT3DOp.
/**
* test that a forward transform followed by an inverse transform gives us
* back the original image
*/
@Test
public void testFFT3DOp() {
final int min = expensiveTestsEnabled ? 115 : 9;
final int max = expensiveTestsEnabled ? 120 : 11;
for (int i = min; i < max; i++) {
final long[] dimensions = new long[] { i, i, i };
// create an input with a small sphere at the center
final Img<FloatType> in = generateFloatArrayTestImg(false, dimensions);
placeSphereInCenter(in);
final Img<FloatType> inverse = generateFloatArrayTestImg(false, dimensions);
@SuppressWarnings("unchecked") final Img<ComplexFloatType> out = (Img<ComplexFloatType>) ops.run(FFTMethodsOpF.class, in);
ops.run(IFFTMethodsOpC.class, inverse, out);
assertImagesEqual(in, inverse, .00005f);
}
}
use of net.imglib2.type.numeric.complex.ComplexFloatType in project imagej-ops by imagej.
the class FFTTest method testFastFFT3DOp.
/**
* test the fast FFT
*/
@Test
public void testFastFFT3DOp() {
final int min = expensiveTestsEnabled ? 120 : 9;
final int max = expensiveTestsEnabled ? 130 : 11;
final int size = expensiveTestsEnabled ? 129 : 10;
for (int i = min; i < max; i++) {
// define the original dimensions
final long[] originalDimensions = new long[] { i, size, size };
// arrays for the fast dimensions
final long[] fastDimensions = new long[3];
final long[] fftDimensions = new long[3];
// compute the dimensions that will result in the fastest FFT time
ops.run(ComputeFFTSize.class, originalDimensions, fastDimensions, fftDimensions, true, true);
// create an input with a small sphere at the center
final Img<FloatType> inOriginal = generateFloatArrayTestImg(false, originalDimensions);
placeSphereInCenter(inOriginal);
// create a similar input using the fast size
final Img<FloatType> inFast = generateFloatArrayTestImg(false, fastDimensions);
placeSphereInCenter(inFast);
// call FFT passing false for "fast" (in order to pass the optional
// parameter we have to pass null for the
// output parameter).
@SuppressWarnings("unchecked") final RandomAccessibleInterval<ComplexFloatType> fft1 = (RandomAccessibleInterval<ComplexFloatType>) ops.run(FFTMethodsOpF.class, inOriginal, null, false);
// call FFT passing true for "fast" The FFT op will pad the input to the
// fast
// size.
@SuppressWarnings("unchecked") final RandomAccessibleInterval<ComplexFloatType> fft2 = (RandomAccessibleInterval<ComplexFloatType>) ops.run(FFTMethodsOpF.class, inOriginal, null, true);
// call fft using the img that was created with the fast size
@SuppressWarnings("unchecked") final RandomAccessibleInterval<ComplexFloatType> fft3 = (RandomAccessibleInterval<ComplexFloatType>) ops.run(FFTMethodsOpF.class, inFast);
// create an image to be used for the inverse, using the original
// size
final Img<FloatType> inverseOriginalSmall = generateFloatArrayTestImg(false, originalDimensions);
// create an inverse image to be used for the inverse, using the
// original
// size
final Img<FloatType> inverseOriginalFast = generateFloatArrayTestImg(false, originalDimensions);
// create an inverse image to be used for the inverse, using the
// fast size
final Img<FloatType> inverseFast = generateFloatArrayTestImg(false, fastDimensions);
// invert the "small" FFT
ops.run(IFFTMethodsOpC.class, inverseOriginalSmall, fft1);
// invert the "fast" FFT. The inverse will should be the original
// size.
ops.run(IFFTMethodsOpC.class, inverseOriginalFast, fft2);
// invert the "fast" FFT that was acheived by explicitly using an
// image
// that had "fast" dimensions. The inverse will be the fast size
// this
// time.
ops.run(IFFTMethodsOpC.class, inverseFast, fft3);
// assert that the inverse images are equal to the original
assertImagesEqual(inverseOriginalSmall, inOriginal, .0001f);
assertImagesEqual(inverseOriginalFast, inOriginal, .00001f);
assertImagesEqual(inverseFast, inFast, 0.00001f);
}
}
Aggregations